对鞘翅目害虫具有活性的新型cry基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鞘翅目害虫常年给农、林业生产带来重大损失,目前采取的主要防治措施是使用化学杀虫剂,但是化学杀虫剂的弊端日益突出。一方面化学杀虫剂对生态系统影响大、药物残留高、对人畜安全性低,另一方面部分害虫已经对其产生抗性。为了减少污染、提高防治效率,国内外都在探索生物防治这一新的防治技术和方法。苏云金芽胞杆菌(Bacillus thuringiensis,简称Bt)是目前研究应用最广的一类微生物杀虫剂。Bt的杀虫活性与其携带的编码杀虫晶体蛋白(Insecticidal Crystal Proteins,ICPs)的cry基因密切相关,寻找新的高毒力菌株及基因一直是研究的热点。本文应用PCR-RFLP和生物信息学两种方法开展对鞘翅目有活性的新cry基因的挖掘工作,并对所寻找到的新基因进行了表达研究,主要结果如下:
     1.以实验室分离的500株苏云金芽胞杆菌菌株为材料,通过杀虫活性测定筛选到43株对鞘翅目金龟科幼虫(蛴螬)有活性的菌株,其中菌株C9对三种供试昆虫均有活性。形态学观察发现这些菌株均释放球形晶体,SDS-PAGE分析显示它们均表达约130 kDa蛋白。采用PCR-RFLP法对这43株菌株进行了cry基因类型鉴定,结果显示:其中21株只含cry8Ca;13株同时含cry8Ca和cry8Ea基因;菌株QCM的PCR-RFLP图谱不同于已发现的cry8基因,说明其中含有新基因。根据已知的cry8基因全长序列设计引物,成功克隆了该新基因,由Btδ-内毒素基因国际命名委员会正式命名为cry8Xxx1。
     2.从已进行基因组测序的菌株NARC Bt17和HD868中,通过生物信息学方法筛选到3个对鞘翅目害虫有潜在毒力的新cry基因。成功克隆了上述基因,并命名为cry61Xxx、cry7Xxx和cry8Ma3。
     3.以大肠杆菌Rosetta (DE3)为宿主菌,利用表达载体pEB对所克隆的4种新cry基因进行表达,经SDS-PAGE检测,均成功表达130 kDa左右的蛋白。
     4.通过穿梭载体pSTK将cry8Xxx基因导入Bt无晶体突变株HD73-中,获得工程菌HD8X。SDS-PAGE分析表明cry8Xxx基因在其中能正常表达,并形成球形晶体。
     综上所述,本研究通过PCR-RFLP与生物信息学筛选的方法,克隆了4种新cry基因,构建了新型Bt工程菌HD8X,丰富了我国对鞘翅目有活性的基因资源,拓宽了cry基因挖掘的思路,并为应用奠定了基础。
Coleopteran pests caused heavy losses to agriculture and forestry every year. At present the main control measures being taken is the use of chemical pesticides. However, the obvious disadvantage of chemical pesticides is increasing: they brought out negative impact on the ecosystem; the residue of toxin is high; they were not safe to human and livestock and some of the pests have engendered resistance to them. In order to reduce pollution, increase the efficiency of control, scholars at home and abroad are exploring new technique and methods based on biological control. Bacillus thuringiensis (Bt) is one of the microbial pesticides that are widely used. The insecticidal activity of Bt is closely related to its insecticidal crystal protein (ICPs) coding by cry genes. Looking for new strains and cry genes with high toxicity to pests has been a hot spot in research. This work includes finding novel cry genes which are toxic to Coleopteran pests with two different methods:PCR-RFLP and Bioinformatics, at the same time the expression of these novel genes are also studied.
     1. 500 strains of Bacillus thuringiensis isolated in our laboratory were investigated. 43 strains which were insecticidal activity to larvae of cockchafers (Coleopteran, Scarabaeidae) were obtained. C9 was entomocidal to all the three species of cockchafers tested. Observation results of morphology indicated that all of these Bt strains contained crystals in spherical shape. SDS-PAGE analysis indicated that all these strains could express protein with 130 kD molecular mass. The study of cry gene-types of these 43 strains was carried out by PCR-RFLP method. Only cry8Ca type gene could be found in 21 strains, while both cry8Ca and cry8Ea type gene existed in 13 strains. Strain QCM may contain a novel cry8 gene for its unique PCR-RFLP patterns. Designed primers based on known cry8 genes, and cloned this gene cry8Xxx which named by International Nomenclature Committee of Bt.
     2. By Bioinformatics, three novel genes have been screened from strains NARC Bt17 and HD868 whose genome have been sequenced. These genes designated as cry61Xxx, cry7Xxx and cry8Ma3 are predicted to be toxic to coleopteran pests, and they are cloned successfully.
     3. These 4 genes above-mentioned are expressed in E. coli Rosetta (DE3) via expression vector pEB. SDS-PAGE analysis indicated that they were expressed protein of about 130kDa molecular mass successfully.
     4. cry8Xxx gene was transformed into a crystalliferous Bt strain HD73- by pSTK, a shuttle vector. Then a recombined strain designated as HD8X was obtained. SDS-PAGE analysis showed that the cry8Xxx gene was expressed in HD8X which can form spherical crystals.
     In conclusion, four cry genes were cloned via PCR-RFLP and bioinformatics methods in this work, and a new engineered strain HD8X was constructed. It enriches the gene resources of our country and provides a new approach for cry gene cloning, also it establishes a ground for application.
引文
[1] Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler D R, Dean D H. Bacillus thuringiensis and its pesticidal crystal proteins[J]. Microbiol Mol Biol Rev, 1998, 62(3): 775-806.
    [2] Estruch J J, Warren G W, Mullins M A, Nye G J, Craig J A, Koziel M G. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects[J], Proc Natl Acad Sci U S A, 1996, 93(11): 5389-5394.
    [3] Loguercio L L, Barreto M L, Rocha T L, Santos C G, Teixeira F F, Paiva E. Combined analysis of supernatant-based feeding bioassays and PCR as a first-tier screening strategy for Vip -derived activities in Bacillus thuringiensis strains effective against tropical fall armyworm[J]. Journal of Applied Microbiology, 2002, 93(2): 269-277.
    [4] Donovan W P, Engleman J T, Donovan J C, Baum J A, Bunkers G J, Chi D J, Clinton W P, English L, Heck G R, Ilagan O M, Krasomil-Osterfeld K C, Pitkin J W, Roberts J K, Walters M R. Discovery and characterization of Sip1A: A novel secreted protein from Bacillus thuringiensis with activity against coleopteran larvae[J]. Appl Microbiol Biotechnol, 2006, 72(4): 713-719.
    [5] Manasherob R, Zaritsky A, Ben-Dov E, Saxena D, Barak Z, Einav M. Effect of accessory proteins P19 and P20 on cytolytic activity of Cyt1Aa from Bacillus thuringiensis subsp. israelensis in Escherichia coli[J]. Current Microbiology, 2001, 43(5): 355-364.
    [6] Xu Y, Nagai M, Bagdasarian M, Smith T W, Walker E D. Expression of the p20 gene from Bacillus thuringiensis H-14 increases Cry11A toxin production and enhances mosquito-larvicidal activity in recombinant gram-negative bacteria[J]. Appl Environ Microbiol, 2001, 67(7): 3010-3015.
    [7]李荣森,陈涛.几种苏芸金杆菌晶体的毒力及形态结构[J].微生物学报, 1981(3): 311-317.
    [8] Faust R M, Abe K, Held G A, Iizuka T, Bulla L A, Meyers C L. Evidence for plasmid-associated crystal toxin production in Bacillus thuringiensis subsp. israelensis[J]. Plasmid, 1983, 9(1): 98-103.
    [9] Schnepf H E, Whiteley H R. Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli[J]. Proc Natl Acad Sci U S A, 1981, 78(5): 2893-2897.
    [10] Schnepf H E, Wong H C, Whiteley H R. The amino acid sequence of a crystal protein from Bacillus thuringiensis deduced from the DNA base sequence[J]. Journal of Biological Chemistry, 1985, 260(10): 6264-6272.
    [11] Hofte H, Whiteley H R. Insecticidal crystal proteins of Bacillus thuringiensis[J]. Microbiol Rev, 1989, 53(2): 242-255.
    [12] Feitelson J S, Payne J, Kim L. Bacillus thuringiensis: insects and beyond[J]. Nature Biotechnology, 1992, 10(3): 271-275.
    [13] Crickmore N, Zeigler D R, Feitelson J, Schnepf E, Van Rie J, Lereclus D, Baum J, Dean D H. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins[J]. Microbiol Mol Biol Rev, 1998, 62(3): 807-813.
    [14] Bourque S N, Valero J R, Mercier J, Lavoie M C, Levesque R C. Multiplex polymerase chain reaction for detection and differentiation of the microbial insecticide Bacillus thuringiensis[J]. Appl Environ Microbiol, 1993, 59(2): 523-527.
    [15] Ben-Dov E, Zaritsky A, Dahan E, Barak Z, Sinai R, Manasherob R, Khamraev A, Troitskaya E, Dubitsky A, Berezina N, Margalith Y. Extended screening by PCR for seven cry-group genes from field-collected strains of Bacillus thuringiensis[J]. Appl Environ Microbiol, 1997, 63(12): 4883-4890.
    [16] Ben-Dov E, Manasherob R, Zaritsky A, Barak Z, Margalith Y. PCR analysis of cry7 genes in Bacillus thuringiensis by the five conserved blocks of toxins[J]. Current Microbiology, 2001, 42(2): 96-99.
    [17] Fang J, Xu X, Wang P, Zhao J Z, Shelton A M, Cheng J, Feng M G, Shen Z. Characterization of chimeric Bacillus thuringiensis Vip3 toxins[J]. Appl Environ Microbiol, 2007, 73(3): 956-961.
    [18] Kuo W S, Chak K F. Identification of novel cry-type genes from Bacillus thuringiensis strains on the basis of restriction fragment length polymorphism of the PCR-amplified DNA[J] Appl Environ Microbiol, 1996, 62(4): 1369-1377.
    [19]宋福平,张杰,谢天健,杨自文,戴莲韵,李国勋.苏云金芽孢杆菌cry基因PCR-RFLP鉴定体系的建立[J].中国农业科学, 1998(3): 13-18.
    [20] Shu C, Yan G, Wang R, Zhang J, Feng S, Huang D, Song F. Characterization of a novel cry8 gene specific to Melolonthidae pests: Holotrichia oblita and Holotrichia parallela[J]. Appl Microbiol Biotechnol, 2009, 84(4): 701-707.
    [21] Masson L, Erlandson M, Puzstai-Carey M, Brousseau R, Juarez-Perez V, Frutos R. A holistic approach for determining the entomopathogenic potential of Bacillus thuringiensis strains[J]. Appl Environ Microbiol, 1998, 64(12): 4782-4788.
    [22] Pattanayak D, Chakrabarti S K, Kumar P A, Naik P S. Characterization of genetic diversity of some serovars of Bacillus thuringiensis by RAPD[J]. Indian J Exp Biol, 2001, 39(9): 897-901.
    [23] Gaviria Rivera A M, Priest F G. Molecular typing of Bacillus thuringiensis serovars by RAPD-PCR[J] Systematic and Applied Microbiology, 2003, 26(2): 254-261.
    [24] Beron C M, Curatti L, Salerno G L. New strategy for identification of novel Cry-type genes from Bacillus thuringiensis strains[J]. Appl Environ Microbiol, 2005, 71(2): 761-765.
    [25] Klevebring D, Bjursell M, Emanuelsson O, Lundeberg J. In-depth transcriptome analysis reveals novel TARs and prevalent antisense transcription in human cell lines[J]. PLoS One, 2010, 5(3): e9762.
    [26] Twombly V, Bangi E, Le V, Malnic B, Singer M A, Wharton K A. Functional analysis of saxophone, the Drosophila gene encoding the BMP type I receptor ortholog of human ALK1/ACVRL1 and ACVR1/ALK2[J]. Genetics, 2009, 183(2): 563-579.
    [27] Zaker F, Mohammadzadeh M, Mohammadi M. Detection of KIT and FLT3 mutations in acute myeloid leukemia with different subtypes[J]. Arch Iran Med, 2010, 13(1): 21-25.
    [28] Zeboulon N, Dougados M, Gossec L. Prevalence and characteristics of uveitis in the spondyloarthropathies: a systematic literature review[J]. Annals of The Rheumatic Diseases, 2008, 67(7): 955-959.
    [29] Beard C E, Ranasinghe C, Akhurst R J. Screening for novel cry genes by hybridization[J]. Letters in Applied Microbiology, 2001, 33(3): 241-245.
    [30]刘旭光,宋福平,文思远,王升启,黄大昉,张杰.苏云金芽孢杆菌cry基因芯片检测方法的研究[J].中国农业科学, 2004(7)
    [31] Margulies M, Egholm M, Altman W E, Attiya S, Bader J S, Bemben L A, Berka J, Braverman M S, Chen Y J, Chen Z, Dewell S B, Du L, Fierro J M, Gomes X V, Godwin B C, He W, Helgesen S, Ho C H, Irzyk G P, Jando S C, Alenquer M L, Jarvie T P, Jirage K B, Kim J B, Knight J R, Lanza J R, Leamon J H, Lefkowitz S M, Lei M, Li J, Lohman K L, Lu H, Makhijani V B, McDade K E, McKenna M P, Myers E W, Nickerson E, Nobile J R, Plant R, Puc B P, Ronan M T, Roth G T, Sarkis G J, Simons J F, Simpson J W, Srinivasan M, Tartaro K R, Tomasz A, Vogt K A, Volkmer G A, Wang S H, Wang Y, Weiner M P, Yu P, Begley R F, Rothberg J M. Genome sequencing in microfabricated high-density picolitre reactors[J]. Nature, 2005, 437(7057): 376-380.
    [32] Shendure J, Ji H. Next-generation DNA sequencing[J]. Nature Biotechnology, 2008, 26(10): 1135-1145.
    [33] Rothberg J M, Leamon J H. The development and impact of 454 sequencing[J]. Nature Biotechnology, 2008, 26(10): 1117-1124.
    [34]阿汉·瓦阿太.无农药也可以防治金龟子[J].新疆农业科技, 2008(1): 43.
    [35]徐建国,范惠,张明考,杨恩华,郭琳.暗黑鳃金龟生活习性观察及防治技术研究[J].植保技术与推广, 2002(11): 9-10.
    [36]王爱东.农田蛴螬发生及综合防治技术[J].现代农业科技, 2008(6): 101.
    [37] Krieg A, Huger A M, Langenbruch G A, Schnetter W. Bacillus thuringiensis var. tenebrionis, anew pathotype effective against larvae of Coleoptera.[J]. Z. Angew. Entomol., 1983, 96(5): 500-508.
    [38] Herrnstadt C, Gilroy T E, Sobieski D A, Bennett B D, Gaertner F H. Nucleotide sequence and deduced amino acid sequence of a coleopteran-active delta-endotoxin gene from Bacillus thuringiensis subsp. sandiego[J]. Gene, 1987, 57(1): 37-46.
    [39] Entwistle P F, Bacillus thuringiensis: an environmental biopesticide: theory and practice[M]: John Wiley & Son Ltd,1993.
    [40] Ohba M, Iwahana H, Asano S, Suzuki N, Sato R, Hori H. A unique isolate of Bacillus thuringiensis serovar japonensis with a high larvicidal activity specific for scarabaeid beetles[J]. Letters In Applied Microbiology, 1992, 14(2): 54-57.
    [41] Sato R, Takeuchi K, Ogiwara K, Minami M, Kaji Y, Suzuki N, Hori H, Asano S, Ohba M, Iwahana H. Cloning, heterologous expression, and localization of a novel crystal protein gene from Bacillus thuringiensis serovar japonensis strain buibui toxic to scarabaeid insects[J]. Current Microbiology, 1994, 28(1): 15-19.
    [42]赵蔚,郭俊,李荣森.杀鞘翅目幼虫Bt菌株YM-03的δ-内毒素基因定位[J].微生物学杂志, 2000(01): 18-19.
    [43]张杰,宋福平,李长友,陈中义,檀建新,黄大昉.对鞘翅目害虫高毒力Bt基因cry3Aa7的分离克隆及表达研究[J].中国农业科学, 2002(6)
    [44]冯书亮,王容燕,范秀华,胡明峻.一株对金龟子类幼虫具有杀虫活性的苏云金杆菌新分离株[J].中国生物防治, 2000(2): 74-76.
    [45] Shu C, Liu R, Wang R, Zhang J, Feng S, Huang D, Song F. Improving toxicity of Bacillus thuringiensis strain contains the cry8Ca gene specific to Anomala corpulenta larvae[J] Current Microbiology, 2007, 55(6): 492-496.
    [46] Yu H, Zhang J, Huang D, Gao J, Song F. Characterization of Bacillus thuringiensis strain Bt185 toxic to the Asian cockchafer: Holotrichia parallela[J] Current Microbiology, 2006, 53(1): 13-17.
    [47] Shu C, Yu H, Wang R, Fen S, Su X, Huang D, Zhang J, Song F. Characterization of two novel cry8 genes from Bacillus thuringiensis strain BT185[J]. Current Microbiology, 2009, 58(4): 389-392.
    [48] van Frankenhuyzen K. Insecticidal activity of Bacillus thuringiensis crystal proteins[J]. Journal of Invertebrate Pathology, 2009, 101(1): 1-16.
    [49] Bravo A, Gill S S, Soberon M, Bacillus thuringiensis mechanisms and use[M]: Elsevier BV, 2005: 175-206.
    [50] Bravo A, Soberon M. How to cope with insect resistance to Bt toxins?[J]. Trends in Biotechnology, 2008, 26(10): 573-579.
    [51] Bravo A, Likitvivatanavong S, Gill S S, Soberon M. Bacillus thuringiensis: A story of a successful bioinsecticide[J]. Insect Biochem Mol Biol, 2011: 1-9.
    [52] Grochulski P, Masson L, Borisova S, Pusztai-Carey M, Schwartz J L, Brousseau R, Cygler M. Bacillus thuringiensis CryIA(a) insecticidal toxin: crystal structure and channel formation[J]. Journal of Molecular Biology, 1995, 254(3): 447-464.
    [53] Morse R J, Yamamoto T, Stroud R M. Structure of Cry2Aa suggests an unexpected receptor binding epitope[J]. Structure, 2001, 9(5): 409-417.
    [54] Li J D, Carroll J, Ellar D J. Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 A resolution[J]. Nature, 1991, 353(6347): 815-821.
    [55] Galitsky N, Cody V, Wojtczak A, Ghosh D, Luft J R, Pangborn W, English L. Structure of the insecticidal bacterial delta-endotoxin Cry3Bb1 of Bacillus thuringiensis[J]. Acta Crystallogr D Biol Crystallogr, 2001, 57(Pt 8): 1101-1109.
    [56] Boonserm P, Angsuthanasombat C, Lescar J. Crystallization and preliminary crystallographic study of the functional form of the Bacillus thuringiensis mosquito-larvicidal Cry4Aa mutant toxin[J]. Acta Crystallogr D Biol Crystallogr, 2004, 60(Pt 7): 1315-1318.
    [57] Boonserm P, Davis P, Ellar D J, Li J. Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications[J]. Journal of Molecular Biology, 2005, 348(2): 363-382.
    [58] Li J, Derbyshire D J, Promdonkoy B, Ellar D J. Structural implications for the transformation of the Bacillus thuringiensis delta-endotoxins from water-soluble to membrane-inserted forms[J].Biochem Soc Trans, 2001, 29(Pt 4): 571-577.
    [59] Derbyshire D J, Ellar D J, Li J. Crystallization of the Bacillus thuringiensis toxin Cry1Ac and its complex with the receptor ligand N-acetyl-D-galactosamine[J]. Acta Crystallogr D Biol Crystallogr, 2001, 57(Pt 12): 1938-1944.
    [60] Guo S, Ye S, Liu Y, Wei L, Xue J, Wu H, Song F, Zhang J, Wu X, Huang D, Rao Z. Crystal structure of Bacillus thuringiensis Cry8Ea1: An insecticidal toxin toxic to underground pests, the larvae of Holotrichia parallela[J]. Journal of Structural Biology, 2009, 168(2): 259-266.
    [61] Sankaranarayanan R, Sekar K, Banerjee R, Sharma V, Surolia A, Vijayan M. A novel mode of carbohydrate recognition in jacalin, a Moraceae plant lectin with a beta-prism fold[J]. Nat Struct Biol, 1996, 3(7): 596-603.
    [62] Shimizu T, Morikawa K. The beta-prism: a new folding motif[J]. Trends in Biochemical Sciences, 1996, 21(1): 3-6.
    [63] Bravo A, Gill S S, Soberon M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control[J]. Toxicon, 2007, 49(4): 423-435.
    [64] de Maagd R A, Weemen-Hendriks M, Stiekema W, Bosch D. Bacillus thuringiensis delta-endotoxin Cry1C domain III can function as a specificity determinant for Spodoptera exigua in different, but not all, Cry1-Cry1C hybrids[J]. Appl Environ Microbiol, 2000, 66(4): 1559-1563.
    [65] Walters F S, DeFontes C M, Hart H, Warren G W, Chen J S. Lepidopteran-active variable-region sequence imparts coleopteran activity in eCry3.1Ab, an engineered Bacillus thuringiensis hybrid insecticidal protein[J]. Appl Environ Microbiol, 2010, 76(10): 3082-3088.
    [66] Grochulski P, Masson L, Borisova S, Pusztai-Carey M, Schwartz J L, Brousseau R, Cygler M. Bacillus thuringiensis CryIA(a) insecticidal toxin: crystal structure and channel formation[J]. Journal of Molecular Biology, 1995, 254(3): 447-464.
    [67] Chen X J, Lee M K, Dean D H. Site-directed mutations in a highly conserved region of Bacillus thuringiensis delta-endotoxin affect inhibition of short circuit current across Bombyx mori midguts[J]. Proc Natl Acad Sci U S A, 1993, 90(19): 9041-9045.
    [68] Schwartz J L, Juteau M, Grochulski P, Cygler M, Prefontaine G, Brousseau R, Masson L. Restriction of intramolecular movements within the Cry1Aa toxin molecule of Bacillus thuringiensis through disulfide bond engineering[J]. Febs Letters, 1997, 410(2-3): 397-402.
    [69] Wolfersberger M G, Chen X J, Dean D H. Site-directed mutations in the third domain of Bacillus thuringiensis delta-endotoxin CryIAa affect its ability to increase the permeability of Bombyx mori midgut brush border membrane vesicles[J]. Appl Environ Microbiol, 1996, 62(1): 279-282.
    [70] Pigott C R, Ellar D J. Role of receptors in Bacillus thuringiensis crystal toxin activity[J]. Microbiol Mol Biol Rev, 2007, 71(2): 255-281.
    [71] Bravo A, Gomez I, Conde J, Munoz-Garay C, Sanchez J, Miranda R, Zhuang M, Gill S S, Soberon M. Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains[J]. Biochim Biophys Acta, 2004, 1667(1): 38-46.
    [72] Gomez I, Oltean D I, Gill S S, Bravo A, Soberon M. Mapping the epitope in cadherin-like receptors involved in Bacillus thuringiensis Cry1A toxin interaction using phage display[J]. Journal of Biological Chemistry, 2001, 276(31): 28906-28912.
    [73] Zhuang M, Oltean D I, Gomez I, Pullikuth A K, Soberon M, Bravo A, Gill S S. Heliothis virescens and Manduca sexta lipid rafts are involved in Cry1A toxin binding to the midgut epithelium and subsequent pore formation[J]. Journal of Biological Chemistry, 2002, 277(16): 13863-13872.
    [74] Zhang X, Candas M, Griko N B, Rose-Young L, Bulla L J. Cytotoxicity of Bacillus thuringiensis Cry1Ab toxin depends on specific binding of the toxin to the cadherin receptor BT-R1 expressed in insect cells[J]. Cell Death And Differentiation, 2005, 12(11): 1407-1416.
    [75] Vachon V, Prefontaine G, Rang C, Coux F, Juteau M, Schwartz J L, Brousseau R, Frutos R, Laprade R, Masson L. Helix 4 mutants of the Bacillus thuringiensis insecticidal toxin Cry1Aa display altered pore-forming abilities[J]. Appl Environ Microbiol, 2004, 70(10): 6123-6130.
    [76] Kumar A S, Aronson A I. Analysis of mutations in the pore-forming region essential for insecticidal activity of a Bacillus thuringiensis delta-endotoxin[J]. Journal of Bacteriology, 1999,181(19): 6103-6107.
    [77] Luo K, Banks D, Adang M J. Toxicity, binding, and permeability analyses of four Bacillus thuringiensis Cry1 delta-endotoxins using brush border membrane vesicles of Spodoptera exigua and Spodoptera frugiperda[J]. Appl Environ Microbiol, 1999, 65(2): 457-464.
    [78] Zhang X, Candas M, Griko N B, Taussig R, Bulla L J. A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis[J]. Proc Natl Acad Sci U S A, 2006, 103(26): 9897-9902.
    [79] Fabrick J, Oppert C, Lorenzen M D, Morris K, Oppert B, Jurat-Fuentes J L. A novel Tenebrio molitor cadherin is a functional receptor for Bacillus thuringiensis Cry3Aa toxin[J]. Journal of Biological Chemistry, 2009, 284(27): 18401-18410.
    [80] Park Y, Abdullah M A, Taylor M D, Rahman K, Adang M J. Enhancement of Bacillus thuringiensis Cry3Aa and Cry3Bb toxicities to coleopteran larvae by a toxin-binding fragment of an insect cadherin[J]. Appl Environ Microbiol, 2009, 75(10): 3086-3092.
    [81] Martins E S, Monnerat R G, Queiroz P R, Dumas V F, Braz S V, de Souza A R, Gomes A C, Sanchez J, Bravo A, Ribeiro B M. Midgut GPI-anchored proteins with alkaline phosphatase activity from the cotton boll weevil (Anthonomus grandis) are putative receptors for the Cry1B protein of Bacillus thuringiensis[J]. Insect Biochem Mol Biol, 2010, 40(2): 138-145.
    [82] Ochoa-Campuzano C, Real M D, Martinez-Ramirez A C, Bravo A, Rausell C. An ADAM metalloprotease is a Cry3Aa Bacillus thuringiensis toxin receptor[J]. Biochem Biophys Res Commun, 2007, 362(2): 437-442.
    [83] Soberon M, Gill S S, Bravo A. Signaling versus punching hole: How do Bacillus thuringiensis toxins kill insect midgut cells?[J]. Cellular And Molecular Life Sciences, 2009, 66(8): 1337-1349.
    [84] Klier A, Parsot C, Rapoport G. In vitro transcription of the cloned chromosomal crystal gene from Bacillus thuringiensis[J]. Nucleic Acids Research, 1983, 11(12): 3973-3987.
    [85] Gawron-Burke C, Baum J A. Genetic manipulation of Bacillus thuringiensis insecticidal crystal protein genes in bacteria[J]. Genet Eng (N Y), 1991, 13: 237-263.
    [86] Wang G, Zhang J, Song F, Wu J, Feng S, Huang D. Engineered Bacillus thuringiensis GO33A with broad insecticidal activity against lepidopteran and coleopteran pests[J]. Appl Microbiol Biotechnol, 2006, 72(5): 924-930.
    [87] Wang G, Zhang J, Song F, Gu A, Uwais A, Shao T, Huang D. Recombinant Bacillus thuringiensis strain shows high insecticidal activity against Plutella xylostella and Leptinotarsa decemlineata without affecting nontarget species in the field[J]. Journal of Applied Microbiology, 2008, 105(5): 1536-1543.
    [88]刘晶晶.对鞘翅目害虫高效的苏云金芽胞杆菌工程菌的构建[D]:东北农业大学, 2008.
    [89]闫贵欣.对金龟甲科、叶甲科害虫高毒力苏云金芽胞杆菌杀虫基因及工程菌的研究[D]:中国农业科学院, 2009.
    [90]李林,喻子牛.苏云金芽孢杆菌无质粒突变株BMB171的转化和表达性能[J].应用与环境生物学报, 1999(4): 62-66.
    [91] Liu X, Peng D, Luo Y, Ruan L, Yu Z, Sun M. Construction of an Escherichia coli to Bacillus thuringiensis shuttle vector for large DNA fragments[J]. Appl Microbiol Biotechnol, 2009, 82(4): 765-772.
    [92] Sansinenea E, Vazquez C, Ortiz A. Genetic manipulation in Bacillus thuringiensis for strain improvement[J]. Biotechnology Letters, 2010, 32(11): 1549-1557.
    [93] van Aarssen R, Soetaert P, Stam M, Dockx J, Gossele V, Seurinck J, Reynaerts A, Cornelissen M. cry IA(b) transcript formation in tobacco is inefficient[J]. Plant Molecular Biology, 1995, 28(3): 513-524.
    [94] Denolf P, Hendrickx K, Van Damme J, Jansens S, Peferoen M, Degheele D, Van Rie J. Cloning and characterization of Manduca sexta and Plutella xylostella midgut aminopeptidase N enzymes related to Bacillus thuringiensis toxin-binding proteins[J]. European Journal Of Biochemistry, 1997, 248(3): 748-761.
    [95] James C. Global status of commercialized Biotech/GM crops: 2010[J]. ISAAA Briefs, 2010: 41-2009.
    [96] Kaur S. Molecular approaches for identification and construction of novel insecticidal genes forcrop protection[J]. World Journal of Microbiology and Biotechnology, 2006, 22(3): 233-253.
    [97]宋敏,林祥明,刘丽军. Cry基因家族的专利分布研究[J].生物技术通报, 2010(1): 1-8.
    [98]方宣钧,程大新,徐俊,徐荣旗,范天舒.中国转基因抗虫棉知识产权的商业化实施进展[J].农业生物技术学报, 2001(2): 103-106.
    [99] James C, Global status of commercialized biotech/GM crops, 2007[M]: International Service for the Acquisition of Agri-Biotech Applications (ISAAA),2007
    [100]宋健,王金耀,王容燕,冯书亮,曹伟平,杜立新,张海剑,张杰,宋福平.苏云金芽孢杆菌HBF-1菌株对铜绿丽金龟和黄褐丽金龟幼虫生长发育及取食的影响[J].农药学学报, 2006(2): 134-138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700