Bt工程菌HD8Ea2的构建及Cry8Ea2蛋白对华北大黑鳃金龟中肠微生物的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
华北大黑鳃金龟(Holotrichia oblita)属于鞘翅目金龟甲总科(Scarabaeoidae),其幼虫对农、林、牧草等都有为害,在我分布广泛,种群数量大,危害严重。
     苏云金杆菌(Bacillus thuringiensis,简称Bt)是革兰氏阳性细菌(G~+),在其生活史中能产生多种杀虫晶体蛋白,是目前应用最为广泛而有效的一种生物杀虫剂。本研究从全国各地的土样中筛选得到含cry8类基因的野生型菌株GW11,该菌株对华北大黑鳃金龟具有杀虫活性,LC_(50)为6.43×10~6cell/mL。Cry8Ea2蛋白是一种新型苏云金杆菌杀虫晶体蛋白。本研究通过穿梭载体pSXY422b将cry8Ea2导入Bt无晶体突变菌株HD73~-(cry~-)中,获得工程菌HD8Ea2。Cry8Ea2蛋白在工程菌中获得表达。通过分子筛层析,成功获得纯化的130kDa活性毒蛋白。用改进的生物活性测定方法进行Cry8Ea2蛋白对华北大黑鳃金龟一龄幼虫的杀虫活性测定,LC_(50)为0.2679μg/mL。
     本研究应用16S rDNA PCR-RFLP方法,对正常生长的华北大黑鳃金龟二龄幼虫和饲喂Cry8Ea2蛋白的二龄幼虫中肠微生物进行了研究。从正常生长和饲喂Cry8Ea2蛋白的二龄幼虫中分别得到300个含有16S rDNA的克隆,分别随机挑选24个克隆进行PCR-RFLP的鉴定,结果发现:源自正常二龄幼虫的的24个克隆呈现17种不同带型;源自饲喂Cry8Ea2蛋白的二龄幼虫的24个阳性克隆呈现5种不同带型。
Having damage to agriculture, forestry, pastured and other at the stage of larvae, Holotrichia oblita belongs to coleopteran of Scarabaeoidae. Holotrichia oblita is of widely distribution, large population and serious harm, and is a important plant pest in China.
     As a Gram-positive bacterium Bacillus thuringiensis can produce a variety of insecticidal crystal proteins in its life cycle, and is one of the most effective and widely used microbial insecticides at present. In this study, a wild-type strain named GW11 haboring cry8 gene was screened from soil samples collected from diffent areas of China. Insecticidal activity of GW11 to H. oblita was tested, and the LC_(50) is 6.43×10~6 cell/mL. Bt Cry8Ea2 protein is a new type of insecticidal crystal protein. cry8Ea2 was cloned into E. coli-Bt shuttle vector pSXY422b, resulting recombinant pScry8Ea2, and pScry8Ea2 was transformed into the Bt acrystalliferous mutant, generating engineered Bt strain HD8Ea2. Cry8Ea2 protein was successfully expressed in HD8Ea2 strain. By molecular sieve chromatography, 130 kDa of toxin protein Cry8Ea2 was purified. Using improved bioassay method, activity of the Cry8Ea2 toxin was evaluated, and the LC_(50) value to first instars larvae of H. oblita was 0.2679μg/mL.
     H. oblita was normally feed in control group, and was feeded Cry8Ea2 protein in treatment group. Midgut microorganisms was analyzed by 16S rDNA gene amplification and PCR-RFLP analysis, 300 clones harboring 16S rDNA of bacteria from each group larvae were got, and 24 clones were randomly selected to perform PCR-RFLP analysis. 17 PCR-RFLP polymorphic bands appeared in control group, and 5 PCR-RFLP polymorphic bands in treatment group.
引文
[1]王爱东.农田蛴螬发生及综合防治技术[J].现代农业科技. 2008(06): 101.
    [2]苗春生,苗秀俊,王亚军,等.河北省黑光灯诱集金龟子的种类及其分布和消长规律研究[J].河北农业科学, 2007(01): 41-45.
    [3]徐建国.暗黑鳃金龟生活习性观察及防治技术研究[J].植保技术与推广, 2002, 22(11): 9-10.
    [4] Barton KA, Whiteley HR, Yang NS. Bacillus thuringiensisδ-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects[J]. Plant Physiology, 1987, 85(4): 1103-1109.
    [5]张洪瑞,朱其松,高苓昌,等. Bt基因及其在转基因抗虫植物中的研究进展[J].河北农业科学, 2008, 12(6): 87-89.
    [6] Ali HS, Ben R, Ibiza-Palacios MS, et al. Genetic and Biochemical Characterization of Field-Evolved Resistance to Bacillus thuringiensis Toxin Cry1Ac in the Diamondback Moth, Plutella xylostella[J]. Applied and Environmental Microbiology, 2004, 70(12): 7010-7017.
    [7] Tabashnik BE, Cushing NL, Finson N, et al. Field development of resistance to Bacillus thuringiensis in diamondback month (Lepidoptera:Plutellidae)[J]. Journal of economic entomology, 1990, 83(5): 1671-1676.
    [8] Janmaat AF, Myers J. Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers, Trichoplusia ni[J]. Proceedings of the royal society, 2003, 270(1530): 2263-2270.
    [9]于思勤.中国夜蛾科昆虫区系初步研究(鳞翅目:双孔亚目)[J].昆虫分类学报, 1998, 20(1) 44-50.
    [10]王晓容,黎永栈,卢辉红.甜菜夜蛾研究进展[J].仲恺农业技术学院学报, 1995, 8(2): 87-93.
    [11] Baumann P, Baumann L, Lai C Y, Rouhbakhsh D, et al. Genetics, physiology, and revolutionary relationship of the genus Buchnera intracellular symbionts of aphids[J]. Annual Review of Microbiology, 1995, 49: 55-94.
    [12]薛宝燕,程新胜,陈树仁,等.昆虫共生菌研究进展[J].中国微生态学杂志, 2004 16(3): 189-191.
    [13] Murad G, Svetlana K. Susceptibility to insecticides in the Q biotype of Bemisia tabaci is correlated with bacterial symbiont densities[J]. Pest Management Science, 2009, 65: 939-942.
    [14]王爱东.农田蛴螬发生及综合防治技术[J].现代农业科技. 2008, 6: 101-104.
    [15] McDonald R C. Summary of Information on Tiphia vernalis and its colonization[J]. North Carolina Department of Agriculture Annual Report, 1992, 2: 14-26.
    [16] Converse V, Grewal P S. Virulence of entomopathogenic nematodes to the western masked chafer Cyclocephala hirta (Coleoptera: Scarabaeidae)[J]. Journal of Economic Entomology, 1998, 91(2): 428-32.
    [17] Fleming W E. 1968. Biological control of the Japanese beetle[R]. USDA Technical Bulletin No. 1383: 1-78.
    [18] Jackson T A. in press. Reflecting on an unusual assignment—discovery and development of Serratia entomophila as a biocontrol for grass grub[M]. In: Goettel, M., G. Lazarovits, and C. Vincent, editors. eds. Biological Control: A Global Perspective CABI Publishing. Wallingford, U. K.
    [19] Logan D P, L N Robertson, R J Milner. Review of the development of Metarhizium anisopliae as a microbial insecticide, BioCaneTM, for the control of greyback canegrub Dermolepida albohirtum (Waterhouse) (Coleoptera: Scarabaeidae) in Queensland sugarcane[R]. Bulletin OILB/SROP 2000. 23: 131-137.
    [20] Ladd T L, Klein M G, Tumlinson J H. Phenethyl propionate+eugenol + geraniol (3: 7: 3) and Japonilure: a highly effective joint lure for Japanese beetles[J]. Journal of Economic Entomology, 1981, 74: 665-667.
    [21] Schnepf E, Crickmore N, Van Rie, J, et al. Bacillus thuringiensis and its pesticidal crystal proteins[M]. Microbiol. Mol. Biol. Rev, 1998 62, 775-806.
    [22]中国科学院微生物研究所翻译.伯杰氏细菌鉴定手册[M].北京:科学出版社, 1984.
    [23] Chattopadhyay A, Bhatnagar N B, Bhatnagar R. Bacterial insecticidal toxins[J]. Crit Rev Miicrobiol, 2004, 30(1): 33-54.
    [24] Fernando HV, Marliton RB. Bacillus thuringiensis survey in Brazil: geographical distribution and insecticidal activity against spodoptera frugiperda[J]. Neotropical Entomology, 2003, 32 (4): 639-644.
    [25] Roh J Y, Choi J Y, Li M S, et al. Bacillus thuringiensisas a specific, safe, and effective tool for insect pest control[J]. Microbiol Biotechnol, 2007, 7(4): 547-559.
    [26] Lambert B and M Peferoen. Insecticidal promise of Bacillus thuringiensis Facts and mysteries about a successful biopesticide[M]. BioScience, 1992, 42: 112-122.
    [27]李荣森,陈涛.几种苏云金芽胞杆菌的毒力及形态结构[J].微生物学报, 1981, 21(3): 311-317.
    [28]任改新,冯喜昌,冯维熊.苏云金杆菌伴胞晶体的形态及抗原特性[J].微生物学报, 1983, 23 (1): 57-62.
    [29] Calabrese D M, Nickerson K W, Lane L C. A Comparison of Protein Cristal Subunit Size Bacillus thuringiensis [J]. Can J Microbiol, 1980, 26: 1006-1010.
    [30] Norris J R. The classification of Bacillus thuringiensis[J]. Appl Bact, 1964, 27: 439-447.
    [31] Barjac de. Indentification of H-serotypes of Bacillus thuringiensis, In“Microbial Control of Pests and Plant Diseases 1970-1980”[M]. Academic press, 1981, 34-44.
    [32]张用梅,杨一平,陈宗胜.聚丙烯酰胺凝胶电泳对几个苏云金杆菌变种营养细胞酯酶图谱的分析[J].微生物学通报, 1979, 6 (1): 6-8.
    [33] Heimpel A M. A critical review of Bacillus thuringiensis var. thuringiensis Berliner and other crystalliferous bacteria[J]. Annual Review of Entomology, 1967, 12: 287-322.
    [34] Faust G M, Abe K, Held G A, et al. Evidence for Plasmid-Associated Crystal ToxinProduction in Bacillus thuringiensis subsp. Israelensis. Plasmid, 1983, 9: 98-103.
    [35] Edwards D L, Payne J, Soares G. Novel isolates of Bacillus thuringiensis having Activity against Nematodes. European Patent Application, 1988, 303-426.
    [36] Baroy, Lecadet M M, Deleluse A. Cloning and Sequencing of Three New Putative Toxin Genes From Clostridium Bifermentans. Gene, 1998, 211: 293-295.
    [37] H?fte H, Whiteley H R. Insecticidal crystal proteins of Bacillus thuringiensis[J]. Microbiological reviews, 1989, 53: 242-255.
    [38] Crickmore ND, Zeigler R, Feitelson J, et al. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins[J]. Microbiology and molecular biology reviews, 1998, 62(3): 807-813.
    [39] Crickmore N, Zeigler D R, Feitelson J, et al. Revision of the nomenclature for the Bacillusthuringiensis pesticidal crystal proteins[J]. Microbiology and Molecular Biology, 1998, 62(3): 807-813.
    [40] Carozzi N B, Kramer V C, Warren G W, et al. Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles [J]. Appl Environ Microbiol, 1991, 57: 3057-3061.
    [41] Bourque S N, Valero J R, Mercier J, et al. Multiplex polymerase chain reaction for detection and differentiation of the microbial insecticide Bacillus thuringiensis [J]. Appl Environ Microbiol, 1993, 59: 523-527.
    [42] Ceron J, Ortiz A, Quintero R, et al. Specific PCR Primers Directed to identify cryI and cryIII genes within a Bacillus thuringiensis strain collection [J]. Appl Environ Microbiol, 1995, 61: 3826-3831.
    [43] Ben-Dov E, Zaritsky A, Dahan E, et al. Extended screening by PCR for seven cry group genes from field collected strains of Bacillus thuringiensis [J]. Appl Environ Microbiol, 1997, 63 (12): 4883-4890.
    [44]林毅,黄志鹏,陈建武,等. Bt ICP基因PCR鉴定的策略与进展[J].农业生物技术学报, 2000, 8 (1): 56-58.
    [45] Gleave A P, Williams R, Hedges R J. Screening by polymerase chain reaction of Bacillus thuringiensis serotypes for the presence of cryV-like insecticidal protein genes and characterization of a cryV gene cloned from B. thuringienis subsp. kurstaki [J]. Appl Environ Microbiol, 1993, 59 (5): 1683-1687.
    [46] Kuo W S, Chak K F. Identification of novel cry-type genes from Bacillus thuringiensis strains on the basis of restriction fragment length polymorphism of the PCR-amplified DNA [J]. Appl Environ Microbiol, 1996, 62 (4): 1369-1377.
    [47]宋福平,张杰,黄大昉,等. Bt cry基因PCR-RFLP鉴定体系的建立[J].中国农业科学, 1998, 31 (3): 13-18.
    [48] Yu J X, Lu H. Screening of novel crystal Protein genes from soil-collected Bacillus thuringiensis by PCR-RFLP [C], Sapporo, Japan, 1998: 43.
    [49] Schnepf H E, Wong H C, Whiteley H R, et al. Cloing and expression of the Bacillus thuringiensis crystal protein gene in E. coli[J]. Proceeding of the National Academy of Sciences, 1981, 78 (5): 2893-2897.
    [50] Krieg A, Huger A M, Lagenbruch G A, et al. Bacillus thuringiensis subsp. Tenebrionis: a new pathotype effective against larvae of Coleoptera [J]. J Appl Entomol, 1983, 96: 500-508.
    [51] Kuo W S, Chak K F. Identification of novel cry-type genes from Bacillus thuringiensis strains on the basis of restriction fragment length polymorphism of the PCR-amplified DNA [J]. Appl Environ Microbiol, 1996, 62 (4): 1369-1377.
    [52] Ward E S, Ellar D J. Bacillus thuringiensis var. israelensis delta-endotoxin: nucleotide sequence and characterization of the transcripts in Bacillus thuringiensis and Escherichia coli[J]. Mol Biol, 1986, 191: 1-11.
    [53]陈骐,范云六.苏云金杆菌蜡螟亚种的内毒素基因的分子克隆成功[J].杀虫微生物, 1987, 2: 202.
    [54]陈骐,范云六.苏云金杆菌蜡螟亚种的内毒素基因的分子克隆和表达[J].中国科学B辑, 1989, 7: 712-717.
    [55] Schnepf E, Crickmore N, Van R J, et al. Bacillus thuringiensis and its pesticidal crystal proteins[J]. Microbiology and Molecular Biology Review, 1998, 62 (3): 775-806.
    [56] Hofmann C, Luthy P, Hutter R, et al. Binding of the delta-endotoxin from Bacillus thuringiensis to brush-border membrane vesicles of the cabbage butterfly(Pieris brassicae)[J]. European Journal of Biochemistry, 1988, 173:85–91.
    [57] Aronson A I, Han E S, McGaughey W, et al. The solubility of inclusion proteins from Bacillus thuringiensis is dependent upon protoxin composition and is a factor in toxicity to insects[J]. Applied and Environmental Microbiology, 1991, 57: 981-986.
    [58] Bradley D, Harkey M A, Kim M K, et al. The insecticidal Cry1b Crystal protein of Bacillus thuringiensis has dual specificity to coleopteran and lepidopteran larvae[J]. Journal of Invertebrate Pathology, 1995, 65: 162-173.
    [59] Knowles B H, Ellar D J. Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensisδ-endotoxins with different specificity[J]. Biochimica biophysica acta, 1987, 924: 509-518.
    [60] Sharpe, E. S. Toxicity of the parasporal crystal of Bacillus thuringiensis to Japanese beetle larvae[J]. Invertebr Pathol, 1976, 27, 421-422.
    [61] Ohba M, Iwahana H, Asano, S, Suzuki, et al. A unique isolate of Bacillus thuringiensis serovar japonensis with a high larvicidal activity specific for scarabaeid beetles[J]. Lett Appl Microbiol, 1992,14, 54-57.
    [62] Sato R, Takeuchi K, Ogiwara K, et al. Cloning heterologous expression and localization of a novel crystal protein gene from Bacillus thuringiensis serovar japonensis strain Buibui toxic to scarabaeid insects[M]. Curr Microbiol, 1994, 28, 15-19.
    [63] Asano S, Yamashita C, Iizuka T, et al. A strain of Bacillus thuringiensis subsp Galleriae containing a novel cry8 gene highly toxic to Anomala cuprea (Coleoptera: Scarabaeidae) [M]. Biol Control, 2003, 28(2), 191-196.
    [64]冯书亮,任国栋.苏云金芽胞杆菌HBF-1及其在有害金龟治理中的应用[M].北京:中国农业科学技术出版社, 2005.
    [65] Yu H, Zhang J, Huang D F, et al.Characterization of Bacillus thuringiensis strain Bt185 toxic to the asian cockchafer: Holotrichia parallela[J]. Current Microbiology, 2006, 53: 13-17.
    [66] Shu C, Liu R, Wang R, et al. Improving toxicity of Bacillus thuringiensis strain contains the cry8Ca gene specific to Anomala corpulenta larvae[J].Current Microbiology,2007, 55: 492-496.
    [67] Changlong Shu, Guixin Yan, Rongyan Wang et al. Characterization of a novel cry8 gene specific to Melolonthidae pests: Holotrichia oblita and Holotrichia parallela[M].Appl Microbiol Biotechnol, 2009, 84: 701-707.
    [68] Capuzzo C, Firrao G, Mazzon L, et al.‘Candidatus Erwinia dacicola’, a coevolved symbiotic bacterium of the olive fly Bactrocera oleae(Gmelin)[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55: 1641-1647.
    [69] Kounatidis I, Crotti E, Sapountzis P, et al. Acetobacter tropicalis is a major symbiont of the olive fruit fly (Bactrocera oleae)[J]. Applied and Environmental Microbiology, 2009, 75: 3281-3288.
    [70] Amann R, Ludwig I W, Schleifer K H. Plogenetic identification and in situ detection of individual microbial cells without cultivation[J]. Microbiol Rev, 1995,59: 143-169.
    [71] Weisburg WG, Barns SM, Pelletier DA, et al. 16S Ribosomal DNA Amplification for Phylogenetic Study[J].Journal of Bacteriology, 1991, 173(2): 697-703.
    [72] Kisand V, Wikner J. Limited resolution of 16SrDNA-DGGE caused by melting properties and closely related DNA sequences[J]. Microbiol Methods, 2003, 54(2): 183-191.
    [73] Vallaeys T, Topp E, Muyzer G, et al. Evaluation of denaturing gradient gel electrophoresis in thedetection of 16SrDNA sequence variation in rhizobia and methanotrophs[J]. FEMS Microbiol Ecol, 1997, 24: 279-285.
    [74] Schabereiter-Gurtner C, Lubitz W, Rolleke S. Application of broad-range 16SrRNA PCR amplification and DGGE fingerprinting for detection of tick-infecting bacteria[J]. Journal of Microbiological Methods, 2003, 52: 251-260.
    [75] Vergin K L, RappéM S, Giovannoni S J. Streamlined method to analyze 16S rRNA gene clone libraries[J]. BioTechniques, 2001, 30: 938-944.
    [76]贺云霞,王家启,于萍,等.日粮中添加鱼油后肉牛瘤胃细菌区系的变化[J].生物技术通讯, 2008, 19(4): 552-557.
    [77] Grochulski P L, Masson S, Borisova M P, et al. Bacillus thuringiensis CryIA(a) insecticidal toxin: crystal structure and channel formation[J]. Mol Biol, 1995, 254: 447-464.
    [78]冯书亮,任国栋.苏云金芽胞杆菌HBF-1及其在有害金龟治理中的应用[M].北京:中国农业科学技术出版社, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700