多模电磁诱导透明理论及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
最近十几年里,电磁诱导透明(electromagnetically induced transparency,简称EIT)及其应用的研究成为了理论物理、实验物理以及基础应用物理中的重要课题。EIT是一项具有重大意义和实用价值的技术,它可以通过相消干涉使得介质对共振探测光的吸收和色散特性发生显著变化,从而可以实现无吸收的大色散。目前,EIT在光速减慢、量子存储、四波混频、电磁诱导光栅、原子激光、光学双稳、光学开关、超慢光孤子、法拉第旋转、光学频率转换、光学诱导波导、光学诱导规范势、稳态脉冲、量子相位门、量子纠缠、原子分子凝聚、高精度光钟、量子成像、甚至天文学等领域都有着广泛的应用。本文主要研究了多模EIT的理论机制及其应用。其中,我们具体研究了多模EIT介质中慢光的传播、光子之间的交叉相位调制、光子-光子非线性相互作用及其在量子计算和量子信息中的应用。本论文可以分为五部分:
     第一部分包括第一章和第二章。为了论文的完整性和系统性,论文的第一章介绍EIT的发展历史以及研究现状。第二章介绍了EIT的一些基本理论,包括暗态的基本性质以及基于单原子图像和基于原子系综集体激发图像的EIT处理方法。
     第二部分为论文的第三章。主要研究了双模EIT原子介质中线性极化的量子探测光场在非均匀场中的史特恩-盖拉赫效应。推导了准粒子暗态极化子的有效薛定谔方程,然后分别利用基于准粒子的粒子性和基于光脉冲的波动性的处理方法研究了非均匀磁场和非均匀驱动场中慢光的史特恩-盖拉赫效应。
     第三部分包括第四章和第五章。第四章中,我们提出了一个基于八能级原子的三模EIT(TEIT)理论模型,利用哈密顿量方法研究了TEIT系统中三束弱探测光的传播,计算了宏观极化率以及三束弱探测光的群速度。分析表明可以在很短的相互作用距离内实现三束弱探测光之间π量级的交叉相移,并且通过调节三束强驱动光场的拉比频率,可以匹配三束探测光的群速度。第五章主要研究了TEIT系统中的光子-光子相互作用以及在量子计算中的应用。我们获得了光子之间的三模交叉克尔型相互作用,并且发现利用光子的三模交叉克尔型相互作用可以直接实现全光的Toffoli门。
     第四部分是论文的第六章。我们提出了自由行波光场的W型纠缠相干态的光学制备方案,包括基于两模交叉克尔介质的四模W型纠缠相干态的制备和基于三模交叉克尔介质的三模杂化W型纠缠相干态的制备。在理想情况下,我们的制备方案的成功几率可以达到1。
     最后一部分为论文的第七章,是对本文工作的总结和展望。
In the last ten years, much attention has been paid to understandings and applications of systems exhibiting electromagnetically induced transparency (EIT). The EIT method is a powerful technique with significance and practicability that can make the dispersive and absorptive properties of optical medium modified dramatically, i.e., make the medium having large dispersion without the resonant absorption by means of destructive interference. Recently, EIT has been applied extensively in slow light, quantum memory, four-wave mixing, electromagnetically induced grating, atom laser, optical bistability, optical switching, ultraslow optical solitons, Faraday rotation, optical frequency conversion, stationary pulses, quantum phase gate, atom-molecule dark state, high-accuracy optical clock, quantum imaging, and even astronomy. In this thesis, we study the theory of multi-mode EIT and its applications, including the propagation of slow light pulses, cross-phase modulation of photons, the photon-photon nonlinear interaction and its applications in quantum computation and quantum information. This thesis is divided into five parts:
     The first part includes chapter 1 and chapter 2. In chapter 1, the background and the main research results of EIT are introduced. In the chapter2, we introduce the basic theory of EIT, including the characters of the dark state and the theoretical methods given to deal with the EIT system based on single-atom and collective atomic excitation of atomic ensemble.
     The second part includes chapter 3. Here we study the generalized Stern-Gerlach effect of the quantized linear-polarized light in a magneto-optically manipulated atomic ensemble. We derive an effective Shr(o|¨)dinger equation for the spatial motion of two dark-state polaritions (DSPs), which behave as a quasi-particle with an effective magnetic moment. We investigate the Stern- Gerlach effect of light in an nonuniform magnetic field and an inhomogeneous coupling field, respectively, via the methods based on the particle feature of the DSPs and the wave feature of light pulses.
     The third part includes chapter 4 and chapter 5. In chapter 4, we propose a scheme to generate triple EIT (TEIT) where EIT is induced imultaneously for three weak slow light pulses. We calculate the complex polarizibilities and group velocities of the three slow light pulses in the weak field limit by means of the full Hamiltonian approach. It is shown that strong cross-phase modulation can be realized and large cross-phase shifts on the order ofπcan be generated for three slow weak pulses in very short interaction distance. It is indicated that the three slow weak pulses can reach matching of group velocities through adjusting the Rabi frequency of the control fields. In chapter 5, we study the photon-photon interaction in the TEIT system and its applications in quantum computation. We find that we can obtain a three-mode cross-Kerr-like interation of photons in the TEIT system and we can implement an all-optical Toffoli gate directly via the three-mode cross-Kerr-like interaction.
     The fourth part includes chapter 6. We propose optical schemes to generate W-type entangled coherent states in free travelling optical fields, including the generation of four-mode W-type entangled coherent states based on two-mode cross-Kerr media and the generation of three-mode hybrid W-type entangled coherent states based on three-mode cross-Kerr media. In the ideal conditions, the success probabilities of our schemes are unity.
     A summary of the work and an outlook of this thesis are given in the last part.
引文
[1] S. E. Harris. Lasers without inversion: Interference of lifetime-broadened resonances[J]. Phys. Rev. Lett., 1989, 62(9): 1033.
    [2] S. E. Harris, J. E. Field, and A. Imamoglu. Nonlinear optical processes using electromagnetically induced transparency[J]. Phys. Rev. Lett., 1990, 64(10): 1107.
    [3] O. A. Kocharovskaya and Y. I. Khanin. Coherent amplification of an ultrashort pulse in a three-level medium without a population inversion[J]. Jetp Letters, 1988, 48: 630.
    [4] M. O. Scully, S. Y. Zhu, and A. Gavrielides. Degenerate quantum-beat laser: Lasing without inversion and inversion without lasing[J]. Phys. Rev. Lett., 1989, 62(24): 2813.
    [5] K. J. Boller, A. Immamoglu, and S. E. Harris. Observation of electromagnetically induced transparency[J]. Phys. Rev. Lett., 1991, 66(20): 2593
    [6] Y. Q. Li and M. Xiao. Observation of quantum interference between dressed states in an electromagnetically induced transparency[J]. Phys. Rev. A, 1995, 51(6): 4959.
    [7] M. Fleischhauer, A. Imamoglu, and J. P. Marangos. Electromagnetically induced transparency: Optics in coherent media[J]. Rev. Mod. Phys., 2005, 77(2): 633.
    [8] U. Fano. Effects of configuration interaction on intensities and phase- shifts[J]. Phys. Rev., 1961, 124(6): 1866.
    [9] G. Alzetta, G. Gozzini, L. Moi, and G. Orris. An experimental method for the observation of r.f. transitions and laser beat resonances in oriented Na vapour[J]. Nuovo Cimento B, 1976, 36(1): 5.
    [10] J. E. Field, K. H. Hahn, and S. E. Harris. Observation of electromagnet-ically induced transparency in collisionally broadened lead vapor[J]. Phys. Rev. Lett., 1991, 67(22): 3062.
    [11] J. B. Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao. Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment[J]. Phys. Rev. A, 1995, 51(1): 576.
    [12] Y. Q. Li and M. Xiao. Electromagnetically induced transparency in a three-levelA-type system in rubidium atoms[J]. Phys. Rev. A, 1995, 51(4): 2703.
    [13] Y. Zhao, C. K. Wu, B. S. Ham, M. K. Kim, and E. Awad. Microwave induced transparency in ruby[J]. Phys. Rev. Lett., 1997, 79(4): 641.
    [14] S. E. Harris, J. E. Field, and A. Kasapi. Dispersive properties of electromagnetically induced transparency[J]. Phys. Rev. A, 1992, 46(1): 29.
    [15] M. Xiao, Y. Q. Li, S. Z Jin, and J. B. Banacloche. Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms[J]. Phys. Rev. Lett., 1995, 74(5): 666.
    [16] A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris. Electromagnetically induced transparency: propagation dynamics[J]. Phys. Rev. Lett., 1995, 74(13): 2447.
    [17] O. Schmidt, R. Wynands, Z. Hussein, and D. Meschede. Steep dispersion and group velocity below c/3000 in coherent population trapping[J]. Phys. Rev. A, 1996, 53(1): 27.
    [18] L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi. Light speed rre-duction to 17 metres per second in an ultracold atomic gas[J]. Nature, 1999, 397(6720): 594.
    [19] M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Pry and M. O. Scully. Ultraslow group velocity and enhanced nonlinear optical effects in coherently driven hot atomic gas[J]. Phys. Rev. Lett., 1999, 82(26): 5229.
    [20] D. Budker, D. F. Kiimball, S. M. Rochester, and V. V. Yashchuk, Monlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation[J]. Phys. Rev. Lett., 1999, 83(9): 1767.
    [21] A. V. Turukkhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer. Observation of ultraslow and stored light pulses in a solid[J]. Phys. Rev. Lett., 2002, 88(2): 023602.
    [22] M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd. Observation of ultraslow light propagation in a ruby crystal at room temperature[J]. Phys. Rev. Lett., 2003, 90(11): 113903.
    [23] J. M. Taylor, C. M. Marcus, and M. D. Lukin. Long-lived memory for mesoscopic quantum bits[J]. Phys. Rev. Lett., 2003, 90(20): 206803.
    [24] M. Fleischhauer and M. D. Lukin. Dark-state polaritons in electromag-netically induced transparency[J]. Phys. Rev. Lett., 2000, 84(22): 5094.
    [25] M. Fleischhauer and M. D. Lukin. Quantum memory for photons: Dark-state polaritons[J]. Phys. Rev. A, 2002, 65(2): 022314.
    [26] M. D. Lukin. Colloquium: Trapping and manipulating photon states in atomic ensembles[J]. Rev. Mod. Phys., 2003, 75(2): 457.
    [27]S.D.Jenkins,D.N.Matsukevich,T.Chanelière,A.Kuzmich,and T.A.B.Kennedy.Theory of dark-state polariton collapses and revivals[J].Phys.Rev.A,2006,73(2):021803.
    [28]D.N.Matsukevich,T.Chanelière,S.D.Jenkins,S.Y.Lan,T.A.B.Kennedy,and A.Kuzmich.Observation of dark state polariton collapses and revivals[J],Phys.Rev.Lett.,2006,96(3):033601.
    [29]X.J.Liu,Z.X.Liu,X.Liu,and M.L.Ge.Possibility of inhomogeneous coupling leading to decoherence in an electromagnetically-induced-transparency quantum-memory process[J].Phys.Rev.A,2006,73(1):013825.
    [30]C.P.Sun,Y.Li,and X.F.Liu.Quasi-spin-wave quantum memories with a dynamical symmetry[J],Phys.Rev.Lett.,2002,91(14):147903.
    [31]Y.Li,P.Zhang,P.Zanardi,and C.P.Sun.Non-Abelian geometric quantum memory with an atomic ensemble[J].Phys.Rev.A,2004,70(3):032330.
    [32]Y.Li and C.P.Sun.Group velocity of a probe light in an ensemble of A atoms under two-photon resonance[J].Phys.Rev.A,2004,69(5):051802.
    [33]李勇Interaction between Photons and Atomic Ensemble and Photonic Quantum Storage[D].北京:中国科学院理论物理研究所,2004.
    [34]Y.Li,L.Zheng,Y.X.Liu,and C.P.Sun.Correlated photons and collective excitations of a cyclic atomic ensemble[J].Phys.Rev.A,2006,73(4):043805.
    [35]L.He,Y.X.Liu,S.Yi,C.P.Sun,and F.Nori.Control of photon propagation via electromagnetically induced transparency in lossless medis [J].Phys.Rev.A,2007,75(6):063815.
    [36]L.Zhou,J.Lu,and C.P.Sun.Coherent control of photon transmission:Slowing light in a coupled resonator waveguide doped with ∧atoms[J].Phys.Rev.A,2007,76(1):012313.
    [37]C.Liu,Z.Dutton,C.H.Behroozi,and L.V.Hau.Observation of coherent optical information storage in an atomic medium using halted light pulses[J].Nature,2001,409(6819):490.
    [38]D.F.Phillips,A.Fleischhauer,A.Mair,R.L.Walsworth,and M.D.Lukin.Storage of light in atomic vapor[J].Phys.Rev.Lett.,2001,86(5):783.
    [39]M.Bajcsy,A.S.Zibrov,and M.D.Lukin.Stationary pulses of light in an atomic medium[J].Nature,2003,426(6967):638.
    [40]T.Chanelière,D.N.Matsukevich,S.D.Jenkins,S.Y.Lan,T.A.B.Kennedy,and A.Kuzmich.Storage and retrieval of single photons transmitted between remote quantum memories[J].Nature,2005,438(7069):833.
    [41]T.Chanelière,D.N.Matsukevich,S.D.Jenkins,S.Y.Lan,R.Zhao,T.A.B.Kennedy,and A.Kuzmich.Quantum interference of electromagnetic fields from remote quantum memories[J].Phys.Rev.Lett.,2007,98(11):113602.
    [42]K.Honda,D.Akamatsu,M.Arikawa,Y.Yokoi,K.Akiba,S.Nagatsuka,T.Tanimura,A.Furusawa,and M.Kozuma.Storage and retrieval of a squeezed vacuum[J].Phys.Rev.Lett.,2008,100(9):093601.
    [43]J.Appel,E.Figueroa,D.Korystov,M.Lobino,and A.I.Lvovsky.Quantum memory for squeezed light[J].Phys.Rev.Lett.,2008,100(9):093602.
    [44]石顺祥,陈国夫,赵卫和刘继芳.非线性光学[M].西安:电子科技大学出版社,2003:163-168.
    [45]R.W.Boyd.Nonlinear Optics[M].New York:Academic Press,Inc.,1992:159-164.
    [46] H. Schmidt and A. Imamoglu. Giant Kerr nonlinearities using electro-magnetically induced transparency[J]. Opt. Lett., 1996, 21(11): 1936.
    [47] H. Kang and Y. F. Zhu. Observation of large Kerr nonlinearity at low light intensities [J]. Phys. Rev. Lett., 2003, 91(9): 093601.
    [48] M. D. Lukin and A. Imamoglu. Nonlinear optics and quantum entanglement of ultraslow single photons[J]. Phys. Rev. Lett., 2000, 84(7): 1419.
    [49] D. Petrosyan and G. Kurizki. Symmetric photon-photon coupling by atoms with Zeeman-split sublevels[J]. Phys. Rev. A , 2002, 65(3): 033833.
    [50] C. Ottavianil, D. Vitalil, M. Artoni, F. Cataliotti, and P. Tombesi, Polarization qubit phase gate in driven atomic media[J]. Phys. Rev. Lett., 2003, 90(19): 197902.
    [51] S. Rebic, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalan. Polarization phase gate with a tripod atomic system [J]. Phys. Rev. A, 2004, 70(3): 032317.
    [52] A. Joshi and M. Xiao. Phase gate with a four-level inverted-Y system[J]. Phys. Rev. A, 2005, 72(6): 062319.
    
    [53] C. Ottaviani, S. Rebic, D. Vitali, and P. Tombesi. Quantum phase-gate operation based on nonlinear optics: Full quantum analysis[J]. Phys. Rev. A, 2006, 73(1): 010301.
    [54] S. Rebic, C. Ottaviani, G. Di Giuseppe, D. Vitali, and P. Tombesi. Assessment of a quantum phase-gate operation based on nonlinear optics[J]. Phys. Rev. A, 2006, 74(3): 032301.
    [55] M. O. Scully, S. Y. Zhu, and A. Gavrielides. Large cross-phase modulation between slow copropagating Weak pulses in ~(87)Rb[J]. Phys. Rev. Lett., 2006, 97(6): 063901.
    [56] Y. X. Han, J. T. Xiao, Y. H. liu, C. H. Zhang, H. Wang, M. Xiao, and K. C. Peng. Interacting dark states with enhanced nonlinearity in an ideal four-level tripod atomic system[J]. Phys. Rev. A, 2008, 77(2): 023824.
    [57] S. J. Li, X. D. Yang, X. M. Cao, C. H. Zhang, C. D. Xie, and H. Wang. Large cross-phase modulation based on double EIT in a four-level tripod atomic system[J]. 2008, arXiv:quant-ph/0802.2136.
    [58] R. Schlesser and A. Weis. Light-beam deflection by cesium vapor in a transverse-magnetic field[J]. Opt. Lett., 1992, 17(14): 1015.
    [59] R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn. Spatial consequences of electromagnetically induced transpatency: observation of electromagnetically induced Focusing[J]. Phys. Rev. Lett., 1995, 74(5): 670.
    [60] R. Holzner, P. Eschle, S. Dangel, R. Richard, H. Schmid, U. Rusch, and B. Rohricht. Observation of magnetic-field-induced laser beam deflection in sodium vapor[J]. Phys. Rev. Lett., 1997, 78(18): 3451.
    [61] L. Karpa and M. Weit., A Stern-Gerlach experiment for slow light[J]. Nature Physics, 2006, 2(5): 332.
    [62] V. A. Sautenkov, H. Li, Y. V. Rostovtsev, and M. O. Scully. Ultra-dispersive adaptive prism[J]. 2007, arXiv:quant-ph/0701229.
    [63] D. L. Zhou, L. Zhou, R. Q. Wang, S. Yi, and C. P. Sun. Deflection of slow light by magneto-optically controlled atomic media[J]. Phys. Rev. A, 2007, 76(2): 055801.
    [64] L. Zhou, J. Lu, D. L. Zhou, and C. P. Sun. Quantum theory for spatial motion of polaritons in inhomogeneous fields [J]. Phys. Rev. A, 2008, 77(2): 023816.
    [65] H. Y. Ling, Y. Q. Li, and M. Xiao. Electromagnetically induced grating: Homogeneously broadened medium[J]. Phys. Rev. A, 1998, 57(2): 1338.
    [66] M. Mitsunaga and N. Imoto. Observation of an electromagnetically induced grating in cold sodium atoms[J]. Phys. Rev. A, 1999, 59(6). 4773.
    [67] G. C. Cardoso and J. W. R. Tabosa. Electromagnetically induced gratings in a degenerate open two-level system[J]. Phys. Rev. A, 2002, 65(3): 033803.
    [68] A. W. Brown and M. Xiao. All-optical switching and routing based on an electromagnetically induced absorption grating[J]. Opt. Let., 2005, 30(7): 699.
    [69] M. Fleischhauer and S. Q. Gong. Stationary source of nonclassical or entangled atoms[J]. Phys. Rev. Lett., 2002, 88(7): 070404.
    [70] X. J. Liu, H. Jing, X. T. Zhou, and M. L. Ge. Technique of quantum state transfer for a double (?) atomic beam[J]. Phys. Rev. A,2004, 70(1): 015603.
    [71] L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne. Opening optical four-wave mixing channels with giant enhancement using ultraslow pump waves[J]. Phys. Rev. Lett., 2002, 88(14): 143902.
    [72] Y. Wu, J. Saldana, and Y. F. Zhu. Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency[J]. Phys. Rev. A, 2003, 67(1): 013811.
    [73] Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng. Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing[J]. Phys. Rev. A, 2004, 69(6): 063803.
    [74] Y. Wu and X. X. Yang. Highly efficient four-wave mixing in double-(?) system in ultraslow propagation regime[J]. Phys. Rev. A, 2004, 70(5): 053818.
    [75] Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng. Efficient multiwave mixing in the ultraslow propagation regime and the role of multiphoton quantum destructive interference[J]. Opt. Lett., 2004, 29(19): 2294.
    [76] H. Kang, G. Hernandez, and Y. Zhu. Slow-light six-wave mixing at low light intensities[J]. Phys. Rev. Lett., 2004, 93(7): 073601.
    [77] Y. P. Niu, R. X. Li, and S. Q. Gong. High efficiency four-wave mixing induced by double-dark resonances in a five-level tripod system [J]. Phys. Rev. A, 2005, 71(4): 043819.
    [78] Y. Wu and X. X. Yang. Four-wave mixing in molecular magnets via electromagnetically induced transparency [J]. Phys. Rev. B, 2007, 76(5): 054425.
    [79] W. Harshawardhan and G. S. Agarwal. Controlling optical bistability using electromagnetic-field-induced transparency and quantum interferences [J]. Phys. Rev. A, 1996, 53(3): 1812.
    [80] A. Joshi, A. Brown, Hai Wang, and M. Xiao. Controlling optical bistability in a three-level atomic syste[J]. Phys. Rev. A, 2003, 67(4): 041801.
    [81] A. Joshi, and M. Xiao. Optical multistability in three-level atoms inside an optical ring cavity[J]. Phys. Rev. Lett. , 2003, 91(14): 143904.
    [82]H.Chang,H.B Wu,C.D.Xie,and H.Wang.Controlled Shift of Optical bistability hysteresis curve and storage of optical signals in a fourlevel atomic system[J].Phys.Rev.Lett.,2004,93(14):213901.
    [83]J.H.Li,X.Y.L(u|¨),J.M.Luo,and Q.J.Huang.Optical bistability and multistability via atomic coherence in an N-type atomic medium[J].Phys.Rev.A,2006,74(3):035801.
    [84]A.Joshi and M.Xiao.Bistability and field-induced transparency in superconducting quantum interference devices[J].Phys.Rev.B,2008,77(2):024502.
    [85]S.E.Harris and Y.Yamamoto.Photon switching by quantum interference [J].Phys.Rev.Lett.,1998,81(17):3611.
    [86]M.Yan,E.G.Rickey,and Y.F.Zhu.Observation of absorptive photon switching by quantum interference[J].Phys.Rev.A,2001,64(4):041801.
    [87]Y.F.Chen,Z.H.Tsai,Y.C.Liu,and I.A.Yu.Low-light-level photon switching by quantum interference[J].Opt.Let.,2005,30(23):3207.
    [88]H.Kang,G.Hernandez,J.P.Zhang,and Y.F.Zhu.Phase-controlled light switching at low light levels[J].Phys.Rev.A,2006,73(1):011802.
    [89]M.G.Bason,A.K.Mohapatra,K.J.Weatherill,and C.S.Adams.Electrooptic control of atom-light interactions using Rydberg dark-state polaritons[J].Phys.Rev.A,2008,77(3):032305.
    [90]X.J.Liu,H.Jing,and M.L.Ge.Solitons formed by dark-state polaritons [J].Phys.Rev.A,2004,70(5):055802.
    [91]Y.Wu and L.Deng.Ultraslow optical solitons in a cold four-state medium[J].Phys.Rev.Lett.,2004,93(14):143904.
    [92]Y.Wu.Two-color ultraslow optical solitons via four-wave mixing in cold-atom media[J].Phys.Rev.A,2005,71(5):053820.
    [93] G. X. Huang, L. Deng, and M. G. Payne. Dynamics of ultraslow optical solitons in a cold three-state atomic system[J]. Phys. Rev. E, 2005, 72(1): 016617.
    [94] A. V. Rybin, I. P. Vadeiko, and A. R. Bishop. Theory of slow-light solitons[J]. Phys. Rev. E, 2005, 72(2): 026613.
    
    [95] L. Deng, M. G. Payne, G. X. Huang, and E. W. Hagley. Formation and propagation of matched and coupled ultraslow optical soliton pairs in a four-level double- system[J]. Phys. Rev. E, 2005, 72(5): 055601.
    [96] C. Hang, G. X. Huang, and L. Deng. Generalized nonlinear Schrodinger equation and ultraslow optical solitons in a cold four-state atomic system[J]. Phys. Rev. E, 2006, 73(3): 036607.
    
    [97] C. Hang, G. X. Huang, and L. Deng. Stable high-dimensional spatial weak-light solitons in a resonant three-state atmic system[J]. Phys. Rev. E, 2006, 74(4): 046601.
    [98] Y. Wu and X. X. Yang. Giant Kerr nonlinearities and solitons in a crystal of molecular magnets[J]. Appl. Phys. Lett., 2007, 91(9): 094104.
    [99] C. Hang and G. X. Huang. Weak-light ultraslow vector solitons via electromagnetically induced transparency [J]. Phys. Rev. A, 2008, 77(3): 033830.
    [100] S. Wielandy and A. L. Gaeta. Coherent control of the polarization of an optical field[J]. Phys. Rev. Lett., 1998, 81(16): 3359.
    [101] V. A. Sautenkov, M. D. Lukin, C. J. Bednar, I. Novikova, E. Mikhailov, M. Fleischhauer, V. L. Velichansky, G. R. Welch, and M. O. Scully. Enhancement of magneto-optic effects via large atomic coherence in optically dense media[J]. Phys. Rev. A, 2000, 62(2): 023810.
    [102] D. Petrosyan and Y. P. Malakyan. Magneto-optcal rotation and cross-phase modulation via coherently dreven four-level atoms in a tripod configuration[J]. Phys. Rev. A, 2004, 70(2): 023822.
    [103] T. H. Yoon, C. Y. Park, and S. J. Park. Laser-induced birefringence in a wavelength-mismatched cascade system of inhomogeneously broadened Yb atoms[J]. Phys. Rev. A, 2004, 70(6): 061803.
    [104] D. Cho, J. M. Choi, J. M. Kim, and Q. H. Park. Optically induced Faraday effect using three-level atoms[J]. Phys. Rev. A, 2005, 72(2): 023821.
    [105] B. Wang, S. J. Li, J. Ma, H. Wang, K. C. Peng, and M. Xiao. Controlling the polarization rotation of an optical field via asymmetry in electromagnetically induced transparency [J]. Phys. Rev. A, 2006, 73(5): 051801.
    [106] J. M. Choi, J. M. Kim, Q. H. Park, and D. Cho. Optically induced Faraday effect in a A configuration of spin-polarized cold cesium atoms [J]. Phys. Rev. A, 2007, 75(1): 013815.
    [107] D. V. Kosachiov and E. A. Korsunky, Efficient microwave-induced optical frequency conversion [J]. Eur. Phys. J. D, 2000, 11: 457.
    [108] F. Vewinger, J. Appel, E. Figueroa, and A. I. Lvovsky. Adiabatic frequency conversion of optical information in atomic vapor[J]. Opt. Lett., 2007, 32(19): 2771.
    [109] R. Kapoor and G. S. Agarwal. Theory of electromagnetically induced waveguides[J]. Phys. Rev. A, 2000, 61(5): 053818.
    [110] H. Shpaisman, A. D. W. Gordon, and H. Friedmann. Electromagnetically induced waveguiding in double-(?) systems[J]. Phys. Rev. A, 2005, 71(4): 043812.
    [111] M. Vengalattore and M. Prentiss. Radial confinement of light in an ultracold anisotropic medium[J]. Phys. Rev. Lett., 2005, 95(24): 243601.
    
    [112] G. Juzeliunas and P. Ohberg. Slow light in degenerate fermi gases[J]. Phys. Rev. Lett., 2004, 93(3): 033602.
    [113] G. Juzeliunas, P. Ohberg, J. Ruseckas, and A. Klein. Effective magnetic fields in degenerate atomic gases induced by light beams with orbital angular momenta[J]. Phys. Rev. A, 2005, 71(5): 053614.
    [114] J. Ruseckas, G. Juzeliunas, P. Ohberg, and M. Fleischhauer. Non-Abelian gauge potentials for ultracold atoms with degenerate dark states[J]. Phys. Rev. Lett., 2005, 95(1): 010404.
    [115] G. Juzeliunas, J. Ruseckas, P. Ohberg, and M. Fleischhauer. Light-induced effective magnetic fields for ultracold atoms in planar geometries[J]. Phys. Rev. A, 2006, 73(2): 025602.
    [116] A. Andre, M. Bajcsy, A. S. Zibrov, and M. D. Lukin. Nonlinear optics with stationary pulses of light[J]. Phys. Rev. Lett., 2005, 94(6): 063902.
    [117] X. J. Liu, X. Liu, Z. X. Liu, L. C. Kwek, and C. H. Oh. Tightly localized stationary pulses in a multilevel atomic system[J]. Phys. Rev. A, 2007, 75(5): 023809.
    [118] K. R. Hansen and K. M(?)lmer. Trapping of light pulses in ensembles of stationary A atoms[J]. Phys. Rev. A, 2007, 75(4): 053802.
    [119] M. S. Zubairy, A. B. Matsko, and M. O. Scully. Resonant enhancement of high-order optical nonlinearities based on atomic coherence[J]. Phys. Rev. A, 2002, 65(4): 043804.
    [120] M. Paternostro, M. S. Kim, and B. S. Ham. Generation of entangled coherent states via cross-phase-modulation in a double electromag- netically induced transparency regime[J]. Phys. Rev. A, 2003, 67(2): 023811.
    [121] L. M. Kuang and L. Zhou. Generation of atom-photon entangled states in atomic Bose-Einstein condensate via electromagnetically induced transparency [J]. Phys. Rev. A, 2003, 68(4): 043606.
    [122] Y. Guo and L. M. Kuang. Generation of high-dimensional photon entangled coherent states in double electomagnetically induced transparency system[J]. Chin. Phys. Lett., 2005, 22(3): 595.
    [123] H. Jing, X. J. Liu, M. L. Ge, and M. S. Zhan. Correlated quantum memory: Manipulating atomic entanglement via electromagnetically induced transparency [J]. Phys. Rev. A, 2005, 71(6): 062336.
    [124] C. Hang, Y. Li, L. Ma, and G. X. Huang. Three-way entanglement and three-qubit phase gate based on a coherent six-level atomic system (J). Phys. Rev. A, 2006, 74(1): 012319.
    [125] L. M. Kuang, Z. B. Chen, and J. W. Pan. Generation of entangled coherent states for distant Bose-Einstein condensates via electromagnetically induced transparency [J]. Phys. Rev. A, 2007, 76(5): 052324.
    [126] G. H6tet, B. C. Buchler, O. Glockl, M. T. L. Hsu, A. M. Akulshin, H. A. Bachor, and P. K. Lam. Delay of squeezing and entanglement using electromagnetically induced transparency in a vapour cell[J]. 2008, arXiv:quant-ph/0803.2097.
    [127] H. Y. Ling, H. Pu, and B. Seaman. Creating a stable molecular condensate using a generalized raman adiabatic passage scheme [J]. Phys. Rev. Lett., 2004, 93(25): 250403.
    [128] H. Y. Ling, P. Maenner, W. P. Zhang, and Han Pu. Adiabatic theorem for a condensate system in an atom-molecule dark state[J]. Phys. Rev. A, 2007, 75(3): 033615.
    [129] H. Jing, J. Cheng, and P. Meystre. Coherent atom-trimer conversion in a repulsive bose-einstein condensate[J]. Phys. Rev. Lett., 2007, 99(13): 133002.
    [130] R. Santra, E. Arimondo, T. Ido, C. H. Greene, and J. Ye. High-accuracy optical clock via three-level coherence in neutral bosonic ~(88)Sr[J]. Phys. Rev. Lett., 2005, 94(17): 173002.
    [131] T. Z. Willette, A. D. Ludlow, S. Blatt, M. M. Boyd, E. Arimondo, and J. Ye. Cancellation of stark shifts in optical lattice clocks by use of pulsed raman and electromagnetically induced transparency techniques[J]. Phys. Rev. Lett., 2006, 97(23): 233001.
    [132] T. H. Yoon. Wave-function analysis of dynamic cancellation of ac Stark shifts in optical lattice clocks by use of pulsed Raman and electromagnetically-induced-transparency techniques[J]. Phys. Rev. A, 2007, 76(1): 013422.
    [133] J. Cheng and S. Han. Electromagnetically induced self-imaging[J]. Opt. Lett., 2007, 32(9): 1162.
    [134] H. B Li, V. A. Sautenkov, M. M. Kash, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, M. S. Zubairy, and M. O. Scully. Optical imaging beyond the diffraction limit via dark states[J]. 2008, arXiv:quant-ph/0803.2557.
    [135] U. Leonhardt and P. Piwnicki. Relativistic effects of light in moving media with extremely low group velocity[J]. Phys. Rev. Lett., 2000, 84(5): 822.
    [136] U. Leonhardt, T. Kiss, and P. Ohberg. Theory of elementary excitations in unstable Bose-Einstein condensates and the instability of sonic horizons[J]. Phys. Rev. A, 2003, 67(3): 033602.
    [137] M.O.Scully and M.S.Zubairy. Quantum Optics[M]. Cambridge: Cambridge University Press, 1999: 222-225.
    [138] Y. Wu and X. X. Yang. Electromagnetically induced transparency in V-, (?)-, and cascade-type schemes beyond steady-state analysis[J]. Phys. Rev. A, 2005, 71(5): 053806.
    [139] L. M. Kuang, C. H. Chen, and Y. S. Wu. Giant non-linearities accompanying electromagnetically induced transparency[J]. 2001, arXiv:quant-ph/0103152.
    [140] L. M. Kuang, C. H. Chen, and Y. S. Wu. Nonlinear optical properties of an electromagnetically induced transpatency medium interacting with two quantized fields[J]. J. Opt. B, 2003, 5(3):341.
    [141] R. H. Dicke. Coherence in spontaneous radiation processes[J]. Phys. Rev., 1954, 93(1): 99.
    [142] A. S. Parkins, P. Marte, P. Zoller, and H. J. Kimble. Synthesis of arbitrary quantum states via adiabatic transfer of Zeeman coherence [J]. Phys. Rev. Lett., 1993, 71(19): 3095.
    [143] T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller. Decoherence, continuous observation, and quantum computing: A cavity QED model[J]. Phys. Rev. Lett., 1995, 75(21): 3788.
    [144] M. Fleischhauer and A. S. Manka. Propagation of laser pulses and coherent population transfer in dissipative three-level systems: An adiabatic dressed-state picture[J]. Phys. Rev. A, 1996, 54(1): 794.
    [145] S. E. Harris and L. V. Hau. Nonlinear optics at low light levels[J]. Phys. Rev. Lett., 1999, 82(23): 4611.
    [146] C. P. Sun and M. L. Ge. Generalizing Born-Oppenheimer approximations and observable effects of an induced gauge field [J]. Phys. Rev. D, 1990, 41(4): 1349.
    [147] T. Sleator, T. Pfau, V. Balykin, O. Carnal, and J. Mlynek. Experimental demonstration of the optical Stern-Gerlach effect[J]. Phys. Rev. Lett., 1992, 68(13): 1996.
    [148] Y. Li, C. Bruder and C. P. Sun. Generalized stern-gerlach effect for chiral molecules [J]. Phys. Rev. Lett., 2007, 99(13): 130403.
    [149] Y. Guo, L. Zhou, L. M. Kuang, and C. P. Sun. Magneto-optical stern-gerlach effect in atomic ensemble[J]. 2008, arXiv:quant-ph/0802.0333.
    [150] J. P. Poizat and P. Grangier. Experimental realization of a quantum optical tap[J]. Phys. Rev. Lett., 1993, 70(3): 271.
    [151] D. Vitali, M. Fortunato, and P. Tombesi. Complete quantum teleporta-tion with a Kerr nonlinearity[J]. Phys. Rev. Lett., 2000, 85(2): 445.
    [152] B. Kryzhanovsky and B. Glushko. Exact theory of the four-wave-mixing process in a nondissipative medium with a large rate of conversion: Weak-field case[J]. Phys. Rev. A, 1992, 45(7): 4979.
    [153] E. Korsunsky and M. Fleischhauer. Resonant nonlinear optics in coherently prepared media: Full analytic solutions[J]. Phys. Rev. A, 2002, 66(3): 033808.
    [154] M. Johnsson and M. Fleischhauer. Quantum theory of resonantly enhanced four-wave mixing: Mean-field and exact numerical solutions[J]. Phys. Rev. A, 2002, 66(3): 043808.
    [155] M. Johnsson, E. Korsunsky, and M. Fleischhauer. Eliminating nonlinear phase mismatch in resonantly enhanced four-wave mixing[J]. Optics Communication, 2002, 212(4): 335.
    [156] M. A. Nielson and I. L. Chuang. Quantum Computaion and Quantum Information [M]. Cambridge: Cambridge University Press, Cambridge, Uk, 1997: 171-202.
    [157]L.K.Grover.Quantum mechanics helps in searching for a needle in a haystack[J].Phys.Rev.Lett.,1997,79(2):325.
    [158]M.D.Price,S.S.Somaroo,A.E.Dunlop,T.F.Havel,and D.G.Cory.Generalized methods for the development of quantum logic gates for an NMR quantum information processor[J].Phys.Rev.A,1999,60(4):2777.
    [159]L.M.Duan,B.Wang,and H.J.Kimble.Robust quantum gates on neutral atoms with cavity-assisted photon scattering[J].Phys.Rev.A,2005,72(3):032333.
    [160]C.Y.Chen,M.Feng,and K.L.Gao.Toffoli gate originating from a single resonant interaction with cavity QED[J].Phys.Rev.A,2006,73(6):064304.
    [161]K.J.Blow,R.Loudon,S.J.D.Phoenix,and T.J.Shepherd.Continuum fields in quantum optics[J].Phys.Rev.A,1990,42(7):4102.
    [162]Z.B.Birula.Properties of the generalized coherent state[J].Phys.Rev.,1968,173:1207.
    [163]A.Einstein,B.Podolsky,and N.Rosen.Can quantum-mechanical description of jphysical reality be considered complete?[J].Phys.Rev.1935,47(10):777.
    [164]Schr(o|¨)dinger.Die gegenw(a|¨)irtige situation in tier quantenmechanik[J].E.Natuwissenschaften,1935,23:807.
    [165]张永德.量子信息物理原理[M].北京;科学出版社,2006:50-72.
    [166]C.H.Bennett,G.Brassard,and N.D.Mermin.Quantum cryptography without Bell's theorem[J].Phys.Rev.Lett.,1992,68(5):557.
    [167]N.Gisin,G.Ribordy,W.G.Tittel,and H.Zbinden.Quantum cryptography [J].Rev.Mod.Phys.,2002,74(1):145.
    [168] C. H. Bennett, S. J. Wiesner. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states[J]. Phys. Rev. Lett., 1992, 69(20): 2881.
    [169] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Phys. Rev. Lett., 1993, 70(13): 1895.
    [170] W. Dur, G. Vidal, and J. I. Cirac. Three qubits can be entangled in two inequivalent ways[J]. Phys. Rev. A, 2000, 62(6): 062314.
    [171] A Cabcllo. Bell's theorem with and without inequalities for the three-qubit Greenberger-Horne-Zeilinger and W states[J]. Phys. Rev. A, 2002, 65(3): 032108.
    [172] G. P. Guo, C. F. Li, J. Li, and G. C. Guo. Scheme for the preparation of multiparticle entanglement in cavity QED[J]. Phys. Rev. A, 2002, 65(4): 042102.
    [173] G. C. Guo and Y. S. Zhang. Scheme for preparation of the W state via cavity quantum electrodynamics[J]. Phys. Rev. A, 2002, 65(5): 054302.
    [174] X. B. Zou, K. Pahlke, and W. Mathis. Generation of an entangled four-photon W state[J]. Phys. Rev. A, 2002, 66(4): 044302.
    [175] T. Yamamoto, K. Tamaki, M. Koashi, and N. Imoto. Polarization-entangled W state using parametric down-conversion[J]. Phys. Rev. A, 2002, 66(6): 064301.
    [176] C. D. Fidio and W. Vogel. W-type entanglement of distant atoms: conditional preparation[J]. J. Opt. B: Quantum Semiclass. Opt., 2003, 5(1): 105.
    [177] M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter. Experimental realization of a three-qubit entangled W state[J]. Phys. Rev. Lett., 2004, 92(7): 077901.
    [178] S. B. Zheng. Scalable generation of multi-atom W states with a single resonant interaction[J]. J. Opt. B: Quantum Semiclass. Opt., 2005, 7(1): 10.
    [179] R. S. Said, M. R. B. Wahiddin, and B. A. Umarov. Generation of three-qubit entangled W state by nonlinear optical state truncation[J]. J. Phys. B: A. Mol. Opt. Phys., 2006, 39(6): 1269.
    [180] C. S. Yu, X. X. Yi, H. S. Song, and D. Mei. Robust preparation of Greenberger-Horne-Zeilinger and W states of three distant atoms [J]. Phys. Rev. A, 2007, 75(4): 044301.
    [181] B. C. Sanders. Entangled coherent states[J]. Phys. Rev. A, 1992, 45(9): 6811.
    [182] S. J. van Enk and O. Hirota. Efficient quantum computation using coherent states[J]. Phys. Rev. A, 2001, 64(2): 022313.
    [183] X. G. Wang and B. C. Sanders. Multipartite entangled coherent states[J]. Phys. Rev. A, 2001, 65(1): 012303.
    [184] J. Q. Liao, Y. Guo, H. S. Zeng, and L. M. Kuang. Preparation of hybrid entangled states and entangled coherent states for a single trapped ion in a cavity[J]. J. Phys. B: A. Mol. Opt. Phys., 2006, 39(22): 4709.
    [185] X. G. Wang. Quantum teleportation of entangled coherent states[J]. Phys. Rev. A, 2001, 64(2): 022302.
    [186] H. Jeong and M. S. Kim. Entangled coherent states: Teleportation and decoherence[J]. Phys. Rev. A, 2002, 65(4): 042305.
    [187] J. Q. Liao and L. M. Kuang. Near-complete teleportation of two-mode four-component entangled coherent states[J]. J. Phys. B: A. Mol. Opt. Phys., 2007, 40(6): 1183.
    [188] D. A. Rice, G. Jaeger, and B. C. Sanders. Two-coherent-state interfer-ometry[J]. Phys. Rev. A, 2000, 62(1): 012101.
    [189] H. Jeong, W. Son, M. S. Kim, D. Ahn, and C. Brukner. Quantum non-locality test for continuous-variable states with dichotomic observ-ables[J]. Phys. Rev. A, 2003, 67(1): 012106.
    [190] N. B. An. Optimal processing of quantum information via W-type entangled coherent states[J]. Phys. Rev. A, 2004, 69(2): 022315.
    [191] H. Jeong and N. B. An. Greenberger-Horne-Zeilinger-type and W-type entangled coherent states: Generation and Bell-type inequality tests without photon counting[J]. Phys. Rev. A, 2006, 74(2): 022104.
    [192] Y. Guo and L. M. Kuang. Near-deterministic generation of four-mode W-type entangled coherent states[J]. J. Phys. B: A. Mol. Opt. Phys., 2007, 40(16): 3309.
    [193] Y. Guo and L. M. Kuang. Generation of three-mode W-type entangled coherent states in free-travelling optical felds[J]. Chin. Opt. Lett., 2008, 6(4): 303.
    [194] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn. Linear optical quantum computing with photonic qubits[J]. Rev. Mod. Phys., 2007, 79(1): 135.
    [195] J. Wei and E. Norman. Lie algebraic solution of linear differential equations[J]. J. Math. Phys.,1963, 4A: 575.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700