ZFWZ12型滚齿机数控改造的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国齿轮行业近年来发展迅速,目前齿轮产品的年产值已突破7×10~(11)RMB,居世界第四位。在齿轮产品中车辆齿轮传动产品(包括汽车、工程机械和农机等)占到60%。我国生产齿轮的机床有5.3×10~5台,役龄超过15年以上的机床约占40%,用这种装备加工出来的产品质量较差,工期难以保证,生产出的产品在国际市场上缺乏竞争力,因此为满足齿轮行业的生产需求必须从设备入手。首先是更新设备,我国近年来引进了大批国外设备,2006-2010年将新增设备1×10~5台,每年用于新增设备投资约6×10~(10)RMB。
     其次是对原有的设备进行改造,改造不仅能达到与购买新设备同样的效果,还能为企业节省大量的资金,通常只需花费不到原设备30%的费用.现在进口一台大型高档数控滚齿机的价格要1×10~7RMB以上。此外,新购买的设备在使用了几年之后,仍然要遇到同样的诸如故障率高、功能落后和维修困难等问题,同样面临是淘汰或是改造的选择。
     机床数控化改造在发达国家已经成为新的经济增长点,这种方法在我国也已经得到了大多数企业的认可,非常适合我国的国情,有着广阔的前途。
     我国需要改造的机床很多,也有很多的公司在作改造,其中大部分机床是没有特殊工艺的通用型设备,如车床、铣床和加工中心等,从事特殊工艺机床改造的研究较少。数控滚齿机由于技术的原因起步较晚,上世纪八十年代国外才开始出现商品化的全功能数控滚齿机。本论文细致、深入地研究了西门子数控系统中齿轮加工部分的功能,掌握了滚齿机床的核心控制技术。同时对滚齿机的特殊工艺进行了深入的研究,并将其成功地应用于ZFWZ12型滚齿机数控化改造的实施中。完成了国内首例使用西门子Sinumerik840D系统的滚齿机改造,对今后齿轮机床的制造和数控化改造都具有重要的理论意义和应用价值。
     本文首先从理论上分析了数控滚齿机和普通滚齿机的加工原理,通过对比指出数控滚齿机无论在加工精度上还是在工作效率上都大大优于普通滚齿机。
     其次,以滚齿机的结构为基础,通过齐次坐标变换的方法建立了六轴数控滚齿机的数学模型。
     第三,论述了数控化改造的具体实施步骤,对关键技术作了详细说明:电子齿轮功能的目的是用数控系统直接驱动坐标轴,去掉机械传动链,它的实现是改造的核心内容;延迟停止和回退功能是避免在紧急情况下损坏工件和刀具,保证操作人员的安全所采取的必要措施。
     第四,根据滚齿加工工艺,设计加工工艺路线,编制加工程序。为了清晰明了,加工程序通常由若干主程序和子程序组成,此外还编制了一些固定循环。由于滚齿加工时所使用的工件参数、刀具参数和加工参数非常多,在加工不同类型的齿轮时调整起来非常繁琐,很容易出错.所以要使用另外的方法,把繁琐的工作进行简化。这就需要在滚齿机上开发专用的用户界面,把参数直观地反映到操作界面上,开发用户界面的软件可根据实际要求选定。重要的是加工程序要用参数化的方法来编,并一定要与用户界面参数相对应.在普通数控机床改造中是不需要另外编制用户界面的,加上有些数控系统的开放性不强,在数控系统中进行二次开发的应用不多,因此本文详细介绍了西门子数控系统下进行二次开发的具体方法。
     第五,齿轮的加工误差如齿形误差、齿向误差等虽然都是由齿坯、刀具和机床三方面引起的,但有些误差的产生可能不是单单来自某一个固定的方面,这给误差分析造成困难。考虑到本论文研究的改造项目只是针对机床本身,所以在分析原因时也以机床为主,分别从三个方面进行了探讨:刀架导轨相对于工作台回转轴线的不平行度、刀架导轨相对于工作台回转轴线的歪斜度和滚刀轴线的倾斜对误差的影响。分别计算得出改造后的理论精度值。
     经过研究与实施,ZFWZ12型滚齿机数控改造后的加工精度有了明显提高,并且与计算的结果是相符的。验收报告表明,工件加工精度达到国家六级。可靠性方面,从2006年4月交工到现在没有出现任何问题,说明改造是成功的。
With the dramatic development of gear industry in China, its yearly production value has been up to 70 billion RMB, and ranked the forth in the world. Among the gear products, 60 percent was vehicle (automobile, engineering machinery and farming machinery) transmission gear. There are altogether 530 thousands gear cutting machines in China, however, 40 percent of them has been working for over 15 years, which leads to the quality inferiority, overdue delivery and less competitiveness in the world market .In order to meet the need of gear industry, manufacturing equipments must be improved. First of all, the replacement of equipment should be carried out. Numbers of foreign equipment have been introduced into China so far. It is predicted that 100 thousand pieces of equipment will be introduced with the yearly investment of 6 billion RMB from 2006 to 2010.
     Secondly, the renovation (retrofit, rebuild, remanufacture) of the old equipment needs to be initiated. After the renovation, the equipment will not only work as well as the new one, but it can also save the cost, 30 percent of the total initial purchase cost would be well enough. (Usually a sophisticated CNC Hobber costs at least 10 million RMB.) In addition, even the new-bought equipment, after having been used for several years would face the same problems as faults increasingly occur, functions outdate and difficult to maintain etc. Buying new one or renovating the old one will always be the problem.
     Retrofitting is becoming one of the new economic resources in the foreign countries. This method, has also been widely accepted in China because of its fitting for China, is going to have a promising future.
     Machine tools that need to be renovated are as many as the companies that are doing renovating, but most of them were universal machine tools like turning machine, milling machine and machining center, which has no special technics. And the study on the renovating with special technics is rarely carried out. CNC hobber was invented lately due to its technological difficulty. All-functions CNC hobber first appeared only in the 80' of last century in abroad. This article is going to study the CNC retrofitting of hobber from the planning, implementing all the way to the result analysis with the method of combining theory and practice, trying to do some research of the machine with special technics. This is the first CNC Hobber retrofitting case that has ever been done with Siemens Sinumerik 840D CNC system in China.
     First of all, it studied the theory of CNC and non-CNC hobber, pointed out that the CNC type is more advanced than the non-CNC type in the aspect of machining precision and efficiency.
     Secondly, at the basis of hobber structure, used Homogeneous Transformation method to establish the math model of 6-axis CNC hobber.
     Thirdly, the procedures of retrofitting were introduced in detail, and the key technologies were specially discussed: Electric Gear is used to control motor so as to dismantle the mechanical transmission linkage; Extended stop and Retrace are the necessary methods to protect tools, parts, and person from any danger at time of emergency.
     Fourthly, based on the hobbing technics, the technics route was designed, and so did the gearing NC program. To make the program clear, the gearing program was separated in several main and sub programs. Fixed cycle programs are also designed in the NC program. Due to the large number of part parameters, tool parameters and gearing parameters, the program must be designed in a proper way, so as to reduce the once overload and detailed works with these parameters when gearing different kinds of products. Customer interface has to be designed to represent these parameters and connects the parameters to the NC program. The interface design software is decided according to the customer's need.
     Fifthly, though the machining error of gear was caused by parts, tools and machine tool, but it is actually difficult to determine the exact causes of some errors. In order to clarify the problems, this article deals only with the causes by machine tool, due to the fact that only the machine tool itself has been ameliorated. The study is on 3 aspects: the errors caused by the unparallel degree of Z axis to the axial of C axis; the errors caused by the skewness of Z axis to the axial of C axis; the errors caused by the inclination of B axis.
     Finally, examine the retrofitted hobber with precision, efficiency and stability: the errors of gear are improved greatly compares to its previous values, turn out that the performance was obviously improved, meanwhile the hobber has been working normally since it was finished on April, 2006, which is to say the retrofitting is successful.
引文
1.许国明.2007.2006年拖拉机市场盘点:大中拖增长三成 小拖高位调整.农机市场,(3):20-22
    2.陈德阳、申芳.2007.2007年大、中拖拉机市场将再走新高.农机市场,(3):17-20
    3.张宝文.2007.促进农业机械化又好又快发展为实现中国特色农业现代化贡献力量.2007年12月24日
    4.张晓龙 刘强.2005.浅析农机产品质量现状大力加强农机质量监督.山东农机,第6期
    5.吕国英.2000.展望中国十五农业机械市场.机电产品开发与创新,第1期:5-8
    6.董峻.2007-1-27.2006年农机规模以上企业工业总产值超过1300亿.新华网
    7.德国推广数控化改造.2001.中华商务网
    8.张天佐.2007.切实贯彻落实好农业机械购置补贴政策.关于2007年全国农机购置补贴讲话
    9.王大庆.2007-12-31.2007年看点多多 重农政策驱动农机工业.中国工业报
    10.刘元杰.2004.关于齿轮企业技术改造几点意见.中国齿轮专业协会
    11.石照耀,李秀明.2005.中国齿轮工业现状与发展前景.石油商技,第6期
    12.汪凡,王声堂.2006.2005年中国齿轮市场分析.莱钢科技,(6):4-8
    13.乐美豪.2007.2005年的中国齿轮制造业.制造技术与机床,(2):44-47
    14.李家霁、刘明烈.2007.旧机床及生产线数控化改造的内容、技术与原则.中国机床网
    15.谭伟明,胡赤兵,阎树田,侯启真,田保仓,李载欣,季建华,殷红彦.1998.基于电子齿轮原理的滚齿加工CNC系统的联动结构.中国机械工程,9(5):
    16.胡赤兵,谭伟明,侯启真,田保仓,阎树田.1997.数控齿轮加工中的技术关键.甘肃工业大学学报,23(2):46-49
    17.胡赤兵,许明明,马志宏.2007.数控机床几何误差的综合建模与补偿.现代制造工程.第11期:29-32
    18.任敬心,刘洪忠,张应昌.1985.齿轮工程学.国防工业出版社
    19.浅谈机床数控的发展趋势及改造问题.2004.中国机械资讯网
    20.洪暹罗.2006-4-11.建设新农村使农机行业再获发展良机
    21.王磊.2003.一个新兴的工业领域-机床大修与数控化改造.黑龙江科技信息.第9期
    22.王黎明.2007-3-30.中国机床消费额稳居世界第一.人民日报海外版
    23.齿轮手册编委会.2000.齿轮手册(上、下).北京:机械工业出版社
    24.齿轮制造手册编委会.1998.齿轮制造手册.北京:机械工业出版社
    25.2007-2008年中国齿轮行业分析及投资咨询报告.2007.中国投资咨询网
    26.我国已成为世界第一机床消费大国.2007.百研资讯网
    27.高晓春.2007.数控机床持续高增长.证券导刊,第11期
    28.齿轮发展趋势.2006.中国机械资讯网
    29.我国齿轮传动制造行业现状分析.2005.中国机械网
    30.齿轮企业如何进行技术改造提升竞争力.2006中国自动化网
    31.机床数控化改造市场分析.2006.机械工程师.第1期:10-11
    32.“十一五”期间齿轮制造工业预测.2007.中投网
    33.一个新兴的工业领域--机床大修与数控化改造.2006中国数控机床网
    34.胡仲翔,张甲英,时小军,杨军伟,林允森.2004.机床数控化再制造技术研究.新技术新工艺.第8期:17-19
    35.朱永刚.2006.西门子数控系统住齿轮加工机床数控化改造中的应用.制造技术与机床,第10期:120-122
    36.张嘉彧.2003.用西门子840C数控系统改造FN3凸轮轴磨床.制造技术与机床.第6期:51-53
    37.西门子840D数控系统停电急退的实现.2005.制造技术与机床,(5):117
    38.魏巍.2006.开放性的西门子840D在数控磨齿机中的应用.制造技术与机床,(1):99-101
    39.徐洁兰.2005.西门子数控系统概述.制造技术与机床.(2)
    40.杨斌2004.西门子SINUMERIK 840D数控系统介绍.CAD/CAM与制造业信息化2004
    41.景亚娟.2005.西门子SINUMERIK 840D中断电急退功能的调整.精密制造与自动化,第2期:38-39
    42.刘同.2005.在西门子系统上制作用户画面的方法简介.制造技术与机床,(10)
    43.张嘉彧.2002.开发软件在专用控制系统中的应用.机械工人、冷加工:(2)
    44.乐美豪.2004.中国齿轮制造业的产业结构调整.现代零部件,1-2期:66-70
    45.梁永芳.1997.数控滚齿机的对刀计算.甘肃工业大学学报第9期:23(3):46-48
    46.刘法权.1990.滚齿切入长度的计算.机械工程师,第5期:6,14-15
    47.刘印科.1990.滚齿切出长度的计算.机械工艺师,第2期:34,43
    48.高志强.李宝筏.2007.增量式旋转轴定向的2则应用.机械工程师,第8期:133
    49.高志强.李宝筏.2008.滚齿机数控改造.机床与液压,36(2):205-207
    50.高志强.2007.数控系统中NC与PLC之间数据交换的解析与实例.2007西门子自动化专家会议论文 集:12-14
    51.戴俊平.1997.滚齿加工中滚刀安装角的确定及其对齿轮精度的影响.水利电力机械,第8期:38-41
    52.应立忠.1997.滚齿过程中误差分析.焦作工学院学报.16(6):64-70
    53.陶晓杰,王治森.2005.滚齿机床的误差模型.机床与液压,第12期:19-21,24
    54.李南,吴艳花.2005.齿轮的数控加工原理及误差技术.机床与液压,第6期:64-65
    55.冀晓红,崔莹,2000.任意齿形齿轮数控加工理论与计算机模拟研究.焦作工学院学报.19(1):35-40
    56.袁江顺,潘世超.2006.影响齿轮传动精度的加工误差分析.黄石理工学院学报,22(3):44-46
    57.切削加工通用工艺守则 齿轮.1998.中华人民共和国机械行业标准JB/T 9168.9
    58.庞兴华 黄荣杰.2004.齿轮范成加工过程的模拟.中国制造业信息化,33(11):100-102
    59.孙永红 谭寿再.齿轮加工的三维动画仿真.现代制造,127-128
    60.任继文 郭厚焜.2004.基于AutoCAD的齿轮加工仿真.现代制造工程,第4期:51-52,65
    61.刘洪梅 黄恺.2001.滚齿加工原理三维动态仿真软件开发.辽宁工学院学报,21(5):54-56
    62.丁彩红,杨向萍.2003.滚齿加工过程的计算机模拟系统设计.机械电子,第2期:49-51
    63.西班牙《二十一世纪》2007年3月15日第508期公布数据。
    64.毕俊喜,俞涛,李强.2006.基于西门子840D的轧辊磨床数控系统研究与开发.制造技术与机床,第2期:31-33
    65.娄锐.2007.数控应用关键技术.北京:电子工业出版社
    66.盛伯浩.2006.我国数控机床现状与技术发展策略.制造技术与机床,第2期:17-20
    67.杨建国.1998.数控机床误差综合补偿技术及应用.上海交通大学博士学位论文
    68.陈蔚芳,王宏涛.2006.机床数控技术及应用.北京:科学出版社
    69.张广良.2007.数控滚齿机及编程.西安航空技术高等专科学校学报:25(3),19-20
    70.陈新华.2006.滚齿设备的精度对齿轮加工的影响.一重技术,第6期:64-65
    71.刘润爱,张根保.2003.滚齿机及滚齿加工技术的发展趋势.现代制造工程,第11期:84-86
    72.周亮.2007.齿轮滚齿设备的昨天、今天和明天--从GENESIS 130H谈第四代数控滚齿机的发展.汽车 制造业第10期,
    73.杜建铭,吴序堂,吴宏.2003.基于DSP的开放体数控滚齿系统的研究.制造技术与机床,第12期:74-76
    74.陈劲松.2000.NUM在齿轮机床上的应用.制造技术与机床,第12期:61-62
    75.高峰.2006.西门子OEM软件在数控凸轮轴磨床上的开发与应用.制造技术与机床,第10期:122-125
    76.石照耀,费业泰,谢华锟.2003.齿轮测量技术100年-回顾与展望.中国工程科学.5(9):13-17
    77.Simatic HMI Protool/Pro基于Windows系统的组态 用户手册
    78.Dimitri.Mavriplis and Ronard L.Huston,1990,Computer Simulation of Gear Tooth Manufacturing Process,NASA CR-185200
    79.John.J.Coy,Gearing,1985,NASA Reference Publication 1152
    80.Faydor.L.Litvin,1997,Development of Gear Technology and Theory of Gearing,NASA Reference Publication 1406
    81.2006 World Machine Tool Output & Consumption Survey,Gardner Publications
    82.China Machine Tools Market Consulting Team,2006,China Machine Tools Market Analysis
    83.Jo(e|¨)l Rech,Alphonse Moisan,Way of Improvement towards High Speed Dry Gear Hobbing,
    84.Vytenis,Sinkevicius,,2003,Gear Hobbing Simulation Software
    85.Sinumerik 840D/840Di/810D Description of Function,Special Functions,2004,SIEMENS
    86.Sinumerik 840D/840Di/810D user's manual.2003.HMI Configuring Package ProTool/Pro Option SINUMERIK,SIEMENS
    87. Program with STEP 7 V5.3.2004,SIEMENS
    
    88. What is the difference between a machine tool retrofit, rebuild and remanufacture CNC Engineering website

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700