超冷原子介质中快光、慢光和静止光的相干调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
未来的量子信息网络需要人们运用精确的手段控制光信息的动态传输,在量子化媒介中对光信息进行有效存储以及利用新颖的技术对光学数据进行相干操控。光与物质相互作用导致的量子相干效应为实现这一目标提供了强大的工具。特别地,基于激光诱导原子相干的电磁感应透明(EIT)技术被非常成功的大量应用在量子信息领域。
     本论文回顾了原子相干效应,重点介绍了基于EIT的光存储技术和光学前驱场的相关研究工作的发展历程和前沿方向。在此基础上,我们探讨了携带信息的弱光信号在超冷EIT原子介质中的动力学演化过程以及对其进行的相干调控。研究内容主要包括在相干制备的EIT介质中利用光存储技术产生和操控慢光拍信号和双静止光脉冲,利用超快光学前驱场实现对脉冲序列中特殊超慢光脉冲的标记方案,共分为四个部分。具体内容如下:
     一、基于光存储技术在tripod型冷原子中产生和操控拍信号
     我们研究了在EIT条件下的四能级tripod型冷原子介质中,利用非对称的光存储技术将量子探测场转化为拍频信号的方案。具体过程是:在存储阶段调制两个具有相等失谐的控制场,将缓慢进入原子介质的一束量子探测场转化成两个原子自旋相干波包。在提取阶段同时开启具有不同失谐的两个控制场,可以获得动态可控的慢光拍频信号。通过理论分析可知,这种拍信号来源于所提取的具有不同含时相位的两个光学分量之间的相长和相消干涉。这种有趣的现象可以通过“暗态极化子”(DSPs)理论来很好的解释。并且,我们可以通过改变两个控制场的相对失谐和相对相位有效控制拍信号的拍频大小和峰值的位置。最后我们还分析了这种拍信号的潜在用途,例如可以用来快速测量原子跃迁频率以及磁场强度等。
     二、在四能级准型冷原子中通过引入微波场产生和操控拍信号
     我们提出了在相干场驱动的四能级准型冷原子系统中实现的一种动力学产生和操控拍信号的有效方案。这个方案依赖于一个由一束经典耦合场和在光提取阶段引入的一束微波场控制的光存储和提取过程。输入的量子探测场被首先转化成一个原子自旋相干激发,接下来再被转化成具有不同含时相位的两个光学分量。二者之间发生相长和相消干涉,因此,所提取出的量子探测场呈现出一系列强度上的最大值和最小值交替出现的拍信号。我们利用暗态极化子理论分析拍信号的产生过程,实际上包含了单模暗态极化子和双模暗态极化子的相干转化。拍信号的频率、对比度和相位由微波场的强度、失谐和开启时间控制。我们还发现由微波场产生拍信号引入的能量损耗是很小的。最后,当我们输入矩形脉冲,经历上述的存取过程后,输出脉冲具有三部分彼此分离的振荡结构,前两部分是来源于上升沿和下降沿的快速的光学前驱场,后一部分是来源于主体脉冲的减慢的光拍信号。基于这个方案,我们可以利用高精度的拍信号测量微波场强度。
     三、五能级双tripod型冷原子中双静止光脉冲的产生与操控
     我们研究在五能级双tripod型冷原子系统中,通过调控两个前向和两个后向控制场,以同时或一定的时间延迟的方式将一束量子探测场转化成一对双色静止光脉冲(SLPs)。我们的数值结果表明,此双色静止光脉冲是由两个原子自旋波包相互耦合产生的。实际上每个静止光脉冲都来源于一对互相耦合的暗态极化子,它们的速度方向相反但是强度相同,这种竞争的平衡状态导致了光脉冲的静止。通过调制四个控制场,我们不仅能同时从介质出口和入口处释放两个静止光脉冲,并且能使二者先后从介质末尾处被释放。特别地,在这种模型下产生的静止光脉冲可以避免快速的能量衰减和空间扩散。另外,通过在光存储和提取阶段改变四个经典控制场的失谐,我们可以将振荡拍的形式加载到静止光脉冲上,并以拍信号的形式对其进行释放。
     四、在EIT情况下利用超快光学前驱场标记超慢光信号
     我们研究了在EIT下的量子延迟或存储介质中,利用超快光学前驱场实现对光信号序列中某些特定目标脉冲做标记的四种方案。前三种方案是在三能级型系统中实现的。第一种方案中,我们在信号脉冲序列中掺杂了一个半高斯脉冲,利用其突变上升沿产生的光学前驱场与目标脉冲的慢光主体发生干涉作用,使目标脉冲具有振荡的尖峰结构从而被标记。在第二种方案中,我们通过修正信号脉冲的波形,利用目标脉冲突变的下降沿产生的前驱场与自身的慢光主体发生干涉作用以实现标记方案。在第三种方案中,我们利用目标脉冲后一个脉冲的突变的上升沿或者下降沿产生的前驱场对目标脉冲进行标记。在第四种标记方案中,我们引入一束矩形调制的弱微扰场耦合三能级型系统与另一个基态能级,使之构成一个N型系统。在此系统中,信号脉冲序列仍在EIT情况下缓慢通过介质,而微扰场的主体部分被吸收,只有前驱场能通过。将此前驱场叠加在以慢光形式输出的目标脉冲上,使其被标记。通过这些方案,我们能够实时的对某个特定脉冲进行标记,这在光通讯和超快信息处理领域将具有潜在的应用价值。
In the future, the realization of quantum internet requires that people shoulduse accurate means to control the dynamic propagation of optical pulses, toeffectively store optical information in quantized media, and apply noveltechniques to coherently control optical data. The quantum interference effectbetween light and matter provides powerful tools to achieve this goal. Inparticular, electromagnetically induced transparency (EIT) technique has beenwidely and successfully used in the field of quantum information.
     This thesis reviews the atomic coherence effects and focuses on thedevelopments and frontiers of EIT-based light storage techniques and researcheson optical precursors. On this basis, we investigate the dynamic evolution andcoherent control of weak optical signals with information in ultra-cold EIT atomicmedia. Our work includes the coherent generation and manipulation of slowoptical beating signals, stationary light pulse pairs, and fast optical precursorsused for marking the slow pulse in the regime of EIT.
     I. Dynamic generation of robust and controlled beating signals in anasymmetric procedure of light storage and retrieval
     We investigate the generation of beating signals from a quantum probe fieldbased on an asymmetric procedure of light storage and retrieval in a sample oftripod-type cold atoms under EIT condition. In this scheme, when we modulatetwo classical coupling fields with equal detunings in the storage stage, a quantumprobe field first slowly enters the atomic sample and then transform into two spincoherence wave-packets. In the retrieval stage, we turn on two classical coupling fields with opposite detunings and then retrieve the probe field withbeating signals. Through theoretical analysis, the beating signals rely on thealternative constructive and destructive interference between two opticalcomponents characterized by different time-dependent phases. The generation ofthis interesting phenomenon can be well understood in the terms of dark-statepolaritons (DSPs). In addition, the beat frequency and locations of peaks aredetermined by the detunings difference and the relative phase of two couplingfields. We also analyze the potential applications of the beating signals in fastlimited measurement of magnetic field amplitudes and atomic transitionfrequencies.
     II. Generating and manipulating beating signals by a microwave field infour-level cold atoms
     We propose an efficient scheme for the dynamic generation andmanipulation of beating signals in a sample of cold atoms driven into thefour-level quasi-Λ configuration. This scheme relies on a procedure of lightstorage and retrieval controlled by a classical coupling field with a microwavefield introduced only in the retrieval stage. One quantum probe field, incidentupon this atomic sample, is transformed first into a collective excitation of atomicspin coherence and then into two optical components characterized by differenttime-dependent phases. Consequently the retrieved quantum probe field exhibits aseries of maxima and minima (beating signals) in intensity due to the alternativeconstructive and destructive interference. This interesting phenomenon involvesin fact the coherent conversion between single-mode and two-mode DSPs. Thebeating frequency, contrast, and phase can be easily controlled by modulating themicrowave intensity, detuning, and turn-on time. We also find that little energyloss is additionally introduced when beating signals are generated by applying themicrowave field in the light retrieval stage. If the incident probe field is a squared pulse, the output probe field will have three separate parts exhibiting oscillatingintensities, among which the former two are fast optical precursors originatingfrom the sudden rising and falling edges while the last one is slow beating signalsgenerated from the central main part. This scheme can be explored to measure themicrowave intensity with high-precision beating signals
     III. Coherent generation and dynamic manipulation of double stationarylight pulses in a five-level double-tripod system of cold atoms
     We study a five-level double-tripod system of cold atoms for efficientlymanipulating the dynamic propagation and evolution of a quantum probe field bymodulating four classical control fields. A pair of two-color stationary light pulses(SLPs) can be generated either at the same time or with a suitable time delay. Ournumerical results show that the two-color double SLPs are mutually coupledthrough two wave packets of atomic spin coherence. Each SLP is contributed by apair of mutually coupled DSPs with opposite velocities and equal strengths so thatno one can conquer the other to move in its own direction. The pair of stationarylight pulses can be released either from the sample entrance and exitsynchronously or just from the sample exit with a controlled time delay. Inaddition, the two-color stationary light pulses are immune to the fast decayoriginating from the higher-order Fourier components of atomic spin and opticalcoherence, and may exhibit the quantum limited beating signals with theircharacteristic frequency determined by detunings of the four classical controlfields.
     IV. Marking slow light signals with fast optical precursors in the regime ofelectromagnetically induced transparency
     We propose four schemes for marking a desired slow light signal in asequence of optical pulses with fast optical precursors in a quantum delay ormemory medium of cold atoms under the EIT condition. The first three schemes are accomplished in a model of generic-type system without applying thedisturbing field. In the first scheme, we dope a special half-Gaussian wave-patternpulse into the pulse sequence. The target output signal with oscillating peaks ishighlighted by a fast optical precursor generated from the rising edge of theincident half-Gaussian pulse. In the second scheme, we modulate a Gaussian-likepulse with a sudden falling edge. The corresponding precursors will interfere withthe output slow main pulse and a few oscillating peaks can be generated. In thethird scheme, we use the precursors from the sudden rising or falling edge of thenext pulse after the target pulse to generate the oscillating peaks. However, in thefourth scheme of an N-type system, a square-modulated disturbing field isintroduced to couple the-type system and another atomic level. Only its opticalprecursors can propagate through the medium but the main pulse will be absorbed.The slow target signal pulses under EIT can be marked for that the opticalprecursors add their intensities and generate oscillating peaks. Through thesemarking schemes above, we can achieve to mark a particular pulse of an opticalsequence immediately as required. These marking schemes may have potentialapplications in optical communication and fast information processing.
引文
[1] NIELSEN M A, CHUANG I L. Quantum computation and quantuminformation [M]. UK: Cambridge University Press,2000.
    [2] ZOLLER P, et al. Quantum information processing and communication.Strategic report on current status, visions and goals for research in Europe [J].The European Physical Journal D,2005,36:203-228.
    [3] KIMBLE H J. The quantum internet [J]. Nature,2008,453:1023-1030.
    [4] GISIN N, RIBORDY G, TITTEL W, ZBINDEN H. Quantum cryptography [J].Reviews of Modern Physics,2002,74:145-195.
    [5] BOUWMEESTER D, EKERT A, ZEILINGER A. The physics of quantuminformation [M]. Berlin: Springer,2000.
    [6] GIOVANNETTI V, LLOYD S, MACCONE L. Quantum-enhancedmeasurements: beating the standard quantum limit [J]. Science,2004,306:1330-1336.
    [7] BOUWMEESTER D, PAN J W, MATTLE K, et al. Experimental quantumteleportation [J]. Nature,1997,390:575-579.
    [8] FURUSAWA A, SORENSEN J, BRAUNSTEIN S, et al. Unconditionalquantum teleportation [J]. Science,1998,282:706-709.
    [9] PAN J W, GASPARONI S, ASPELMEYER M, et al. Experimental realizationof freely propagating teleported qubits [J]. Nature,2003,421:721-725.
    [10] BARRETT M D, CHIAVERINI J, SCHAETZ T, et al. Deterministic quantumteleportation of atomic qubits [J]. Nature,2004,429:737-739.
    [11] CHEN Y A, CHEN S, YUAN Z S, et al. Memory-built-in quantumteleportation with photonic and atomic qubits [J]. Nature Physics,2008,4:103-107.
    [12] ASPELMEYER M, BOHM H R, GYATSO T, et al. Long-distance free-spacedistribution of quantum entanglement [J]. Science,2003,301:621-623.
    [13] VILLORESI P, JENNEWEIN T, TAMBURINI F, et al. Experimentalverification of the feasibility of a quantum channel between space and earth[J]. New Journal of Physics,2008,10:033038.
    [14] CIRAC J I, ZOLLER P, KIMBLE H J, et al. Quantum state transfer andentanglement distribution among distant nodes in a quantum network [J].Physical Review Letters,1997,78:3221-3224.
    [15] MILLER R, NORTHUP T E, BIRNBAUM K M, et al. Trapped atoms incavity QED: coupling quantized light and matter [J]. Journal of Physics B,2005,38: S551-S565.
    [16] PARKINS A S, MARTE P, ZOLLER P, et al. Synthesis of arbitrary quantumstates via adiabatic transfer of Zeeman coherence [J]. Physical ReviewLetters,1993,71:3095-3098.
    [17] VAN ENK S J, CIRAC J I, ZOLLER P. Photonic channels for quantumcommunication [J]. Science,1998,279:205-208.
    [18] DUAN L M, LUKIN M D, CIRAC J I, et al. Long-distance quantumcommunication with atomic ensembles and linear optics [J]. Nature,2001,414:413-418.
    [19] LUKIN M D. Colloquium: Trapping and manipulating photon states inatomic ensembles [J]. Reviews of Modern Physics,2003,75:457-472.
    [20] WILK T, WEBSTER S C, KUHN A, et al. Single-atom single-photonquantum interface [J]. Science,2007,317:488-490.
    [21] HAMMERER K, S ENSEN A S, POLZIK E S. Quantum interface betweenlight and atomic ensembles [J]. Review of Modern Physics,2010,82:1041-1093.
    [22] BRIEGEL H J, DüR W, CIRAC J I, et al. Quantum repeaters: the role ofimperfect local operations in quantum communication [J]. Physical ReviewLetters,1998,81:5932-5935.
    [23] ZHAO Z, YANG T, CHEN Y A, et al. Experimental realization ofentanglement concentration and a quantum repeater [J]. Physical ReviewLetters,2003,90:207901.
    [24] VAN LOOCK P, LADD T D, SANAKA K, et al. Hybrid quantum repeaterusing bright coherent light [J]. Physical Review Letters,2006,96:240501.
    [25] MUNRO W J, METER R V, LOUIS S G R, et al. High-bandwidth hybridquantum repeater [J]. Physical Review Letters,2008,101:040502.
    [26] SHERSON J F, KRAUTER H, OLSSON R K, et al. Quantum teleportationbetween light and matter [J]. Nature,2006,443:557-560.
    [27] PRESKILL J P. Plug-in quantum software [J]. Nature,1999,402:357-358.
    [28] HUANG Y P.量子测量与2012年诺贝尔物理学奖[J].物理教学,2012,34:5-7.
    [29] H NSCH T, KEIL R, SCHABERT A, et al. Interaction of laser light wavesby dynamic stark splitting [J]. Zeitschrift für Physik,1969,226:293-296.
    [30] H NSCH T, TOSCHEK P. Theory of a three-level gas laser amplifier [J].Zeitschrift für Physik,1970,236:213-244.
    [31] FANO U. Effects of configuration interaction on intensities and phase shifts[J]. Physical Review,1961,124:1866-1878.
    [32] GONG S Q, NIU Y P, ZHOU F X, et al.原子类原子系统光学特性的量子相干调控应用基础研究[J].光学学报,2011,31:0900123.
    [33] RENZONI F, MAICHEN W, WINDHOLZ L, et al. Coherent populationtrapping with losses observed on the Hanle effect of the D1sodium line [J].Physical Review A,1997,55:3710-3718
    [34] ABELLA L, KUMIT N, HARTMANN S. Photon echoes [J]. PhysicalReview,1966,141:391-406.
    [35] SCULLY M, STEPHEN M J, BUMHAM D C. Photon echo in gaseousmedia [J]. Physical Review,1968,171:213-214.
    [36] HERMAN R M, GROTH H, KORNBLITH R, et al. Quantumelectrodynamic and semiclassical interference effects in spontaneousradiation [J]. Physical Review A,1975,11:1389-1396.
    [37] SHOEMAKER R, BREWER R. Two-photon superradiance [J]. PhysicalReview Letters,1972,28:1430-1433.
    [38] BREWER R, HAHN E. Coherent Raman beats [J]. Physical Review A,1973,8:464-472.
    [39] MCCALL S, HAHN E. Self-induced transparency [J]. Physical Review,1969,183:457-485.
    [40] ARIMONDO E, ORRIOLS G. Nonabsorbing atomic coherences by coherenttwo-photon transitions in a three-level optical pumping [J]. Nuovo CimentoLetters,1976,17:333-338.
    [41] GRAY H R, WHITLEY R M, STROUD J C R. Coherent trapping of atomicpopulations [J]. Optics Letters,1978,3:218-220.
    [42] H LLER R, RENZONI F, WINDHOLZ L, et al. Coherent populationtrapping on the sodium D1line in high magnetic fields [J]. Journal of theOptical Society of America, B,1997,14:2221-2226.
    [43] CHAMPENOIS C, MORIGI G, ESCHNER J. Quantum coherence andpopulation trapping in three-photon processes [J]. Physical Review A,2006,74:053404-10.
    [44] ZHU Y F, MULLINS O C, XIAO M. Inversionless laser from a closed multilevel system [J]. Physical Review A,1993,47:602-609.
    [45] ZIBROV A S, LUKIN M D, NIKONOV D E, et al. ExperimentalDemonstration of Laser Oscillation without Population Inversion viaQuantum Interference in Rb [J]. Physical Review Letters,1995,75:1499-1502.
    [46] KILIN S Y, KAPALE K T, SCULLY M O. Lasing without inversion:Counterintuitive population dynamics in the transient regime [J]. PhysicalReview Letters,2008,100:173601.
    [47] SAUTENKOV V A, YE C Y, ROSTOVTSEV Y V, et al. Enhancement offield generation via maximal atomic coherence prepared by fast adiabaticpassage in Rb vapor [J]. Physical Review A,2004,70:033406.
    [48] ZHU S-Y and SCULLY M O. Spectral Line Elimination and SpontaneousEmission Cancellation via Quantum Interference [J]. Physical ReviewLetters,1996,76:388-391.
    [49] KOCHAROVSKAYA O A, KHANIN Y I. Coherent amplification of anultrashort pulse in a three-level medium without a population inversion [J].JEPT Letters,1988,48:630.
    [50] HARRIS S E. Lasers without inversion: interference of lifetime-broadenedresonances [J]. Physical Review Letters,1989,62:1033.
    [51] HARRIS S E, FIELD J E, IMAMOGLU A. Nonlinear optical processesusing electromagnetically induced transparency [J]. Physical Review Letters,1990,64:1107-1110.
    [52] BOLLER K J, IMAMOLU A, HARRIS S E. Observation of electromagneticallyinduced transparency [J]. Physical Review Letters,1991,66:2593-2596.
    [53] FIELD J E, HAHN K H, HARRIS S E. Observation of electromagneticallyinduced transparency in collisionally broadened lead vapor [J]. PhysicalReview Letters,1991,67:3062-3065.
    [54] KASAPI A, JAIN M, YIN G Y, et al. Electromagnetically inducedtransparency: propagation dynamics [J]. Physical Review Letters,1995,74:2447-2450.
    [55] HAU L V, HARRIS S E, DUTTON Z, et al. Light speed reduction to17metres per second in an ultracold atomic gas [J]. Nature,1999,397:594-598.
    [56] KASH M M, SAUTENKOV V A, ZIBROV A S, et al. Ultraslow groupvelocity and enhanced nonlinear optical effects in a coherently driven hotatomic gas [J]. Physical Review Letters,1999,82:5229-5232.
    [57] CUI C L, JIA J K, GAO J W, et al. Ultraslow and superluminal lightpropagation in a four-level atomic system [J]. Physical Review A,2007,76:033815.
    [58] LIU C, DUTTON Z, BEHROOZI C H, HAU L V. Observation of coherentoptical information storage in an atomic medium using halted light pulses [J].Nature,2001,409:490-493.
    [59] MATSKO A B, ROSTOVTSEV Y V, KOCHAROVSKAYA O, et al.Nonadiabatic approach to quantum optical information storage [J]. PhysicalReview A,2001,64:043809.
    [60] MEWES C, FLEISCHHAUER M. Two-photon linewidth of light “stopping”via electromagnetically induced transparency [J]. Physical Review A,2002,66:033820.
    [61] WANG K, PENG F, YANG G. Stopping and storing a light pulse in anultracold atomic medium [J]. Journal of Optics B,2003,5:44-51.
    [62] LI Z, Cao D Z, WANG K. Manipulating synchronous optical signals with adouble-Λ atomic ensemble [J]. Physics Letters A,2005,341:366-370.
    [63] PUGATCH R, SHUKER M, FIRSTENBERG O, et al. Topological stabilityof stored optical vortices [J]. Physical Review Letters,2007,98:203601.
    [64] CHOI K S, DENG H, LAURAT J, et al. Mapping photonic entanglement intoand out of a quantum memory [J]. Nature (London),2008,452:67-71.
    [65] HAM B S. Control of photon storage time using phase locking [J]. OpticsExpress,2010,18:1704-1713.
    [66] YANG G J, QIU T H, WANG K, et al. Reversible storage of a weak lightpulse in a thermal atomic medium [J]. Physical Review A,2010,81:063817.
    [67] MOON H S, LEE L, KIM K, et al. Laser frequency stabilizations usingelectromagnetically induced transparency [J]. Applied Physics Letters,2004,84:3001.
    [68] OTTAVIANI C, VITALI D, ARTONI M, et al. Polarization qubit phase gatein driven atomic media [J]. Physical Review Letters,2003,90:197902.
    [69] OTTAVIANI C, REBIE S, VITALI D, et al. Quantum phase-gate operationbased on nonlinear optics: Full quantum analysis [J]. Physical Review A,2006,73:010301(R).
    [70] ZOU X B, MATHIS W. Conditional quantum phase gate using distant atomsand linear optics [J]. Physical Review A,2005,71:042334.
    [71] YUAN Z S, BAO X H, LU C Y, et al. Entangled photons and quantumcommunication [J]. Physics Report,2010,497:1-40.
    [72] FLEISCHHAUER M, LUKIN M D. Dark-state polaritons inelectromagnetically induced transparency [J]. Physical Review Letters,2000,84:5094-5097.
    [73] ZHANG H R, SUN C P. Bloch oscillations of polaritons of an atomicensemble in magnetic fields [J]. Physical Review A,2010,81:063427.
    [74] FLEISCHHAUER M, LUKIN M D. Quantum memory for photons:Dark-state polaritons [J]. Physical Review A,2002,65:022314.
    [75] PHILLIPS D F, FLEISEHHAUER A, MAIR A, et al. Storage of light inatomic vapor [J]. Physical Review Letters,2001,86:783-786.
    [76] LIU C, DUTTON Z, BEHROOZI C H, et al. Observation of coherent opticalinformation storage in an atomic medium using halted light pulses [J]. Nature,2001,409:490-493.
    [77] MAIR A, HAGER J, PHILLIPS D F, et al. Phase coherence and control ofstored photonic information [J]. Physical Review A,2002,65:031802(R).
    [78] JUZELINUAS G, CARMIEHAEL H J. Systematic formulation of slowpolaritons in atomic gases [J]. Physical Review A,2002,65:021601.
    [79] PAYNE M G, DENG L, SCHMITT C, et al. Direct measurement of opticalquasidistribution function: Mutimode theory and homodyne tests of Bell’sinequalities [J]. Physical Review A,2002,66:043802
    [80] MEWES C, FLEISEHHAUER M. Two-photo linewidth of light “stopping”via electromagnetically induced transparency [J]. Physical Review A,2002,66:033820.
    [81] JUZELIūNAS G, MA ALAS M, FLEISEHHAUER M. Storing andreleasing light in a gas of moving atoms [J]. Physical Review A,2003,67:023809.
    [82] GAO H, ROSENBERRY M, BATELAAN H. Light storage with light ofarbitrary polarization [J]. Physical Review A,2003,67:053807.
    [83] RAEZY SKI A, ZAREMBA J, ZIELI SKA-KANIASTY S.Electromagnetically induced transparency and storing of a pair of pulses oflight [J]. Physical Review A,2004,69:043801.
    [84] CHEN Y F, WANG C Y, WANG S H, et al. Low-light-levelcross-phase-modulation based on stored light pulses [J]. Physical ReviewLetters,2006,96:043603.
    [85] LIN W H, LIAO W T, WANG C Y, et al. Low-light-level all-opticalswitching based on stored light pulses [J]. Physical Review A,2008,78:033807.
    [86] EILAM A, WILSON-GORDON A D, FRIEDMANN H. Efficient lightstorage in a system due to coupling between lower levels [J]. OpticsLetters,2009,34:1834-1836.
    [87] CARRE O F, ANTóN M A. Controlled release of stored pulses in adouble-quantum-well structure [J]. Journal of Physics B: Atom, Molecularand Optical Physics,2009,42:215508.
    [88] CHO Y W, KIM Y H. Storage and retrieval of thermal light in warm atomicvapor [J]. Physical Review A,2010,82:033803.
    [89] SU S W, CHEN Y H, GOU S C, et al. Dynamics of slow light and lightstorage in a Doppler-broadened electromagnetically-induced-transparencymedium: A numerical approach [J]. Physical Review A,2011,83:013827.
    [90] HEINZE G, RENTZSCH N, HALFMANN T. Multiplexed image storage byelectromagnetically induced transparency in a solid [J]. Physical Review A,2012,86:053837.
    [91] BAJCSY M, ZIBROV A S, LUKIN M D, Stationary pulses of light in anatomic medium [J], Nature,2003,426:638.
    [92] LIN Y W, LIAO W T, PETERS T, et al. Stationary light pulses in cold atomicmedia and without Bragg gratings [J]. Physical Review Letters,2009,103:213601.
    [93]董雅宾.电磁诱导相干介质中相关量子效应的研究[D].太原:山西大学量子光学与光量子器件国家重点实验室,2006.
    [94] HOLGER P S, N LLEKE C, REISERER A, et al. A single-atom quantummemory [J]. Nature,2011,473:190-193.
    [95] VAN DER WAL C H, EISAMAN M D, ANDRE A. Atomic memory forcorrelated photon states [J]. Science,2003,301:196-200.
    [96] KUZMICH A, BOWEN W P, BOOZER A D, et al. Generation ofnonclassical photon pairs for scalable quantum communication with atomicensembles [J]. Nature,2003,423:731-734.
    [97] JIANG W, HAN C, XUE P, et al. Nonclassical photon pairs generated from aroom-temperature atomic ensemble [J]. Physical Review A,2004,69:043819.
    [98] EISAMAN M D, ANDRE A, MASSOU F, et al. Electromagnetically inducedtransparency with tunable single-photon pulses [J]. Nature,2005,438:837-841
    [99] CHANèLIE T, MATSUKEVICH D N, JENKINS S D, et al. Storage andretrieval of single photons transmitted between remote quantum memories[J]. Nature,2005,438:833-836
    [100] CHOU C W, DE RIEDMATTEN H, FELINTO D, et al.Measurement-induced entanglement for excitation stored in remote atomicensembles [J]. Nature,2005,438:828-832.
    [101] APPEL J, FIGUEROA E, KORYSTOV D, et al. Quantum memory forsqueezed light [J]. Physical Review Letters,2008,100:093602.
    [102] HONDA K, AKAMATSU D, ARIKAWA M. Storage and retrieval of asqueezed vacuum [J]. Physical Review Letters,2008,100:093601.
    [103] VAN DER WAL C H, EISAMAN M D, ANDRé A, et al. Atomic memorycorrelated photo states [J]. Science,2003,301:196-199.
    [104] DAI H N, ZHANG H, YANG S J, et al. Holographic storage of biphotonentanglement [J]. Physical Review Letters,2012,108:210501.
    [105] BOYD R W, GAUTHIER D J. Progress in Optics43, edited by E. Wolf [M].Amsterdam: Elsevier,2002, Chap.6.
    [106] STENNER M D, GAUTHIER D J, NEIFELD M A. The speed ofinformation in a ‘fast-light’ optical medium [J]. Nature,2003,425:695-698.
    [107] SOMMERFELD A. über die fortpflanzung des lichtes in disperdierendenmedien [J]. Ann. Phys.(Leipzig)1914,349:177-202.
    [108] BRILLOUIN L. über die fortpflanzung des licht in disperdierenden medien[J]. Ann. Phys.(Leipzig)1914,349:203-240.
    [109] LYNCH F J, HOLLAND R E, HAMERMESH M. Time dependence ofresonantly filtered gamma rays from Fe57[J]. Physics Review,1960,120:513-520.
    [110] PLESHKO P, PALOCZ I. Experimental observation of Sommerfeld andBrillouin precursors in the microwave domain [J]. Physical Review Letters,1969,22:1201-1204.
    [111] VAROQUAUX E, WILLIAMS G A, AVENEL O. Pulse propagation in aresonant medium: Application to sound waves in superfluid3B [J]. PhysicalReview B,1986,34:7617-7640.
    [112] FALCON E, LAROCHE C, FAUVE S. Observation of Sommerfeldprecursors on a fluid surface [J]. Physical Review Letters,2003,91:064502.
    [113] AVIKSOO J, KUHL J, PLOOG K. Observation of optical precursors atpulse propagation in GaAs [J]. Physical Review A,1991,44: R5353.
    [114] JEONG H, DAWES A M C, GAUTHIER D J. Direct observation of opticalprecursors in a region of anomalous dispersion [J]. Physical Review Letters,2006,96:143901.
    [115] ALBANESE R, PENN J, MEDINA R. Short-rise-time microwave pulsepropagation through dispersive biological media [J]. Journal of the OpticalSociety of America A,1989,6:1441-1446.
    [116] CHOI S H, OSTERBERG U. Observation of Optical Precursors in Water [J].Physical Review Letters,2004,92:193903.
    [117] OUGHSTUN K E, SHERMAN G C. Electromagnetic pulse propagation incausal dielectrics [M]. Berlin: Springer-Verlag,1994.
    [118] JEONG H, STERBERG U L. Steady-state pulse component in ultrafastpulse propagation in an anomalously dispersive dielectric [J]. PhysicalReview A,2008,77:021803(R).
    [119] JEONG H, DU S. Two-way transparency in the light-matter interaction:Optical precursors with electromagnetically induced transparency [J].Physical Review A,2009,79:011802(R).
    [120] DU S, KOLCHIN P, BELTHANGADY C, et al. Subnatural linewidthbiphotons with controllable temporal length [J]. Physical Review Letters,2008,100:183603.
    [121] DU S W, BELTHANGADY C, KOLCHIN P. Observation of opticalprecursors at the biphoton level [J]. Optics Letters,2008,33:2149-2151.
    [122] CARTWRIGHT N A, OUGHTUM K E. SIAM Review,2007,49:628.
    [123] DONG W, CHEN J F, LOY M M T, et al. Optical precursors withelectromagnetically induced transparency in cold atoms [J]. PhysicalReview Letters,2009,103:093602.
    [124] ZHANG S, CHEN J F, CHANG L, et al. Optical precursors of a singlephoton [J]. Physical Review Letters,2011,106:243602.
    [125] MACKE B, SEGARD B, Optical precursors with self-induced transparency[J]. Physical Review A,2010,81:015803.
    [126] PENG Y D, NIU Y P, QI Y H, et al. Optical Precursors withtunneling-induced transparency in asymmetric quantum wells [J]. PhysicalReview A,2011,83:013812.
    [127] TOMITA M, UESUGI H, SULTANA P, et al. Causal information velocity infast and slow pulse propagation in an optical ring resonator [J]. PhysicalReview A,2011,84:043843.
    [128] CHEN J F, JEONG H, FENG L. et al. Stacked optical precursors fromamplitude and phase modulations [J]. Physical Review Letters,2010,104:223602.
    [129] JEONG H, DU S. Slow-light-induced interference with stacked opticalprecursors for square input pulses [J]. Optics Letters,2010,35:124-126.
    [130] PENG Y D, NIU Y P, ZHANG L D, et al. Photonic molecules formed bycoupled hybrid resonators [J]. Optics Letters,2012,37:3333-3335.
    [131] MAIR A, HAGER J, PHILLIPS D F, et al. Phase coherence and control ofstored photonic information [J]. Physical Review A,2002,65:031802(R).
    [132] KARPA L, VEWINGER F, WEIT M. Resonance beating of light storedusing atomic spinor polaritons [J]. Physical Review Letters,2008,101:170406.
    [133] KARPA L, NIKOGHOSYAN G, VEWINGER F, et al. Frequency matchingin light-storage spectroscopy of atomic Raman transitions [J]. PhysicalReview Letters,2009,103:093601.
    [134] MATTLE K, WEINFURTER H, KWIAT P G, et al. Dense coding inexperimental quantum communication [J]. Physical Review Letters,1996,76:4656-4695.
    [135] LI X Y, PAN Q, JING J T, et al. Quantum dense coding exploiting a brightEinstein-Podolsky-Rosen beam [J]. Physical Review Letters,2002,88:047904.
    [136] ALLEN L, EBERLY J H. Optical resonance and two-level atoms [M]. NewYork: John Wiley,1975.
    [137] WANG H, LI S J, XU Z X, et al. Quantum interference of storeddual-channel spin-wave excitations in a single tripod system [J]. PhysicalReview A,2011,83:043815.
    [138] TANJI H, GHOSH S, SIMON J, et al. Heralded single-magnon quantummemory for photon polarization states [J]. Physical Review Letters,2009,103:043601.
    [139] LONGDELL J J, FRAVAL E, SELLARS M J, et al. Stopped light withstorage times greater than one second using electromagnetically inducedtransparency in a solid. Physical Review Letters,2005,95:063601.
    [140] SHUKER M, FIRSTENBERG O, PUGATCH R, et al. Storing images inwarm atomic vapor [J]. Physical Review Letters,2008,100:223601.
    [141] VUDYASETU P K, CAMACHO R M, HOWELL J C. Storage and retrievalof multimode transverse images in hot atomic rubidium vapor [J]. PhysicalReview Letters,2008,100:123903.
    [142] HEINZE G, RUDOLF A, BEIL F, et al. Storage of images in atomiccoherences in a rare-earth-ion-doped solid [J]. Physical Review A,2010,81:011401(R).
    [143] LING H Y, LI Y Q, XIAO M. Electromagnetically induced grating:Homogeneously broadened medium [J]. Physical Review A,1998,57:1338-1344.
    [144] KUANG S Q, WAN R G, DU P, et al. Transmission and reflection ofelectromagnetically induced absorption grating in homogeneous atomicmedia [J]. Optics Express,2008,16:15455-15462.
    [145] DE ARAUJO L E E. Electromagnetically induced phase grating [J]. OpticsLetters,2010,35:977-979.
    [146] LI Z Y, WANG J, GU B Y. Creation of partial band gaps in anisotropicphotonic-band-gap structures [J]. Physical Review B,1998,58:3721-3729.
    [147] HE Q Y, XUE Y, ARTONI M, et al. Coherently induced stop-bands inresonantly absorbing and inhomogeneously broadened doped crystals [J].Physical Review B,2006,73:195124.
    [148] HE Q Y, WU J H, WANG T J, et al. Dynamic control of the photonic stopbands formed by a standing wave in inhomogeneous broadening solids [J].Physical Review A,2006,73:053813.
    [149] ARTONI M, LA ROCCA G, BASSANI F. Resonantly absorbingone-dimensional photonic crystals [J]. Physical Review E,2005,72:046604.
    [150] MOISEEV S A, HAM B S. Quantum manipulation of two-color stationarylight: Quantum wavelength conversion [J]. Physical Review A,2006,73:033812.
    [151] ZIMMER F E, ANDRE A, LUKIN M D, et al. Coherent control ofstationary light pulses [J]. Optics Communication,2006,264:441-453.
    [152] ZIMMER F E. Dark-state polaritons for multicomponent and stationarylight fields [J]. Physical Review A,2008,77:063823.
    [153] RYMANN K, M LMER K. Stationary light pulses in ultracold atomicgases [J]. Physical Review A,2007,75:065804.
    [154] OTTERBACH J, UNANYAN R G, FLEISCHHAUER M. Confiningstationary light: Dirac dynamics and Klein tunneling [J]. Physical ReviewLetters,2009,102:063602.
    [155] UNANYAN R G, OTTERBACH J, FLEISCHHAUER M. Spinorslow-light and Dirac particles with variable mass [J]. Physical ReviewLetters,2009,105:173603.
    [156] PETERS T, CHEN Y H, WANG J S, et al. Observation of phase variationwithin stationary light pulses inside a cold atomic medium [J]. Optics Letters,2010,35:020151-020153.
    [157] WEI R, ZHAO B, DENG Y J, et al. Light pulse in Λ-type cold-atom gases[J]. Physical Review A,2010,81:043403.
    [158] ZHANG X J, WANG H H, WANG L, et al. Stationary light pulse in solidswith long-lived spin coherence[J]. Physical Review A,2011,83:063804.
    [159] ZHANG X J, WANG H H, LIU C Z, et al. Direct conversion of slow lightinto a stationary light pulse[J]. Physical Review A,2012,86:023821.
    [160] PETERS T, SU S W, CHEN Y H, et al. Formation of stationary light in amedium of nonstationary atoms [J]. Physical Review A,2012,85:023838.
    [161] WU J H, ARTONI M, LA ROCCA G C. All-optical light confinement indynamic cavities in cold atoms[J]. Physical Review Letters,2009,103:133601.
    [162] WU J H, ARTONI M, LA ROCCA G C. Decay of stationary light pulses inultracold atoms [J]. Physical Review A,2010,81:033822.
    [163] ZHANG Y, ZHANG Y, ZHANG X H, et al. Efficient generation andcontrol of robust stationary light signals in a double-system of coldatoms[J]. Physics Letters A,2012,376:656-661.
    [164] FLEISCHHAUER M, OTTERBACH J, UNANYAN R G. Bose-Einsteincondensation of stationary-light polaritons [J]. Physical Review Letters,2008,101:163601.
    [165] OTTERBACH J, RUSECKAS J, UNANYAN R G. Effective magneticfields for stationary light [J]. Physical Review Letters,2010,104:033903.
    [166] CHANG D E, GRITSEV V, MORIGI G, et al. Crystallization of stronglyinteracting photons in a nonlinear optical fibre [J]. Nature Physics,2008,4:884-889.
    [167] ANDRE A, BAJCSY M, ZIBROV A S, et al. Nonlinear optics withstationary pulses of light [J]. Physical Review Letters,2005,94:063902.
    [168] MOISEEV S A, CHEN Y, HAM B S. Numerical analysis of stationary lightfor potential applications of a quantum interface [J]. Journal of the KoreanPhysical Society,2006,49:2293-2302.
    [169] LIU X J, LIU X, LIU Z X, et al. Tightly localized stationary pulses in amultilevel atomic system [J]. Physical Review A,2007,75:023809.
    [170] CHEN Y H, LEE M J, HUNG W L, et al. Demonstration of the interactionbetween two stopped light pulses [J]. Physical Review Letters,2012,108:173603.
    [171] HARRIS S E, YAMAMOTO Y. Photon switching by quantum interference[J]. Physical Review Letters,1998,81:3611-3614.
    [172] BAJCSY M, HOFFERBERTH S, BALIC V, et al. Efficient all-opticalswitching using slow light within a hollow fiber [J]. Physical Review Letters,2009,102:203902.
    [173] HARRIS S E, HAU LV. Nonlinear optics at low light levels [J]. PhysicalReview Letters,1999,82:4611-4614.
    [174] SEGARD B, ZEMMOUR I, MACKE B. Generation of electromagneticpulses by stacking of coherent transients [J]. Europhysics Letters,4:47-52.
    [175] FLEICHHAUER M, IMAMOGLU A, MARANGOS J P.Electromagnetically induced transparency: Optics in coherent media [J].Reviews of Modern Physics,2005,77:633-673.
    [176] KATSOPRINAKIS G, PETROSYAN D, KOMINIS I K. High frequencyatomic magnetometer by use of electromagnetically induced transparency [J].Physical Review Letters,2006,97:230801.
    [177] JEONG H, DU S. Two-way transparency in the light-matter interaction:Optical precursors with electromagnetically induced transparency [J].Physical Review A,2009,79:011802.
    [178] NIKOGHOSYAN G, FLEISCHHAUER M. Stationary light in cold-atomicgases [J]. Physical Review A,2009,80:013818.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700