激光器中的自调制及不稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1960年,Theodore Maiman成功地演示了第一台红宝石固体激光器。与其他的普通光源相比,激光器可以辐射出在时域和空间相干度很高的光束。由于激光器所表现出来的优良特性,在随后的五十多年中,激光技术的研究及应用成为物理研究领域中热点之一。激光器的光谱从紫外光可以一直扩展至远红段波段。随着激光技术的发展,现今激光器的应用已经遍及光通讯、医学治疗、精密测量、国防工业等等。
     激光器是一个有着许多非线性效应的动力学系统,当受到外界环境的扰动或者系统本身的噪声因素的影响下,会从稳态变到不稳态(甚至混沌),从而表现出各种各样的动力学特性,偏离了人们设计激光器时的预期,人们称之为激光器的不稳定性,如:全固态拉曼激光器中的自锁模调制现象、拉曼晶体温度的变化对于全固态拉曼激光器稳定性的影响、半导体激光器中光反馈引起的暗脉冲现象、光纤激光器中调制不稳定性及光纤激光器的暗孤子现象。通过研究激光系统的不同特性表现,可以验证和分析各种物理模型,更好地理解激光器这一复杂的动力学系统。对于基础物理研究而言,研究激光器的不稳定性是激光器物理重要的分支之一。今天,不管是基础物理还是应用物理,激光器的不稳定性研究及混沌控制探索都成为一项重要的课题。
     在本论文中,对目前为止应用最为广泛的三种激光器系统(全固态激光器、半导体激光器及光纤激光器)的一些典型的动力学特性进行了系统地分析和研究,包括全固态拉曼激光器中的自锁模调制现象、拉曼晶体温度的变化对于全固态拉曼激光器稳定性的影响、半导体激光器中光反馈引起的暗脉冲现象、光纤激光器中调制不稳定性及光纤激光器的暗孤子现象。一方面,论文对激光器的不稳定性(拉曼激光器中的自锁模调制、半导体激光器中的暗脉冲现象)产生的物理机理进行了实验研究,并提出了分别实现和避免出现这些不稳定性现象的工作条件;另一方面,利用激光系统的不稳定性,实现了可调谐拉曼激光器、高重复频率光纤激光器、暗孤子激光器等新型激光器的运转。
     论文的主要研究内容如下:
     1.研究了全固态拉曼激光器中的时域的不稳定性一自锁模调制现象。以Nd:YAG晶体为激光增益介质,以BaWO4晶体作为拉曼工作物质,分别研究了全固态拉曼激光器在不同腔长的实验条件下的拉曼脉冲自锁模调制现象。当激光器工作在较长的腔长的条件下(70cm),可以得到100%调制深度的调Q锁模脉冲,脉冲宽度为240ps。发现拉曼脉冲的自锁模调制深度与激光器的泵浦水平有着密切的关联。研究表明,工作在阈值附近及较长的谐振腔长度有利于稳定的拉曼自锁模脉冲输出,而较高的泵浦功率及尽可能短的腔长则可以有效的避免这种不稳定性的产生
     2.研究了全固态拉曼激光器中二阶斯托克斯光的自锁模调制现象。以Nd:YAG晶体为激光增益介质,以BaWO4晶体作为拉曼工作物质,在侧面泵浦的拉曼激光器中,实现了1103nm一阶拉曼光及1145nm二阶拉曼光的同时输出。在泵浦功率为115W时,可以获得9.4W的平均功率输出。其中,1103nm拉曼光为振荡输出,1145nm拉曼光为单程受激散射产生,通过对比分析,单程受激拉曼散射光比振荡产生的拉曼光表现出更明显的锁模调制。
     3.研究了拉曼晶体温度变化对于拉曼激光器频域稳定性的影响。利用这一不稳定性,实现了可调谐Nd:YAG/YVO4拉曼激光器的运转。当拉曼晶体温度从5℃变化至150℃时,拉曼激光器的中心波长可以从1175.76nm连续调谐至1175.27nm,其可调谐范围为0.49nm。同时,拉曼激光器功率输出从550mW下降至75mW,脉冲宽度从8.0ns变为12.3ns。当拉曼晶体从400K变化至410K时,激光功率有一个很明显的下降过程。激光器波长的可调谐性与晶体温度呈现出非常好的线性关系,同时激光器有着很好的光束质量。
     4.研究了半导体量子阱激光器在外界光反馈影响下的不稳定性。在不同的光反馈条件下,量子阱激光器表现出不同的动力学特性。在合适的光反馈条件下,激光器可以输出一系列的暗脉冲序列,暗脉冲的重复频率由外腔的长度所决定。实验中观测到暗脉冲的分裂现象。可以认为观测到的暗脉冲是半导体激光器一种时域谐振腔孤子表现形式。基于Lang-Kobayashi方程,理论分析了光反馈导致的半导体激光器动力学特性。当激光器无外界光反馈或者强反馈注入锁定状态下,可以实现激光器的稳态运转,避免不稳定性的产生。
     5.分别研究了光纤激光器工作于负色散及正色散区间时的调制不稳定性现象。利用这一不稳定性,分别在负色散及正色散的光纤激光器中实现了重复为30GHz及26GHz的高重复频率脉冲序列输出,其脉宽分别为710fs和5.36ps。实验中,光纤激光器的锁模脉冲自启动是由非线性偏振旋转技术实现的。
     6.研究了光纤激光器中一种新的不稳定现象—暗孤子。根据非线性薛定谔方程,在正色散的光纤中可以产生暗孤子。基于此理论,在全正色散光纤光纤激光器中,研究了暗孤子在光纤中的形成过程。得到了脉宽小于25ps的暗孤子时域信号,从而可以清楚地证明正色散光纤激光器中暗孤子的存在。并且,发现暗孤子之间的相互耦合会产生较大的暗脉冲现象。
     7.研究了色散管理的光纤激光器中暗孤子特性。根据非线性薛定谔方程,负色散光纤中是不存在暗孤子现象的。实验结果表明当光纤激光器总色散为正时仍然会产生暗孤子现象。数值模拟与实验结果相一致。从而表明,在总色散为正的光纤激光器,暗孤子这一现象是普遍存在的。
     本论文的主要创新点如下:
     1.通过对全固态拉曼激光器自锁模现象的研究,首次对拉曼锁模的物理机理提出了清晰地解释:拉曼激光脉冲的自锁模调制源于基频光的自锁模调制,并且在受激拉曼散射的过程中,存在一种时域净化作用,从而使拉曼光的自锁模调制显得更加明显。同时,给出了拉曼激光器产生自锁模调制的工作条件,对于控制和避免拉曼自锁模的产生具有指导意义。
     2.研究了侧面泵浦的主动调Q内腔式Nd:YAG/BaWO4拉曼激光器的拉曼激光特性。通过合理的设计谐振腔,利用拉曼晶体较弱的拉曼频移谱线332cm-1实现了1103nm拉曼激光的高效输出。在泵浦功率为115W,重复频率为15kHz时,其最大平均输出功率为9.4W。这是第一次在实验中证明了利用较弱的拉曼频移谱线同样可以产生高效的拉曼激光输出。
     3.首次研究了温度可调谐拉曼激光器的激光特性。Nd:YAG晶体作为激光增益介质,c切YVO4晶体作为拉曼介质,通过调节拉曼晶体温度的变化实现波长的调谐。当拉曼晶体的温度从5℃调谐至150℃时,Nd:YAG/YVO4拉曼激光器的中心波长可以从1175.76nm连续调谐至1175.27nm,其调谐范围为0.49nm。
     4.研究了量子阱激光器中高频暗脉冲现象。当量子阱激光器处于合适的光反馈条件下,实现了稳定的暗脉冲序列输出,其重复频率由半导体激光器外腔长决定。这是第一次在量子阱激光器中发现该特性,从而说明了暗脉冲现象并不是量子点激光器所特有的动力学特性,而是由光反馈所引起的一种普遍的动力学不稳定性。
     5.在光纤激光器中,利用光纤中的调制不稳定性,分别在负色散和正色散的光纤激光器中实现了高重复频率的脉冲序列输出,重复频率分别为30GHz和26GHz,相应的脉宽为710fs和5.36ps。实验结果证明,在光纤激光器中调制不稳定性是普遍存在的。
     6.第一次给出了正色散光纤激光器的暗孤子的波形图,清楚地证明了暗孤子在正色散光纤激光器中的存在,并分析了暗脉冲在腔内的形成过程。同时,研究了色散管理的光纤激光器中暗孤子的形成过程。实验结果显示,只要光纤激光器总的色散为正,就可以观测到明显的暗孤子现象。数值理论与实验结果相一致,这是第一次对色散管理的光纤激光器的暗孤子现象进行实验研究。
In1960, Theodore Maiman invented the ruby laser considered to be the first successful optical or light laser. Lasers differ from other sources of light because they emit light coherently, including spatial coherence and temporal coherence. Due to the excellent characteristics of laser devices, the researches on the laser technology and application have been the focus of the psychics in recent50years. Now, the wavelength generated by the laser devices can be extended from the ultraviolet to the far infrared by using different laser technologies and different crystals. With the progress of the technology, laser devices have been used in an enormous variety of applications, including optical communication, medical treatment, measurement, military affairs, and so on.
     Lasers are viewed as nonlinear systems capable of exhibiting a wide variety of nonlinear dynamics. Laser systems would become unstable (even chaos) from continuous wave emission and show a number of nonlinear dynamics when lasers are subjected to the outside disturbances and the system noises. As a result, such dynamics would induce departures of laser emission from stable state, and are called instabilities of lasers, including self-mode locking phenomenon in all-solid-state Raman lasers, the instabilities of Raman laser induced by the variations of Raman crystal's temperature, dark pulse induced by optical feedback in semiconductor laser, modulation instabilities in fiber lasers and dark soliton formation in fiber lasers. Such different dynamics can be used as a testing ground for verifying the theory behind the nonlinear dynamical systems. So the researchers in academia considered it an important branch of laser physics. Nowadays, both applied and basic researchers are studying the laser dynamics, and the control of the chaos has become an important topics.
     In this thesis, a variety of nonlinear dynamics in laser systems (all-solid-state laser, semiconductor laser and fiber laser), all of which are essential for the development of the light wave technology and have been the most widely used lasers in the applications, have been systematically studied, including the self-mode locking phenomenon in all-solid-state Raman lasers, the instabilities of Raman laser induced by the variations of Raman crystal's temperature, dark pulse induced by optical feedback in semiconductor laser, modulation instabilities in fiber lasers and dark soliton formation in fiber lasers. On the one hand, the physical mechanisms of the self-modulation in all-solid-state Raman lasers and dark pulse emission induced by optical feedback in semiconductor laser are studied, and the conditions of generating such phenomena are presented. On the other hand, new types of lasers inducing tunable Raman laser, fiber lasers with high repetition rate pulses and dark soliton emission fiber lasers are achieved by virtue of the instabilities of lasers.
     The main contents of this thesis are as follows:
     1. The instabilities in time domain of the all-solid-state Raman lasers are demonstrated. The self-mode locking phenomena of Nd:YAG/BaWO4Raman lasers with different cavity lengths are studied. It is found that the Raman lasers can show perfect Q-switched mode locking pulses when the Raman laser are designed with longer cavity length, and the pulse duration of the ultrashort pulses is about240ps. And the experimental results show that there is an close relationship between the modulation depth of the mode locking and the pump power level. We present the experimental conditions for the self-mode locking: pump power near the stimulated Raman scattering (SRS) threshold and a relatively long cavity length. Furthermore, typical Q-switched Raman lasers can be operated with short cavity length and high pump power.
     2. The characteristics of the self-mode locking phenomena of second-stokes in all-solid-state Raman lasers are studied. The first-stokes line at1103nm and second-stokes line at1145can be obtained in an LD side-pumped actively Q-switched Nd:YAG/BaWO4Raman laser. The laser line at1103nm is generated through oscillation and that at1145nm is generated in single pass. Under a diode pump power of115W, an average output power of9.4W Raman laser is obtained. It is found that the laser line at1145nm generated in single pass shows more obvious self-mode locking modulation compared with that at1103nm generated through oscillation.
     3. The instabilities of Raman laser induced by the variations of Raman crystal's temperature are studied. By virtue of such instabilities, a tunable Nd:YAG/YVO4intracavity Raman laser is achieved. The center wavelength can be tuned over a0.49nm range from1175.76nm to1175.27nm when temperature of the Raman crystal is adjusted from5℃to150℃. Simultaneously, the output power of the Raman laser decreases from550mW to75mW and the pulse width changes from8.0ns to12.3ns. There is a sharp decrease of the output power when the temperature changed from 400K to410K. The tunable Raman laser operates with near linear relationship to the temperature and has good beam quality.
     4. The instabilities of quantum well semiconductor lasers induced by optical feedback are studied. The lasers can show different dynamics when the lasers are subject to different optical feedback strength. It is found that under appropriate operation conditions the laser can also emit a stable train of dark pulses. The repetition frequency of the dark pulse is determined by the external cavity length. Splitting of the dark pulse is also observed. We speculate that the observed dark pulse is a kind of temporal cavity soliton formed in the laser. Based on the well-known Lang-Kobayashi equation, we theoretically study the dynamics in the semiconductor lasers with delayed feedback. When the lasers operate without optical feedback or with high feedback strength, the semiconductor lasers can operate at cw state without instabilities.
     5. The modulation instabilities of fiber laser operated in abnormal dispersion regime and normal dispersion regime are demonstrated, respectively. By virtue of such instabilities, fiber lasers can emit high repetition rate pulse trains, and the repetition rates are30GHz and26GHz, respectively. The corresponding pulse durations of such lasers are710fs and5.36ps. In the experiment, the mode locking fiber lasers are self-started by the nonlinear polarization rotation technology. And the measured spectra also confirm the phenomena of modulation instability.
     6. As a new type of instabilities in fiber laser, dark soliton is studied. According to the nonlinear Schrodinger equation (NLSE), dark soliton can be formed in normal dispersion fibers. Based on NLSE, the formation of dark solitons in all normal dispersion fiber lasers is demonstrated. The observed oscilloscope trace of dark soliton with pulse duration25ps evidences the existence of dark soliton in all normal dispersion fiber lasers. And, it is found that the dark pulse observed in fiber laser is generated due to the mutual interaction in the bunch of dark solitons.
     7. The dark soliton formation in a dispersion managed fiber laser is studied. Despite of the existence of a piece of abnormal dispersion fiber which does not support dark solitons, our experimental results show that as far as the average cavity dispersion is in the normal regime, dark solitons could still be formed in the fiber laser. Numerical simulations have well confirmed the experimental observations.
     The main innovations of this thesis are as follows:
     1. Clear physical explanation of the mechanism of the Raman self-mode locking is presented for the first time. We conclude that the self-modulation originates from the self-modulation in fundamental lasers, and there is a temporal cleanup effect in the progress of SRS. As a result, the self-mode locking in Raman pulses would be more obvious.
     2. A high power diode-side-pumped Nd:AYG/BaWO4Q-switched Raman laser at1103nm is studied. Through carefully design the intracavity laser, the first-order Raman laser radiation at1103nm was obtained by the relatively weak Raman shift line332cm-1. When the pulse repetition rate was set at15kHz, the average output power obtained was up to9.4W under a diode pump power115W. This is the first time to report the high power Raman laser by a relatively weak Raman shift line.
     3. A tunable crystalline Raman laser by varying the temperature of Raman crystal is demonstrated for the first time. Nd:YAG and α-cut YVO4crystals are selected as the laser and Raman gain media, respectively. The center wavelength of this NdiYAG/YVO4Raman laser can be tuned over a0.49nm range from1175.76nm to1175.27nm when temperature of the Raman crystal is adjusted from5℃to150℃.
     4. The dark pulse with high repetition rate in quantum well semiconductor lasers is studied. It is found that under appropriate operation conditions the laser can also emit a stable train of dark pulses. The repetition frequency of the dark pulse is determined by the external cavity length. Splitting of the dark pulse is also observed. This is the first report of such instability in quantum well semiconductor laser. It is concluded that the train of dark pulses is not the unique phenomena of quantum dot semiconductor laser, but is a universal phenomena induced by optical feedback.
     5. Fiber lasers operated in abnormal dispersion regime and normal dispersion regime can emit high repetition rate pulse trains based on the modulation instabilities. The pulse repetition rates are30GHz and26GHz, and the pulse durations are710fs and5.36ps, respectively. It is found that modulation instabilities in fiber lasers are ubiquitous.
     6. The oscilloscope trace of an real dark soliton is presented for the first time, which evidences the existence of the dark soliton in normal dispersion fiber lasers. The formation of dark soliton in dispersion managed fiber lasers is demonstrated. Despite of the existence of a piece of abnormal dispersion fiber which does not support dark solitons, our experimental results show that as far as the average cavity dispersion is in the normal regime, dark solitons could still be formed in the fiber laser. Numerical simulations are in consistent with the experimental observations. This is also the first report of the dark soliton in dispersion managed fiber lasers.
引文
[1]T. H. Maiman. "Stimulated optical emission in Ruby," Nature, vol.187, pp. 493-494,1960.
    [2]J. Zhang, D. H. Li, R. J. Chen and Q. H. Xiong. "Laser cooling of a semiconductor by 40 kelvin," Nature, vol.493, pp.504-508,2013.
    [3]A. Hugi, G. Villares, S. Blaser, H. C. Liu and J. Faist. "Mid-infrared frequency comb based on a quantum cascade laser," Nature, vol.492, pp.229-233,2012.
    [4]G. Brumfiel. "Laser lab shifts focus to warheads," Nature, vol.491, pp.170-171, 2012.
    [5]J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer and O. Painter. "Laser cooling of a nanomechanical oscillator into its quantum ground state," Nature, vol.478, pp.89-92,2011.
    [6]L. V. Butov. "Solid-state physics-A polariton laser," Nature, vol.447, pp.540-541, 2007.
    [7]B. B. K.J. Weingarten, U.Keller, "n situ small-signal gain of solid-state lasers determined from relaxation oscillation frequency measurements," Optics Letters, vol.19, pp.1140-1142,1994.
    [8]G. Baili, L. Morvan, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes and A. Garnache. "Experimental demonstration of a tunable dual-frequency semiconductor laser free of relaxation oscillations," Optics Letters, vol.34, pp. 3421-3423,2009.
    [9]A. N. Alpat'ev, V. A. Smirnov and I. A. Shcherbakov. "Relaxation oscillations of the intensity of the radiation from a 2 um thulium (Cr3+,Tm3+:YSGG) crystal laser operating under cw and pulsed conditions," Quantum Electronics, vol.28, pp.9-13,1998.
    [10]L. V. Asryan and R. A. Suris. "Theory of relaxation oscillations and modulation response of a quantum dot laser," Quantum Dots and Nanostructures:Synthesis, Characterization, and Modeling Vii, vol.7610,2010.
    [11]R. L. Viana. "Relaxation oscillations and their applications-Ⅰ," Revista Brasileira De Ensino De Fisica. vol.33.2011.
    [12]R. L. Viana. "Relaxation oscillations and their applications-Ⅱ," Revista Brasileira De Ensino De Fisica, vol.33,2011.
    [13]K. L. van der Molen, A. P. Mosk and A. Lagendijk. "Relaxation oscillations in long-pulsed random lasers," Physical Review A, vol.80, pp.055803-055806, 2009.
    [14]A. F. Vakakis. "Relaxation oscillations, subharmonic orbits and chaos in the dynamics of a linear lattice with a local essentially nonlinear attachment,' Nonlinear Dynamics, vol.61, pp.443-463,2010.
    [15]N. I. Vaganova, A. G. Merzhanov and E. N. Rumanov. "Relaxation oscillations:Synchronization and chaos," Doklady Physics, vol.56, pp.4-6, 2011.
    [16]R. P. Mildren, D. W. Courts and D. J. Spence. "All-solid-state parametric Raman anti-Stokes laser at 508 nm," Optics Express, vol.17, pp.810-818,2009.
    [17]H. M. Pask, S. Myers, J. A. Piper, J. Richards and T. McKay. "High average power, all-solid-state external resonator Raman laser," Optics Letters, vol.28, pp. 435-437,2003.
    [18]H. M. Pask. "Continuous-wave, all-solid-state, intracavity Raman laser," Optics Letters, vol.30, pp.2454-2456,2005.
    [19]R. P. Mildren, H. Ogilvy and J. A. Piper. "Solid-state Raman laser generating discretely tunable ultraviolet between 266 and 320 nm," Optics Letters, vol.32, pp.814-816,2007.
    [20]Y. Lu, X. Zhang, S. Li, J. Xia, W. Cheng and Z. Xiong. "All-solid-state cw sodium D2 resonance radiation based on intracavity frequency-doubled self-Raman laser operation in double-end diffusion-bonded Nd3+:LuVO4 crystal," Optics Letters, vol.35, pp.2964-2966,2010.
    [21]A. S. Grabtchikov, V. A. Lisinetskii. V. A. Orlovich, M. Schmitt, R. Maksimenka and W. Kiefer. "Multimode pumped continuous-wave solid-state Raman laser," Optics Letters, vol.29, pp.2524-2526,2004.
    [22]P. Dekker, H. M. Pask and J. A. Piper. "All-solid-state 704 mW continuous-wave yellow source based on an intracavity, frequency-doubled crystalline Raman laser," Optics Letters, vol.32, pp.1114-1116,2007.
    [23]Y. F. Chen. "Compact efficient all-solid-state eye-safe laser with self-frequency Raman conversion in a Nd:YVO4 crystal," Optics Letters, vol.29, pp. 2172-2174,2004.
    [24]R. Mildren, M. Convery, H. Pask, J. Piper and T. McKay. "Efficient, all-solid-state, Raman laser in the yellow, orange and red," Optics Express, vol. 12, pp.785-790,2004.
    [25]A. J. Lee, D. J. Spence, J. A. Piper and H. M. Pask. "A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible," Optics Express, vol.18, pp.20013-20018,2010.
    [26]E. Granados, H. M. Pask, E. Esposito, G. McConnell and D. J. Spence. "Multi-wavelength, all-solid-state, continuous wave mode locked picosecond Raman laser," Optics Express, vol.18, pp.5289-5294,2010.
    [27]D. P. B. G. Eckhardt, M. Geller. "Stimulated emission of Stokes and anti-Stokes Raman lines from diamond calcite, and a-Ssulfur single crystals," Applied Physics Letters, vol.3, pp.137-138,1963.
    [28]E. O. A. a. J. Falk. "Stimulated Raman scattering at kHz pulse repetition rates," Applied Physics Letters, vol.27, pp.662-664,1975.
    [29]E. O. A. a. C. D. Decker. "0.9-W Raman oscillator," Journal of Applied Physics, vol.48, pp.1973-1975,1977.
    [30]E. O. Ammann. "Simultaneous simulated Raman scattering and optical frequency mixing in lithium iodate," Applied Physics Letters, vol.34, pp. 838-840,1979.
    [31]R. P. Mildren and A. Sabella. "Highly efficient diamond Raman laser," Optics Letters, vol.34, pp.2811-2813,2009.
    [32]W. Lubeigt, G. M. Bonner, J. E. Hastie, M. D. Dawson, D. Burns and A. J. Kemp. "Continuous-wave diamond Raman laser," Optics Letters, vol.35, pp. 2994-2996,2010.
    [33]A. Sabella, J. A. Piper and R. P. Mildren. "1240 nm diamond Raman laser operating near the quantum limit," Optics Letters, vol.35, pp.3874-3876,2010.
    [34]J. P. M. Feve, K. E. Shortoff, M. J. Bohn and J. K. Brasseur. "High average power diamond Raman laser," Optics Express, vol.19, pp.913-922,2011.
    [35]H. Jelinkova, O. Kitzler, M. Jelinek, J. Sulc, M. Nemec and V. Kubecek. "Diamond Raman laser in eye safe region," Photonics, Devices, and Systems V, vol.8306,2011.
    [36]D. C. Parrotta, A. J. Kemp, M. D. Dawson and J. E. Hastie. "Tunable continuous-wave diamond Raman laser," Optics Express, vol.19, pp. 24165-24170.2011.
    [37]O. Kitzler, A. McKay and R. P. Mildren. "Continuous-wave wavelength conversion for high-power applications using an external cavity diamond Raman laser," Optics Letters, vol.37, pp.2790-2792,2012.
    [38]J. R. Ackerhalt, Y. B. Band, J. S. Krasinski and D. F. Heller. "Shortpulse intracavity Raman laser," Optics Letters, vol.13, pp.646-648,1988.
    [39]R. Frey, A. Demartino and F. Pradere. "High efficiency pulse compression with intracavity Raman oscillators," Optics Letters, vol.8, pp.437-439,1983.
    [40]J. T. Murray, W. L. Austin and R. C. Powell. "Intracavity Raman conversion and Raman beam cleanup," Optical Materials, vol.11, pp.353-371,1999.
    [41]H. M. Pask and J. A. Piper. "Diode-pumped LiIO3 intracavity Raman lasers,' IEEE Journal of Quantum Electronics, vol.36, pp.949-955,2000.
    [42]I. P. Christov and I. V. Tomov. "Growth of Raman-Stokes waves in focused pump beams," Optical and Quantum Electronics, vol.17, pp.207-213,1985.
    [43]H. M. Pask. "The design and operation of solid-state Raman lasers," Progress in Quantum Electronics, vol.27, pp.3-56,2003.
    [44]J. A. Piper and H. M. Pask. "Crystalline Raman lasers," IEEE Journal of Selected Topics in Quantum Electronics, vol.13, pp.692-704,2007.
    [45]Y. B. Band, J. R. Ackerhalt, J. S. Krasinski and D. F. Heller. "Intracavity Raman lasers," IEEE Journal of Quantum Electronics, vol.25, pp.208-213,1989.
    [46]H. M. Pask and J. A. Piper. "Practical 580nm source based on frequency doubling of an intracavity-Raman-shifted Nd:YAG laser," Optics Communications, vol.148, pp.285-288,1998.
    [47]J. Simons, H. Pask, P. Dekker and J. Piper. "Small-scale, all-solid-state, frequency-doubled intracavity Raman laser producing 5 mW yellow-orange output at 598 nm," Optics Communications, vol.229. pp.305-310,2004.
    [48]H. Ogilvy, H. M. Pask, J. A. Piper and T. Omatsu. "Efficient frequency extension of a diode-side-pumped Nd:YAG laser by intracavity SRS in crystalline materials," Optics Communications, vol.242, pp.575-579,2004.
    [49]I. Fischer, T. Heil, M. Munkel and W. Elsasser. "On the mechanism of the LFF phenomenon in the coherence collapse of semiconductor lasers:There is hope for Sisyphus," Physics and Simulation of Optoelectronic Devices Vi, Pts 1 and 2, vol.3283, pp.571-579,1998.
    [50]Y. Takiguchi, Y. Liu and J. Ohtsubo. "Low-frequency fluctuation induced by injection-current modulation in semiconductor lasers with optical feedback," Optics Letters, vol.23, pp.1369-1371,1998.
    [51]Y. Takiguchi, H. Fujino and J. Ohtsubo. "Experimental synchronization of chaotic oscillations in externally injected semiconductor lasers in a low-frequency fluctuation regime," Optics Letters, vol.24, pp.1570-1572,1999.
    [52]S. P. Hegarty, G. Huyet, P. Porta and J. G. Mclnerney. "Analysis of the fast recovery dynamics of a semiconductor laser with feedback in the low-frequency fluctuation regime," Optics Letters, vol.23, pp.1206-1208,1998.
    [53]Y. Yu, J. Xi and J. F. Chicharo. "Measuring the feedback parameter of a semiconductor laser with external optical feedback," Optics Express, vol.19, pp. 9582-9593,2011.
    [54]G. Q. Xia, S. C. Chan and J. M. Liu. "Multistability in a semiconductor laser with optoelectronic feedback," Optics Express, vol.15, pp.572-576,2007.
    [55]I. V. Ermakov, V. Z. Tronciu, P. Colet and C. R. Mirasso. "Controlling the unstable emission of a semiconductor laser subject to conventional optical feedback with a filtered feedback branch," Optics Express, vol.17, pp. 8749-8755,2009.
    [56]D. Chen, Z. Fang, H. Cai, J. Geng and R. Qu. "Instabilities in a grating feedback external cavity semiconductor laser," Optics Express, vol.16, pp.17014-17020, 2008.
    [57]O. Carroll, I. O' Driscoll, S. P. Hegarty, G. Huyet, J. Houlihan, E. A. Viktorov and P. Mandel. "Feedback induced instabilities in a quantum dot semiconductor laser," Optics Express, vol.14, pp.10831-10837,2006.
    [58]Y. Wang, L. Kong, A. Wang and L. Fan. "Coherence length tunable semiconductor laser with optical feedback," Applied Optics, vol.48, pp. 969-973,2009.
    [59]T. Sano. "Antimode dynamics and chaotic itinerancy in the coherence collapse of semiconductor lasers with optical feedback," Physical Review A, vol.50, pp. 2719-2726,1994.
    [60]R. Lang and K. Kobayashi. "External Optical Feedback Effects on Semiconductor Injection-Laser Properties," IEEE Journal of Quantum Electronics, vol.16, pp.347-355,1980.
    [61]I. Fischer, G. H. M. vanTartwijk, A. M. Levine, W. Elsasser, E. Gobel and D. Lenstra. "Fast pulsing and chaotic itinerancy with a drift in the coherence collapse of semiconductor lasers," Physical Review Letters, vol.76, pp.220-223, 1996.
    [62]D. Pieroux and P. Mandel. "Low-frequency fluctuations in the Lang-Kobayashi equations," Physical Review E, vol.68, pp.,2003.
    [63]Y. Liu, P. Davis and Y. Takiguchi. "Recovery process of low-frequency fluctuations in laser diodes with external optical feedback," Physical Review E, vol.60, pp.6595-6601,1999.
    [64]J. Mork, J. Mark and B. Tromborg. "Route to chaos and competition between relaxation oscillations for a semiconductor laser with optical feedback," Physical Review Letters, vol.65, pp.1999-2002,1990.
    [65]I. I. Fischer, G. H. van Tartwijk, A. M. Levine, W. Elsasser, E. Gobel and D. Lenstra. "Fast pulsing and chaotic itinerancy with a drift in the coherence collapse of semiconductor lasers," Physical Review Letters, vol.76, pp.220-223, 1996.
    [66]T. Heil, I. Fischer and W. Elsasser. "Coexistence of low-frequency fluctuations and stable emission on a single high-gain mode in semiconductor lasers with external optical feedback," Physical Review A, vol.58, pp. R2672-R2675,1998.
    [67]O. Carroll. I. O'Driscoll, S. P. Hegarty. G. Huyet. J. Houlihan, E. A. Viktorov and P. Mandel. "Feedback induced instabilities in a quantum dot semiconductor laser," Optics Express, vol.14, pp.10831-10837,2006.
    [68]M. M. Feng, K. L. Silverman, R. P. Mirin and S. T. Cundiff. "Dark pulse quantum dot diode laser," Optics Express, vol.18, pp.13385-13395,2010.
    [69]H. H. H. a. N. S. Kapany. "A flexible fiberscope. using static scanning," Nature, vol.173, pp.39-41,1954.
    [70]A. C. S. V. Heel. "A new method of transporting optical images without aberrations," Nature, vol.173, pp.39-40,1954.
    [71]D. B. K. F. P. Kapron, and R. D. Maurer. "Radiation losses in glass optical waveguides," Applied Physics Letters, vol.17, pp.423-425,1970.
    [72]T. M. Y. T. T. H. T. Miyashita. "Ultimate low-loss single-mode fibre at 1.55 μm," Electronics Letters, vol.15, pp.106-108,1979.
    [73]C. J. K. a. E. Snitzer. "Amplification in a Fiber Laser," Applied Optics, vol.3, pp.1182-1186,1964.
    [74]C. J. Campbell, K. S. Noyori, M. C. Rittler, R. E. Innis and C. J. Koester. "The Application of Fiber Laser Techniques to Retinal Surgery," Arch Ophthalmol, vol.72, pp.850-857,1964.
    [75]N. S. Kapany. "Fiber optics and the laser," Annals of the New York Academy of Sciences, vol.122, pp.615-637,1965.
    [76]C. H. Swope and R. E. Innis. "Fiber optic laser devices," Annals of the New York Academy of Sciences, vol.168, pp.446-458,1969.
    [77]I. P. Alcock, A. I. Ferguson, D. C. Hanna and A. C. Tropper.. "Tunable, continuous-wave neodymium-doped monomode-fiber laser operating at 0.900-0.945 and 1.070-1.135 microm," Optics Letters, vol.11, pp.709-711, 1986.
    [78]J. L. Nightingale and R. L. Byer. "Monolithic Nd:YAG fiber laser," Optics Letters, vol.11, pp.437-439,1986.
    [79]A. S. Gouveia-Neto, A. S. Gomes, J. R. Taylor, B. J. Ainslie and S. P. Craig. "Cascade Raman soliton fiber ring laser," Optics Letters, vol.12, pp.927-929, 1987.
    [80]I. M. Jauncey, L. Reekie, R. J. Mears and C. J. Rowe. "Narrow-linewidth fiber laser operating at 1.55 microm," Optics Letters, vol.12, pp.164-165,1987.
    [81]G. P. Agrawa. "Nonlinear Fiber Optics," Academic Press, San Diego,1995
    [82]M. W. Phillips, A. I. Ferguson, G. S. Kino and D. B. Patterson. "Mode-locked fiber laser with a fiber phase modulator," Optics Letters, vol.14, pp.680-682, 1989.
    [83]S. L. Gilbert. "Frequency stabilization of a tunable erbium-doped fiber laser," Optics Letters, vol.16, pp.150-152,1991.
    [84]S. P. Smith, F. Zarinetchi and S. Ezekiel. "Narrow-linewidth stimulated Brillouin fiber laser and applications," Optics Letters, vol.16, pp.393-395, 1991.
    [85]G. A. Ball and W. W. Morey. "Continuously tunable single-mode erbium fiber laser," Optics Letters, vol.17, pp.420-422,1992.
    [86]C. J. Chen, P. K. Wai and C. R. Menyuk. "Soliton fiber ring laser," Optics Letters, vol.17, pp.417-419,1992.
    [87]D. O. Culverhouse, D. J. Richardson, T. A. Birks and P. S. Russell. "All-fiber sliding-frequency Er3+/Yb3+ soliton laser," Optics Letters, vol.20, pp.2381, 1995.
    [88]G. J. Cowle and D. Y. Stepanov. "Hybrid Brillouin/erbium fiber laser," Optics Letters, vol.21, pp.1250-1252,1996.
    [89]E. Yoshida and M. Nakazawa. "Low-threshold 115-GHz continuous-wave modulational-instability erbium-doped fiber laser," Optics Letters, vol.22, pp. 1409-1411,1997.
    [90]F. Roser, J. Rothhard. B. Ortac, A. Liem, O. Schmidt, T. Schreiber, J. Limpert and A. Tunnermann. "131 W 220 fs fiber laser system," Optics Letters, vol.30, pp.2754-2756,2005.
    [91]Y. W. Lee, S. Sinha, M. J. Digonnet, R. L. Byer and S. Jiang. "20 W single-mode Yb3+ -doped phosphate fiber laser," Optics Letters, vol.31, pp. 3255-3257,2006.
    [92]H. Sayinc, D. Mortag, D. Wandt, J. Neumann and D. Kracht. "Sub-100 fs pulses from a low repetition rate Yb-doped fiber laser," Optics Express, vol.17, pp. 5731-5735,2009.
    [93]Y. Tang, L. Xu, Y. Yang and J. Xu. "High-power gain-switched Tm3+-doped fiber laser," Optics Express, vol.18, pp.22964-22972,2010.
    [94]B. Tune and M. Gulsoy. "Tm:fiber laser ablation with real-time temperature monitoring for minimizing collateral thermal damage:ex vivo dosimetry for ovine brain," Lasers Surg Med, vol.45, pp.48-56,2013.
    [95]L. Xiaojuan, F. Shenggui, G. Liping and H. Kezhen. "Narrow linewidth Yb-doped fiber laser at 1120 nm," Applied Optics, vol.52, pp.1829-1831,2013.
    [96]L. Zhang, Y. Yuan, Y. Liu, J. Wang, J. Hu, X. Lu, Y. Feng and S. Zhu. "589 nm laser generation by frequency doubling of a single-frequency Raman fiber amplifier in PPSLT," Applied Optics, vol.52, pp.1636-1640,2013.
    [97]Z. Zhang, C. Senel, R. Hamid and F. O. Ilday. "Sub-50 fs Yb-doped laser with abnormal-dispersion photonic crystal fiber," Optics Letters, vol.38, pp.956-958, 2013.
    [98]H. Itoh, G. M. Davis and S. Sudo. "Continuous wave pumped modulational instablity in an optical fiber," Optics Letters, vol.14, pp.1368-1370,1989.
    [99]A. H. a. W. F. Brinkman."Coherent IR and FIR sources utilizing modulational instability," IEEE J Quantum Electron, vol. QE-16, pp.694-697,1980.
    [100]A. Hasegawa. "Generation of a train of soliton pulses by induced modulational instability in optical fibers," Optics Letters, vol.9, pp.288-290,1984.
    [101]K. Tai, A. Hasegawa and A. Tomita. "Observation of modulational instability in optical fibers," Physical Review Letters, vol.56, pp.135-138,1986.
    [102]A. T. K. Tai, J. L. Jewell, and A. Hasegawa. "Generation of subpicosecond solitonlike optical pulses at 0.3 THz repetition rate by induced modulational instability "Applied Physics Letters, vol.49, pp.236-238,1986.
    [103]M. Nakazawa, K. Suzuki and H. A. Haus. "Modulational instability oscillation in nonlinear dispersive ring cavity," Physical Review A, vol.38, pp.5193-5196, 1988.
    [104]T. A. Kennedy and S. Wabnitz. "Quantum propagation:Squeezing via modulational polarization instabilities in a birefringent nonlinear medium,' Physical Review A, vol.38, pp.563-566,1988.
    [105]J. E. Rothenberg. "Modulational instability of copropagating frequencies for normal dispersion," Physical Review Letters, vol.64, pp.813,1990.
    [106]J. E. Rothenberg. "Modulational instability for normal dispersion," Physical Review A, vol.42, pp.682-685,1990.
    [107]J. E. Rothenberg. "Observation of the buildup of modulational instability from wave breaking," Optics Letters, vol.16, pp.18-20,1991.
    [108]G. P. Agrawal. "Modulation instability induced by cross-phase modulation,' Physical Review Letters, vol.59, pp.880-883,1987.
    [109]G. Cappellini and S. Trillo. "Energy conversion in degenerate four-photon mixing in birefringent fibers," Optics Letters, vol.16, pp.895-897,1991.
    [110]G. Cappellini and S. Trillo. "Bifurcations and three-wave-mixing instabilities in nonlinear propagation in birefringent dispersive media," Physical Review A, vol.44, pp.7509-7523,1991.
    [111]M. Haelterman, S. Trillo and S. Wabnitz. "Additive-modulation-instability ring laser in the normal dispersion regime of a fiber," Optics Letters, vol.17, pp. 745-747,1992.
    [112]S. C. a. M. Haelterman. "Modulational Instability Induced by cavity boundary conditions in a normally dispersive optical fiber," Physical Review Letters, vol. 79, pp.4139-4142,1997.
    [1]J. T. Murray, W. L. Austin and R. C. Powell. "Intracavity Raman conversion and Raman beam cleanup," Optical Materials, vol.11, pp.353-371,1999.
    [2]R. Frey, A. de Martino and F. Pradere. "High-efficiency pulse compression with intracavity Raman oscillators," Optics Letters, vol.8, pp.437-439,1983.
    [3]T. T. Basiev, M. E. Doroshenko, L. I. Ivleva, S. N. Smetanin, M. Jelinek, V. Kubecek, and H. Jelinkova, "Stimulated Raman scattering of 18 picosecond laser pulses in strontium barium niobate crystal, " Laser Physics Letter, vol.9, pp.519-523 2012.
    [4]H. M. Pask and J. A. Piper. "Diode-pumped LiIO3 intracavity Raman lasers,' IEEE Journal of Quantum Electronics, vol.36, pp.949-955,2000.
    [5]Y. B. Band, J. R. Ackerhalt, J. S. Krasinski and D. F. Heller. "Intracavity Raman lasers," IEEE Journal of Quantum Electronics, vol.25, pp.208-213,1989.
    [6]H. M. Pask and J. A. Piper. "Practical 580nm source based on frequency doubling of an intracavity-Raman-shifted Nd:YAG laser," Optics Communications, vol. 148, pp.285-288,1998.
    [7]J. R. Ackerhalt, Y. B. Band, J. S. Krasinski and D. F. Heller. "Short pulse intracavity Raman laser," Optics Letters, vol.13, pp.646-648,1988.
    [8]J. Simons, H. Pask, P. Dekker and J. Piper. "Small-scale, all-solid-state, frequency-doubled intracavity Raman laser producing 5 mW yellow-orange output at 598 nm," Optics Communications, vol.229, pp.305-310,2004.
    [9]H. Ogilvy, H. M. Pask, J. A. Piper and T. Omatsu. "Efficient frequency extension of a diode-side-pumped Nd:YAG laser by intracavity SRS in crystalline materials," Optics Communications, vol.242, pp.575-579,2004.
    [10]T. T. Basiev. A. A. Sobol, P. G. Zverev. V. V. Osiko and R. C. Powell. "Comparative spontaneous Raman spectroscopy of crystals for Raman lasers," Applied Optics, vol.38, pp.594-598,1999.
    [11]G. M. Bonner, H. M. Pask, A. J. Lee. A. J. Kemp. J. Y. Wang, H. J. Zhang and T. Omatsu. "Measurement of thermal lensing in a CW BaWO4 intracavity Raman laser," Optics Express, vol.20. pp.9810-9818,2012.
    [12]Y. F. Chen, K. W. Su, H. J. Zhang, J. Y. Wang and M. H. Jiang. "Efficient diode-pumped actively Q-switched Nd:YAG/BaWO4 intracavity Raman laser," Optics Letters, vol.30, pp.3335-3337,2005.
    [13]H. Shen, Q. Wang, X. Zhang, X. Chen, F. Bai, Z. Liu, L. Gao, Z. Cong, Z. Wu, W. Wang, et al. "Second-Stokes dual-wavelength operation at 1321 and 1325 nm ceramic Nd:YAG/BaWO4 Raman laser," Optics Letters, vol.37, pp.4519-4521, 2012.
    [14]X. Li, A. J. Lee, Y. Huo, H. Zhang, J. Wang, J. A. Piper, H. M. Pask and D. J. Spence. "Managing SRS competition in a miniature visible Nd:YVO4/BaWO4 Raman laser," Optics Express, vol.20, pp.19305-19312,2012.
    [15]S. Li, X. Zhang, Q. Wang, Z. Cong, H. Zhang and J. Wang. "Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm," Optics Letters, vol.32, pp.2951-2953, 2007.
    [16]T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko and R. C. Powell. "Raman spectroscopy of crystals for stimulated Raman scattering," Optical Materials, vol.11, pp.307-314,1999.
    [17]P. G. Z. T. T. Basiev, A. A. Sobol, V. V. Fedorov, M. E. Doroshenko, V. V. Skomyakov, L. I. Ivleva, and V. V. Osiko. "Perspectives of tungstate crystals for Raman lasers," Novel Lasers and Applications-Basic Aspects, Washington DC, LWB6,1999.
    [18]P. G. Z. P. Cerny, H. Jelinkova, and T. T. Basiev. "Efficient Raman shifting of picosecond pulses using BaWO4 crystals," Optics Communications, vol.177, pp. 397-404.2000.
    [19]P. Cerny and H. Jelinkova. "Near-quantum-limit efficiency of picosecond stimulated Raman scattering in BaWO4 crystal," Optics Letters, vol.27, pp. 360-362,2002.
    [20]P. Cerny, H. Jelinkova, T. T. Basiev and P. G. Zverev. "Highly efficient picosecond Raman generators based on the BaWO4 crystal in the near infrared, visible, and ultraviolet," IEEE Journal of Quantum Electronics, vol.38, pp. 1471-1478.2002.
    [21]P. Cerny, W. Zendzian, J. Jabczynski, H. Jelinkova, J. Sulc and K. Kopczynski. "Efficient diode-pumped passively Q-switched Raman laser on barium tungstate crystal." Optics Communications, vol.209, pp.403-409,2002.
    [22]A. J. Lee, H. M. Pask, J. A. Piper, H. J. Zhang and J. Y. Wang. "An intracavity, frequency-doubled BaWO4 Raman laser generating multi-watt continuous-wave, yellow emission," Optics Express, vol.18, pp.5984-5992,2010.
    [23]S. Li, X. Zhang, Q. Wang, X. Zhang, Z. Cong, H. Zhang and J. Wang. "Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm," Optics Letters, vol. 32, pp.2951-2953,2007.
    [24]M. Piche and F. Salin. "Self-mode locking of solid-state lasers without apertures," Optics Letters, vol.18, pp.1041,1993.
    [25]F. Krausz, T. Brabec and C. Spielmann. "Self-starting passive mode locking,' Optics Letters, vol.16, pp.235-237,1991.
    [26]Y. C. Chen. X. Y. Zheng, T. S. Lai, X. S. Xu, D. Mo and W. Z. Lin. "Resonators for self-mode-locking Ti:sapphire lasers without apertures." Optics Letters, vol. 21, pp.1469-1471,1996.
    [27]G. P. Malcolm and A. I. Ferguson. "Self-mode locking of a diode-pumped Nd:YLF laser," Optics Letters, vol.16, pp.1967-1969,1991.
    [28]W. Liang, X. H. Zhang and J. Xia. "Efficient continuouswave laser at 560 nm by intracavity frequency summation of fundamental and first-stokes wavelengths in a Nd:YVO4-BaWO4 Raman laser," Laser Physics, vol.21, pp.667-669,2011.
    [29]W. J. Sun, Q. P. Wang, Z. J. Liu, X. Y. Zhang, G. T. Wang, F. Bai, W. X. Lan, X. B. Wan and H. J. Zhang. "An efficient 1103 nm Nd:YAG/BaWO4 Raman laser,' Laser Physics Letters, vol.8, pp.512-515,2011.
    [1]N. D. Todorov, M. V. Abrashev, V. Marinova, M. Kadiyski, L. Dimowa and E, Faulques. "Raman spectroscopy and lattice dynamical calculations of SC2O3 single crystals," Physical Review B, vol.87, pp.,2013.
    [2]N. Barnett and Y. Mattley. "Eliminating the trade-off between resolution and throughput in Raman spectroscopy," Spectroscopy, vol., pp.19-19,2013.
    [3]C. L. Zhang, L. Y. Zhang, R. Yang, K. Liang and D. J. Han. "Time-correlated Raman and fluorescence spectroscopy based on a Silicon photomultiplier and time-correlated single photon counting technique," Applied Spectroscopy, vol. 67, pp.136-140,2013.
    [4]S. Y. Feng, J. Q. Lin, Z. F. Huang, G. N. Chen, W. S. Chen. Y. Wang, R. Chen and H. S. Zeng. "Esophageal cancer detection based on tissue surface-enhanced Raman spectroscopy and multivariate analysis," Applied Physics Letters, vol. 102, pp.,2013.
    [5]N. Jiang, E. T. Foley, J. M. Klingsporn, M. D. Sonntag, N. A. Valley, J. A. Dieringer, T. Seideman, G. C. Schatz, M. C. Hersam and R. P. Van Duyne. "Observation of multiple vibrational modes in ultrahigh vacuum tip-enhanced Raman spectroscopy combined with molecular-resolution scanning tunneling microscopy," Nano Letters, vol.12, pp.6506-6506,2012.
    [6]Y. F. Chen. "Compact efficient all-solid-state eye-safe laser with self-frequency Raman conversion in a Nd:YVO4 crystal," Optics Letters, vol.29, pp. 2172-2174,2004.
    [7]P. Dekker. H. M. Pask, D. J. Spence and J. A. Piper. "Continuous wave, intracavity doubled. self-Raman laser operation in Nd:GdVO4 at 586.5 nm,' Optics Express, vol.15, pp.7038-7046,2007.
    [8]Y. Duan, H. Zhu, C. Huang, G. Zhang and Y Wei. "Potential sodium D2 resonance radiation generated by intra-cavity SHG of a c-cut Nd:YVO4 self-Raman laser." Optics Express, vol.19, pp.6333-6338,2011.
    [9]G. M. A. Gad. H. J. Eichler and A. A. Kaminskii. "Highly efficient 1.3-μm second-Stokes PbWO4 Raman laser," Optics Letters, vol.28, pp.426-428,2003.
    [10]R. P. Mildren, H. M. Pask, H. Ogilvy and J. A. Piper. "Discretely tunable, all-solid-state laser in the green, yellow, and red," Optics Letters, vol.30, pp. 1500-1502,2005.
    [11]C. K. N. Patel and E. D. Shaw. "Tunable stimulated Raman scattering from conduction electrons in Insb," Physical Review Letters, vol.24, pp.451-455, 1970.
    [12]C. K. N. Patel, E. D. Shaw and R. J. Kerl. "Tunable spin-flip laser and infrared spectroscopy," Physical Review Letters, vol.25, pp.8-12,1970.
    [13]A. Demartino, R. Frey and F. Pradere. "Near-infrared to far-infrared tunable Raman laser," IEEE Journal of Quantum Electronics, vol.16, pp.1184-1191, 1980.
    [14]L. S. Meng, K. S. Repasky, P. A. Roos and J. L. Carlsten. "Widely tunable continuous-wave Raman laser in diatomic hydrogen pumped by an external-cavity diode laser," Optics Letters, vol.25, pp.472-474,2000.
    [15]K. S. Yeo, M. A. Mahdi, H. Mohamad, S. Hitam and M. Mokhtar. "Widely tunable Raman ring laser using highly nonlinear fiber," Laser Physics, vol.19. pp.2200-2203,2009.
    [16]P. C. Reeves-Hall and J. R. Taylor. "Wavelength tunable CW Raman fibre ring laser operating at 1486-1551 nm," Electronics Letters, vol.37, pp.491-492, 2001.
    [17]C. Lin, R. H. Stolen, W. G. French and T. G. Malone. "A cw tunable near-infrared (1.085-1.175-microm) Raman oscillator," Optics Letters, vol.1, pp. 96-97,1977.
    [18]R. A. Cowley. "Raman Scattering from Crystals of Diamond Structure," Journal De Physique, vol.26, pp.659-661,1965.
    [19]S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, S. T. Li, S. Z. Fan, Z. J. Liu, J. Chang, S. S. Zhang, S. M. Wang, and Y. R. Liu. "Highly efficient Raman frequency converter with strontium tungstate crystal," IEEE Journal of Quantum Electronnics, vol.42,78-84,2006.
    [20]S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, P. Jia, S. T. Li, S. Z. Fan, J. Chang, S. S. Zhang, and Z. J. Liu. "Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal," IEEE Journal of Quantum Electronnics, vol.42, pp.927-933,2006.
    [21]X. Zhang, S. Zhao. Q. Wang, B. Ozygus, and H. Weber. "Modeling of diode-pumped actively O-switched lasers," IEEE Journal of Quantum Electronnics, vol.35, pp.1912-1918,1999.
    [22]X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber. "Modeling of passively Q-swiched lasers," Journal of the Optical Society of America B, vol.17, pp. 1166-1175,2000.
    [23]W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki. "Diode-pumped, self-stimulating, passively Q-switched Nd3+:PbWO4 Raman laser," Optics Communications, vol.194, pp.401-407,2001.
    [24]A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V, A. Orlovich, O. V. Kuzmin, V. L. Hait, W, Kiefer, and M. B. Danailov. "Sub-nanosecond microchip laser with intracavity Raman conversion," Applied physics B, vol.76, pp.509-514,2003
    [15]P. G. Zverev. "The influence of temperature on Raman modes in YVO4 and GdVO4 crystals," 12th International Conference on Phonon Scattering in Condensed Matter (Phonons 2007), vol.92,2007.
    [1]B. Tromborg, H. E. Lassen and H. Olesen. "Traveling wave analysis of semiconductor lasers modulation responses, mode-stability and quantum mechanical treatment of noise spectra," IEEE Journal of Quantum Electronics, vol.30, pp.939-956,1994.
    [2]J. Mork, J. Mark and B. Tromborg. "Route to chaos and competition between relaxation oscillations for a semiconductor laser with optical feedback," Physical Review Letters, vol.65, pp.1999-2002,1990.
    [3]J. Mork, B. Tromborg and J. Mark. "Chaos in Semiconductor lasers with optical feedback -theory and experiment," IEEE Journal of Quantum Electronics, vol. 28, pp.93-108,1992.
    [4]A. Ritter and H. Haug. "Theory of Laser diodes with weak optical feedback.1. Small-signal analysis and side-mode spectra," Journal of the Optical Society of America B, vol.10, pp.130-144,1993.
    [5]D. Lenstra, B. H. Verbeek and A. J. Denboef. "Coherence collapse in single mode semiconductor lasers due to optical feedback," IEEE Journal of Quantum Electronics, vol.21, pp.674-679,1985.
    [6]C. Risch and C. Voumard. "Self pulsation in output intensity and spectrum of Gaas-Aigaas cw diode lasers coupled to a frequency selective external optical cavity," Journal of Applied Physics, vol.48, pp.2083-2085,1977.
    [7]T. Sano. "Antimode dynamics and chaotic itinerancy in the coherence collapse of semiconductor lasers with optical feedback." Physical Review A, vol.50, pp. 2719-2726,1994.
    [8]G. H. M. Vantartwijk, A. M. Levine and D. Lenstra. "Sisyphus effect in semiconductor lasers with optical feedback," IEEE Journal of Selected Topics in Quantum Electronics, vol.1, pp.466-472,1995.
    [9]A. Hohl. "Dynamics of power dropout events in semiconductor lasers with optical feedback," Lasers and Electro-Optics, vol.2, pp.288-289,1996.
    [10]M. M. Feng, K. L. Silverman, R. P. Mirin and S. T. Cundiff. "Dark pulse quantum dot diode laser," Optics Express, vol.18, pp.13385-13395,2010.
    [11]O. Carroll, I. O' Driscoll, S. P. Hegarty, G. Huyet, J. Houlihan, E. A. Viktorov and P. Mandel. "Feedback induced instabilities in a quantum dot semiconductor laser," Optics Express, vol.14, pp.10831-10837,2006.
    [12]A. Olsson and C. L. Tang. "Coherent optical interference effects in external cavity semiconductor lasers," IEEE Journal of Quantum Electronics, vol.17, pp. 1320-1323,1981.
    [13]R. Lang and K. Kobayashi. "External optical feedback effects on semiconductor injection laser properties," IEEE Journal of Quantum Electronics, vol.16, pp. 347-355,1980.
    [14]K. Green. "Stability near threshold in a semiconductor laser subject to optical feedback:A bifurcation analysis of the Lang-Kobayashi equations," Physical Review E, vol.79, pp.,2009.
    [15]Z. L. Wang. "Stability and Hopf bifurcation of the simplified Lang-Kobayashi equation," Acta Physica Sinica, vol.57, pp.4771-4776,2008.
    [16]A. Torcini, S. Barland, G. Giacomelli and F. Marin. "Low-frequency fluctuations in vertical cavity lasers:Experiments versus Lang-Kobayashi dynamics," Physical Review A, vol.74, pp.,2006.
    [17]D. Pieroux and P. Mandel. "Low-frequency fluctuations in the Lang-Kobayashi equations," Physical Review E, vol.68, pp.,2003.
    [18]J. Mulet and C. R. Mirasso. "Numerical statistics of power dropouts based on the Lang-Kobayashi model," Physical Review E, vol.59, pp.5400-5405,1999.
    [19]A. Loose, B. K. Goswami, H. J. Wunsche and F. Henneberger. "Instability of a semiconductor laser due to time-delayed optical feedback," Physical Review E, vol.79, pp.036211-036214,2009.
    [20]K. Verheyden, K. Green and D. Roose. "Numerical stability analysis of a large-scale delay system modeling a lateral semiconductor laser subject to optical feedback," Physical Review E, vol.69, pp.036702,2004.
    [1]S. B. Cavalcanti, J. C. Cressoni, H. R. da Cruz and A. S. Gouveia-Neto."Modulation instability in the region of minimum group-velocity dispersion of single-mode optical fibers via an extended nonlinear Schrodinger equation," Physical Review A, vol.43, pp.6162-6165,1991.
    [2]P. Sprangle, J. Krall and E. Esarey. "Hose modulation instability of laser pulses in plasmas," Physical Review Letters, vol.73, pp.3544-3547,1994.
    [3]J. Moehlis and E. Knobloch. "Eckhaus-Benjamin-Feir instability in systems with temporal modulation," Physical Review E, vol.54, pp.5161-5168,1996.
    [4]M. K. Mishra, R. S. Chhabra and S. R. Sharma. "Modulation instability of obliquely modulated ion-acoustic waves in an unmagnetized plasma," Physical Review A, vol.41, pp.2176-2178,1990.
    [5]R. Malendevich, L. Jankovic, G. Stegeman and J. S. Aitchison. "Spatial modulation instability in a Kerr slab waveguide," Optics Letters, vol.26, pp. 1879-1881.2001.
    [6]N. Kumar, A. Pukhov and K. Lotov. "Self-modulation instability of a long proton bunch in plasmas," Physical Review Letters, vol.104, pp.255003,2010.
    [7]M. Jablan, H. Buljan, O. Manela, G. Bartal and M. Segev. "Incoherent modulation instability in a nonlinear photonic lattice," Optics Express, vol.15, pp.4623-4633,2007.
    [8]M. D. Iturbe-Castillo, M. Torres-Cisneros, J. J. Sanchez-Mondragon, S. Chavez-Cerda, S. I. Stepanov, V. A. Vysloukh and G. E. Torres-Cisneros. "Experimental evidence of modulation instability in a photorefractive Bi]2TiO2o crystal," Optics Letters, vol.20, pp.1853-1855,1995.
    [9]X. T. He. C. Y. Zheng and S. P. Zhu. "Harmonic modulation instability and spatiotemporal chaos," Physical Review E, vol.66, pp.037201,2002.
    [10]A. Gordon and B. Fischer. "Inhibition of modulation instability in lasers by noise," Optics Letters, vol.28, pp.1326-1328,2003.
    [11]W. H. Chu, C. C. Jeng. C. H. Chen. Y. H. Liu and M. F. Shih. "Induced spatiotemporal modulation instability in a noninstantaneous self-defocusing medium," Optics Letters, vol.30, pp.1846-1848,2005.
    [12]J. S. Chen, G. K. Wong, S. G. Murdoch, R. J. Kruhlak, R. Leonhardt, J. D. Harvey, N. Y. Joly and J. C. Knight. "Cross-phase modulation instability in photonic crystal fibers," Optics Letters, vol.31, pp.873-875,2006.
    [13]V. M. Burlakov, S. A. Darmanyan and V. N. Pyrkov. "Modulation instability and recurrence phenomena in anharmonic lattices," Physical Review B, vol.54, pp. 3257-3265,1996.
    [14]J. Beeckman, X. Hutsebaut, M. Haelterman and K. Neyts. "Induced modulation instability and recurrence in nematic liquid crystals," Optics Express, vol.15, pp. 11185-11195,2007.
    [15]N. N. Akhmediev, V. V. Korneev and R. R Nabiev. "Modulation instability of the lowest nonlinear mode of a cylindrical waveguide," Physical Review A, vol. 46, pp.430-435,1992.
    [16]N. N. Akhmediev, D. R. Heatley, G. I. Stegeman and E. M. Wright. "Pseudorecurrence in two-dimensional modulation instability with a saturable self-focusing nonlinearity," Physical Review Letters, vol.65, pp.1423-1426, 1990.
    [17]A. Hasegawa. "Generation of a train of soliton pulses by induced modulational instability in optical fibers," Optics Letters, vol.9, pp.288-290,1984.
    [18]M. Droques, A. Kudlinski, G. Bouwmans, G. Martinelli and A. Mussot. "Experimental demonstration of modulation instability in an optical fiber with a periodic dispersion landscape," Optics Letters, vol.37, pp.4832-4834,2012.
    [19]D. Mestdagh. "Induced amplitude-modulation instability in single-mode optical fibers," Optics Letters, vol.13, pp.829-831,1988.
    [20]Y. Gong, P. Shum, D. Tang, C. Lu and X. Guo. "660 GHz solitons source based on modulation instability in short cavity," Optics Express, vol.11, pp. 2480-2485,2003.
    [21]T. Pfeiffer and G. Veith. "40 Ghz pulse generation using a widely tunable all-polarization preserving erbium fiber ring laser," Electronics Letters, vol.29, pp.1849-1850,1993.
    [22]G. Sobon, K. Krzempek, P. Kaczmarek, K. M. Abramski and M. Nikodem."10 GHz passive harmonic mode-locking in Er-Yb double-clad fiber laser," Optics Communications, vol.284, pp.4203-4206.2011.
    [23]P. Franco, F. Fontana. I. Cristiani, M Midrio and M. Romagnoli. "Self-induced modulational-instability laser," Optics Letters, vol.20, pp.2009-2011,1995.
    [24]E. Yoshida and M. Nakazawa. "Low-threshold 115-GHz continuous-wave modulational-instability erbium-doped fiber laser," Optics Letters, vol.22, pp. 1409-1411,1997.
    [25]G. P. Agrawa. "Nonlinear Fiber Optics," Academic Press, San Diego, vol., pp., 1995.
    [26]M. Haelterman, S. Trillo and S. Wabnitz, "Additive-modulation-instability ring laser in the normal dispersion regime of a fiber," Optics Letters, vol.17, pp. 745-747,1992.
    [27]S. C. a. M. Haelterman. "Modulational instability induced by cavity boundary conditions in a normally dispersive optical fiber," Physical Review Letters, vol. 79, pp.4139-4142,1997.
    [1]A. H. a. F. Tappert. "Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Abnormal dispersion " Applied Physics Letters, vol.23, pp.142-144,1973.
    [2]P. Andrekson. "Soliton tests show promise for dense WDM systems," Laser Focus World, vol.35, pp.145-,1999.
    [3]G. P. Agrawa. "Nonlinear Fiber Optics," Academic Press, San Diego,1995.
    [4]A. Hasegawa and Y. Kodama. "Guiding-center soliton," Physical Review Letters, vol.66, pp.161-164,1991.
    [5]E. G. Shapiro and S. K. Turitsyn. "Theory of guiding-center breathing soliton propagation in optical communication systems with strong dispersion management," Optics Letters, vol.22, pp.1544-1546,1997.
    [6]A. Hasegawa and Y. Kodama. "Guiding-center soliton in fibers with periodically varying dispersion," Optics Letters, vol.16, pp.1385-1387,1991.
    [7]A. Hasegawa and Y. Kodama. "Guiding-center soliton in optical fibers," Optics Letters, vol.15, pp.1443-1445,1990.
    [8]A. B. Grudinin, D. J. Richardson and D. N. Payne. "Energy quantization in figure 8 fiber laser," Electronics Letters, vol.28, pp.67-68,1992.
    [9]M. J. Guy, D. U. Noske and J. R. Taylor. "Generation of femtosecond soliton pulses by passive mode locking of an ytterbium erbium figure-of-8 fiber laser,' Optics Letters, vol.18, pp.1447-1449,1993.
    [10]D. Y. Tang, L. M. Zhao, B. Zhao and A. Q. Liu. "Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers," Physical Review A, vol.72, pp.,2005.
    [11]A. H. a. F. Tappert. "Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion" Applied Physics Letters, vol. 23, pp.171-172,1973.
    [12]R. Fischer, D. N. Neshev, W. Krolikowski, Y. S. Kivshar, D. Iturbe-Castillo, S. Chavez-Cerda, M. R. Meneghetti, D. P. Caetano and J. M. Hickman. "Oblique interaction of spatial dark-soliton stripes in nonlocal media," Optics Letters, vol. 31, pp.3010-3012,2006.
    [13]N. Panoiu, D. Mihalache and D. Baboiu. "Dark-soliton timing jitter caused by fluctuations in initial pulse shape," Physical Review A, vol.52, pp.4182-4186, 1995.
    [14]K. M. Allen, N. J. Smith, N. J. Doran and J. A. Williams. "Dark soliton sideband formation and stability in periodically amplified systems," Optics Letters, vol. 19, pp.2086-2088,1994.
    [15]P. Emplit, M. Haelterman and J. P. Hamaide. "Picosecond dark soliton over 1-km fiber at 850 nm," Optics Letters, vol.18, pp.1047,1993.
    [16]G. A. Swartzlander. "Dark-soliton prototype devices:analysis by using direct-scattering theory," Optics Letters, vol.17, pp.493-495,1992.
    [17]J. P. Hamaide, P. Emplit and M. Haelterman. "Dark-soliton jitter in amplified optical transmission systems," Optics Letters, vol.16, pp.1578-1580,1991.
    [18]Y. S. Kivshar. "Dark-soliton dynamics and shock waves induced by the stimulated Raman effect in optical fibers," Physical Review A, vol.42, pp. 1757-1761.1990.
    [19]S. A. Gredeskul and Y. S. Kivshar. "Dark-soliton generation in optical fibers,' Optics Letters, vol.14, pp.1281-1283,1989.
    [20]A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird and W. J. Tomlinson. "Experimental observation of the fundamental dark soliton in optical fibers," Physical Review Letters, vol.61, pp.2445-2448, 1988.
    [21]P. A. Belanger and P. Mathieu. "Dark soliton in a Kerr defocusing medium,' Applied Optics, vol.26, pp.111-113,1987.
    [22]W. Zhao and E. Bourkoff. "Generation of dark solitons under a cw background using waveguide electro-optic modulators," Optics Letters, vol.15, pp.405-407, 1990.
    [23]J. E. Rothenberg and H. K. Heinrich. "Observation of the formation of dark-soliton trains in optical fibers," Optics Letters, vol.17, pp.261-263,1992.
    [24]M. S. Nakazawa, K. "10 Gbit/s pseudorandom dark soliton data transmission over 1200 km," Electronics Letters, vol.31, pp.1076-1077,1995.
    [25]H. Zhang, D. Y. Tang, L. M. Zhao and X. Wu. "Dark pulse emission of a fiber laser," Physical Review A, vol.80, pp.045803-3,2009.
    [26]S. Coen and T. Sylvestre. "Comment on "Dark pulse emission of a fiber laser" Physical Review A, vol.82, pp.047801,2010.
    [27]V. S. Grigoryan, T. Yu, E. A. Golovchenko, C. R. Menyuk and A. N. Pilipetskii. "Dispersion-managed soliton dynamics," Optics Letters, vol.22, pp.1609-1611, 1997.
    [28]M. J. Ablowitz and Z. H. Musslimani. "Dark and gray strong dispersion-managed solitons," Physical Review E, vol.67, pp.,2003.
    [29]Y. J. Chen. "Dark solitons in dispersion compensated fiber transmission systems," Optics Communications, vol.161, pp.267-270,1999.
    [30]V. S. Grigoryan and C. R. Menyuk. "Dispersion-managed solitons at normal average dispersion," Optics Letters, vol.23, pp.609-611,1998.
    [31]L. M. Zhao, D. Y. Tang, T. H. Cheng, H. Y. Tam, C. Lu and S. C. Wen. "Period-doubling of dispersion-managed solitons in an Erbium-doped fiber laser at around zero dispersion," Optics Communications, vol.278, pp.428-433, 2007.
    [32]F. Matera, A. Mecozzi, M. Romagnoli and M. Settembre. "Sideband instability induced by periodic power variation in long-distance fiber links," Optics Letters, vol.18, pp.1499,1993.
    [33]H. D. I. Abarbanel, M. B. Kennel, M. Buhl and C. T. Lewis. "Chaotic dynamics in erbium-doped fiber ring lasers," Physical Review A, vol.60, pp.2360-2374, 1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700