生理切应力对与血管平滑肌细胞联合培养的内皮细胞迁移的影响及其细胞骨架机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血管内皮细胞(endothelial cells, ECs)迁移(migration)是血管重建(remodeling)的主要特征之一,对于维持血管功能和结构的稳定具有重要作用。在血管发育、血管新生以及血管内膜损伤(如球囊损伤和动静脉移植)修复等过程中,均出现ECs的迁移。ECs迁移受生物、化学和物理等多种体内外因素的调控,研究ECs的迁移行为及其调控机制,阐明ECs迁移的力学生物学(mechanobiology)机制对于深入了解心血管活动和疾病发生的本质有重要意义,且可以为发展心血管疾病有效的防治措施提供理论依据。ECs和血管平滑肌细胞(vascular smooth muscle cells, VSMCs)是构成血管壁的主要细胞成分,生理状态下,这两种细胞本身相互影响,同时又不断的受到血液动力学的作用。因此,研究ECs的迁移行为,应该考虑相关的力学因素及VSMCs的影响。
     本文首先应用ECs与VSMCs联合培养系统,通过细胞粘附实验,观测了VSMCs对ECs粘附的影响及其机制。用免疫荧光法观测了ECs在粘附过程中,粘着斑(focal adhesions, FAs)的聚集;用全内反射荧光显微镜观测了粘附ECs的FAs面积变化;同时应用免疫印迹法检测了VSMCs对ECs的细胞骨架成分微管(microtubule)聚合程度、桩蛋白(paxillin)和胞外信号调节蛋白激酶(extracellular signal-regulated protein kinase,ERK)磷酸化的影响。在此基础上,应用ECs与VSMCs联合培养的平行平板流动腔系统,对ECs面施加15 dynes/cm2切应力,以Transwell法检测ECs的迁移能力,免疫印迹法定量检测相关蛋白,研究了切应力对与VSMCs联合培养ECs迁移的影响及其细胞骨架机制,即组蛋白去乙酰化酶(histone deacetylase,HDAC)/乙酰化微管信号途径在其中的作用。
     结果发现:①与VSMCs联合培养明显促进了ECs的粘附和迁移,降低了ECs的微管骨架聚集,诱导了ECs的HDAC6、paxillin和ERK的磷酸化表达增高;②HDAC6抑制剂曲古抑菌素A (trichostatin A,TSA)和三丁酸甘油酯(tributyrin,TB)可改变微管的聚集状态,抑制VSMCs诱导的ECs粘附、迁移及HDAC6及ERK激酶、paxillin的激活;③生理范围切应力同样可以促进ECs迁移,诱导ECs的HDAC6表达,同时改变了微管骨架的乙酰化修饰水平;④生理切应力加载降低了与VSMCs联合培养ECs的迁移能力和HDAC6的表达及与ECs联合培养的VSMCs的CTGF的表达。
     上述结果表明,VSMCs能够促进ECs的粘附与迁移,而生理大小的切应力作为血管壁结构和功能的稳定因素,同样可以调控ECs的迁移,对血管壁起保护作用。切应力和VSMCs通过HDAC6影响ECs微管骨架动态聚集,经由ERK/paxillin信号通路,调控ECs迁移。
Vascular endothelial cells (ECs) are constantly exposed to blood flow-induced shear stress, which behaviors are strongly influenced by the neighboring vascular smooth muscle cells (VSMCs). The adhesion and migration of ECs are essential functions to keep the vascular homeostasis. Thus, the research in the area of EC biology will require considering mechanical factors and cell-to-cell interaction between VSMCs and ECs.
     In this paper, using a coculture system, we firstly investigated the effect of interaction of ECs and VSMCs on adhesion of ECs. And then the difference of EC migration of VSMC/EC co-culture or cultured alone under static conditions and in response to shear stress was assessed by a parallel-plate co-culture flow chamber system. The results showed that ECs co-cultured with VSMCs exhibited a significant increase in the number of adherent cells, which was correlated with enhanced assembly of FA and increased focal adhesion area. At the same time, VSMCs also prompted ERK and paxillin phosphorylation of ECs and downregulated its microtubule polymerization state. Using Trichostatin A which can reverse microtubule polymerization state, it was demonstrated that the adhesion and activation of ERK and paxilllin were impacted by microtubule polymerization state.
     With Transwell migration assays, we also demonstrated that VSMCs induced cocultured EC migration; when laminar shear stress (1.5 Pa, 15 dynes/cm2, NSS) applied to ECs cultred alone for 12 h, the EC migration was also significantly elevated; when NSS and VSMCs impacted ECs at the same time, the migration of ECs co-cultured with VSMCs was not prompted more under NSS. The changes in EC migration had a consisitent correlation with the level of acetylated microtubule and HDAC6. While HDAC6 was inhibited by tribytyrin or specific small interference RNA, EC migration was impacted, and followed hyperacetylation of tubulin.
     These results indicate that NSS and VSMCs regulate EC migration, which may be an atheroprotective function on the vessel wall to keep the vascular homeostatis. Meanwhile, microtubule/ERK/paxillin pathway may play a key role in EC migration modulated by NSS and VSMCs.
引文
1 Critchley DR. Biochemical and Structural Properties of the Integrin-Associated Cytoskeletal Protein Talin. Annual review of Biophysics 1995; 38:235-254.
    2 Finkelstein E, Chang W, Chao PH, Gruber D, Minden A, Hung CT, Bulinski JC. Roles of microtubules, cell polarity and adhesion in electric-field-mediated motility of 3t3 fibroblasts. Journal of Cell Science 2004; 117:1533-1545.
    3 Foe VE, von Dassow G. Stable and dynamic microtubules coordinately shape the myosin activation zone during cytokinetic furrow formation. Journal of Cell Biology 2008; 183:457-470.
    4 Tran AD, Marmo TP, Salam AA, Che S, Finkelstein E, Kabarriti R, Xenias HS, Mazitschek R, Hubbert C, Kawaguchi Y, Sheetz MP, Yao TP, Bulinski JC. HDAC6 deacetylation of tubulin modulates dynamics of cellular adhesions. Journal of Cell Science 2007; 120:1469-1479.
    5 Kaverina I, Rottner K, Small JV. Targeting, capture, and stabilization of microtubules at early focal adhesions. Journal of Cell Biology 1998; 142:181-190.
    6 Krylyshkina O, Anderson KI, Kaverina I, Upmann I, Manstein DJ, Small JV, Toomre DK. Nanometer targeting of microtubules to focal adhesions. Journal of Cell Biology 2003; 161:853-859.
    7 Goldyn AM, Rioja BA, Spatz JP, Ballestrem C, Kemkemer R.. Force-induced cell polarisation is linked to RhoA-driven microtubule-independent focal-adhesion sliding. Journal of Cell Scicence 2009;122:3644-51
    8 Kaverina I, Krylyshkina O, Gimona M, Beningo K, Wang YL, Small JV. Enforced polarisation and locomotion of fibroblasts lacking microtubules. Current Biology 2000; 10: 739- 742.
    9 Hu YL, Haga JH, Miao H, Wang Y, Li YS, Chien S. Roles of microfilaments and microtubules in paxillin dynamics. Biochemical and Biophysical Research Communications 2006; 348:1463-1471.
    10 Turner CE. Paxillin and focal adhesion signalling. Nature Cell Biology 2000; 2:E231-E236.
    11 Turner CE. Paxillin interactions. Journal of Cell Science 2000; 113:4139-4140.
    12 Hirschi KK, Rohovsky SA, D'Amore PA. PDGF, TGF-beta, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. Journal of Cell Biology 1998; 141:805-814.
    13 Powell RJ, Carruth JA, Basson MD, Bloodgood R, Sumpio BE. Matrix-specific effect of endothelial control of smooth muscle cell migration. Journal of Vascular Surgery 1996; 24: 51-57.
    14 Ding R, Darland DC, Parmacek MS, D'Amore PA.. Endothelial-mesenchymal interactions in vitro reveal molecular mechanisms of smooth muscle/pericyte differentiation. Stem cells and development 2004;13:509-20.
    15 Cucina A, Borrelli V, Randone B, Coluccia P, Sapienza P, Cavallaro A. Vascular endothelial growth factor increases the migration and proliferation of smooth muscle cells through the mediation of growth factors released by endothelial cells. Journal of Surgical Research 2003; 109:16-23.
    16 Di Luozzo G, Bhargava J, Powell RJ. Vascular smooth muscle cell effect on endothelial cell endothelin-1 production. Journal of Vascular Surgery 2000; 31:781-789.
    17 Fillinger MF, Sampson LN, Cronenwett JL, Powell RJ, Wagner RJ. Coculture of endothelial cells and smooth muscle cells in bilayer and conditioned media models. Journal of Surgical Research 1997; 67:169-178.
    18 Redmond EM, Cahill PA, Sitzmann JV. Flow-mediated regulation of G-protein expression in cocultured vascular smooth muscle and endothelial cells. Arteriosclerosis Thrombosis and Vascular Biology 1998; 18:75-83.
    19姜宗来,陈双红,张炎,张传森,李玉泉,丛兴忠.与平滑肌细胞联合培养的内皮细胞的形态学和生长增殖.解剖学报2003; 3:274-276.
    20陈双红,姜宗来,张炎,张传森,李玉泉,丛兴忠.与平滑肌细胞联合培养的内皮细胞的抗凝血因子、粘附分子.解剖学报2003; 4:347-350.
    21 Yamboliev IA, Chen J, Gerthoffer WT. PI 3-kinases and Src kinases regulate spreading and migration of cultured VSMCs. American Journal of Physiology-Cell Physiology 2001; 281:C709-C718.
    22 Putnam AJ, Cunningham JJ, Dennis RG, Linderman JJ, Mooney DJ. Microtubule assembly is regulated by externally applied strain in cultured smooth muscle cells. Journal of Cell Science 1998; 111(Pt 22):3379-3387.
    23 Kim LT, Fleming JB, Lopez-Guzman C, Nwariaku F. Focal adhesions and associated proteins in medullary thyroid carcinoma cells. Journal of Surgical Research 2003; 111: 177-184.
    24 Gallant ND, Michael KE, Garcia AJ: Cell adhesion strengthening. Contributions of adhesive area, integrin binding, and focal adhesion assembly. Molecular Biology of the Cell 2005; 16:4329-4340.
    25 Walsh CJ. The role of actin, actomyosin and microtubules in defining cell shape during the differentiation of naegleria amebae into flagellates. European Journal of Cell Biology 2007; 86:85-98.
    26 Zhou XM, Li JX, Kucik DF. The microtubule cytoskeleton participates in control of beta2 integrin avidity. Journal of Biological Chemistry 2001; 276:44762-44769.
    27 Ku H, Meier KE. Phosphorylation of paxillin via the ERK mitogen-activated protein kinasecascade in EL4 thymoma cells. Journal of Biological Chemistry 2000; 275:11333-11340.
    28 Furumai R, Komatsu Y, Nishino N, Khochbin S, Yoshida M, Horinouchi S. Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin. Proceedings of the National Academy of Sciences of the United States of America 2001; 98:87-92.
    29 Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang XF, Yao TP. HDAC6 is a microtubule-associated deacetylase. Nature 2002; 417:455-458.
    30 Ohkawa Y, Hayashi K, Sobue K. Calcineurin-mediated pathway involved in the differentiated phenotype of smooth muscle cells. Biochemical and Biophysical Research Communications 2003; 301:78-83.
    31 Cox LR, Murphy SK, Ramos K. Modulation of phosphoinositide metabolism in aortic smooth muscle cells by allylamine. Experimental and Molecular Pathology 1990; 53:52-63.
    32 Kawahara S, Umemoto S, Tanaka M, Umeji K, Matsuda S, Kubo M, Matsuzaki M. Up-regulation of Akt and eNOS induces vascular smooth muscle cell differentiation in hypertension in vivo. Journal of Cardiovascular Pharmacology 2005; 45:367-374.
    33 Wehrle-Haller B, Imhof BA. Actin, microtubules and focal adhesion dynamics during cell migration. International Journal of Biochemistry & Cell Biology 2003; 35:39-50.
    34 Ballestrem C, Wehrle-Haller B, Hinz B, Imhof BA. Actin-dependent lamellipodia formation and microtubule-dependent tail retraction control-directed cell migration. Molecular Biology of the Cell 2000; 11:2999-3012.
    35 Ujihara S, Oishi T, Torikai K, Konoki K, Matsumori N, Murata M, Oshima Y, Aimoto S. Interaction of ladder-shaped polyethers with transmembrane alpha-helix of glycophorin a as evidenced by saturation transfer difference nmr and surface plasmon resonance. Bioorganic & Medicinal Chemistry Letters 2008; 18:6115-6118.
    36 Giehl K, Graness A, Goppelt-Struebe M. The small GTPase Rac-1 is a regulator of mesangial cell morphology and thrombospondin-1 expression. American Journal of Physiology-Renal Physiology 2008; 294:F407-F413.
    37 Ladwein M, Rottner K. On the rho'd: The regulation of membrane protrusions by Rho-GTPases. Febs Letters 2008; 582:2066-2074.
    38 Mandato CA, Benink HA, Bement WM. Microtubule-actomyosin interactions in cortical flow and cytokinesis. Cell Motility and the Cytoskeleton 2000; 45:87-92.
    39 Pullikuth A, McKinnon E, Schaeffer HJ, Catling AD. The MEK1 scaffolding protein MP1 regulates cell spreading by integrating PAK1 and Rho signals. Molecular and Cellular Biology 2005; 25:5119-5133.
    40 Teis D, Wunderlich W, Huber LA. Localization of the MP1-MAPK scaffold complex to endosomes is mediated by p14 and required for signal transduction..Development Cell 2002; 3:803-814.
    41 Urbich C, Dernbach E, Reissner A, Vasa M, Zeiher AM, Dimmeler S. Shear stress-induced endothelial cell migration involves integrin signaling via the fibronectin receptor subunits alpha(5) and beta(1). Arteriosclerosis Thrombosis and Vascular Biology 2002; 22:69-75.
    42 Haga M, Chen A, Gortler D, Dardik A, Sumpio BE. Shear stress and cyclic strain may suppress apoptosis in endothelial cells by different pathways. Endothelium 2003; 10:149-157.
    43 Goldfinger LE, Tzima E, Stockton R, Kiosses WB, Kinbara K, Tkachenko E, Gutierrez E, Groisman A, Nguyen P, Chien S, Ginsberg MH. Localized alpha4 integrin phosphorylation directs shear stress-induced endothelial cell alignment. Circulation Research 2008; 103:177 -185.
    44 del Alamo JC, Norwich GN, Li YS, Lasheras JC, Chien S..Anisotropic rheology and directional mechanotransduction in vascular endothelial cells. Preceedings of the National Academy of Sciences of the United States of America 2008 ;105:15411-15416.
    45 Kwak BR, Silacci P, Stergiopulos N, Hayoz D, Meda P. Shear stress and cyclic circumferential stretch, but not pressure, alter connexin43 expression in endothelial cells. Cell Communication & Adhesion 2005; 12:261-270.
    46 Ngu H, Feng Y, Lu L, Oswald SJ, Longmore GD, Yin FC. Effect of Focal Adhesion Proteins on Endothelial Cell Adhesion, Motility and Orientation Response to Cyclic Strain. Annals of biomedical engineering 2009; 12:1941-1946.
    47 Hsu S, Thakar R, Li S. Haptotaxis of endothelial cell migration under flow. Methods in Molecular Medicine 2007; 139:237-250.
    48 Metaxa E, Meng H, Kaluvala SR, Szymanski MP, Paluch RA, Kolega J. Nitric oxide-dependent stimulation of endothelial cell proliferation by sustained high flow. American Journal of Physiology Heart and Circulatory Physiology 2008; 295:H736-742.
    49 Urbich C, Walter DH, Zeiher AM, Dimmeler S. Laminar shear stress upregulates integrin expression: Role in endothelial cell adhesion and apoptosis. Circulation Research 2000; 87: 683-689.
    50 Chien S. Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. American Journal of Physiology Heart and Circulatory Physiology 2007; 292: H1209– H1224,.
    51 Taher TE, Derksen PW, de Boer OJ, Spaargaren M, Teeling P, van der Wal AC, Pals ST. Hepatocyte growth factor triggers signaling cascades mediating vascular smooth muscle cell migration. Biochemical and Biophysical Research Communications 2002; 298:80-86.
    52 Griendling KK, Sorescu D, Lassegue B, Ushio-Fukai M. Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol 2000; 20:2175-2183.
    53 Shigematsu K, Koyama H, Olson NE, Cho A, Reidy MA. Phosphatidylinositol 3-kinase signaling is important for smooth muscle cell replication after arterial injury. Arteriosclerosis Thrombosis and Vascular Biology 2000; 20:2373-2378.
    54 Yang HM, Kim HS, Park KW, You HJ, Jeon SI, Youn SW, Kim SH, Oh BH, Lee MM, Park YB, Walsh K. Celecoxib, a cyclooxygenase-2 inhibitor, reduces neointimal hyperplasia through inhibition of Akt signaling. Circulation 2004; 110:301-308.
    55 Touyz RM, He G, El Mabrouk M, Schiffrin EL. p38 Map kinase regulates vascular smoothmuscle cell collagen synthesis by angiotensin II in SHR but not in WKY. Hypertension 2001; 37:574-580.
    56 Hixon ML, Muro-Cacho C, Wagner MW, Obejero-Paz C, Millie E, Fujio Y, Kureishi Y, Hassold T, Walsh K, Gualberto A. Akt1/PKB upregulation leads to vascular smooth muscle cell hypertrophy and polyploidization. Journal of Clinical Investigation 2000; 106: 1011 - 1020.
    57 Haider UGB, Sorescu D, Griendling KK, Vollmar AM, Dirsch VM. Resveratrol suppresses angiotensin II-induced Akt/protein kinase B and p70 S6 kinase phosphorylation and subsequent hypertrophy in rat aortic smooth muscle cells. Molecular Pharmacology 2002; 62:772-777.
    58 Chiu JJ, Chen LJ, Lee PL, Lee CI, Lo LW, Usami S, Chien S. Shear stress inhibits adhesion molecule expression in vascular endothelial cells induced by coculture with smooth muscle cells. Blood 2003; 101:2667-2674.
    59 Chiu JJ, Chang SF, Lee PL, Lee CI, Tsai MC, Lee DY, Hsieh HP, Usami S, Chien S. Shear stress inhibits smooth muscle cell-induced inflammatory gene expression in endothelial cells: role of NF-kappaB. Arteriosclerosis Thrombosis and Vascular Biology 2005; 25:963-969.
    60 Hendrickson RJ, Cappadona C, Yankah EN, Sitzmann JV, Cahill PA, Redmond EM. Sustained pulsatile flow regulates endothelial nitric oxide synthase and cyclooxygenase expression in co-cultured vascular endothelial and smooth muscle cells. Journal of Molecular and Cellular Cardiology 1999; 31:619-629.
    61 Narlikar GJ, Fan HY, Kingston RE. Cooperation between complexes that regulate chromatin structure and transcription. Cell 2002; 108:475-487.
    62 Marks PA, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK. Histone deacetylases and cancer: Causes and therapies. Nature Reviews Cancer 2001; 1:194-202.
    63 Khochbin S, Verdel A, Lemercier C, Seigneurin-Berny D. Functional significance of histone deacetylase diversity. Current Opinion in Genetics & Development 2001; 11:162-166.
    64 Palazzo A, Ackerman B, Gundersen GG. Cell biology: Tubulin acetylation and cell motility. Nature 2003; 421:230-230.
    65 Saji S, Kawakami M, Hayashi S, Yoshida N, Hirose M, Horiguchi S, Itoh A, Funata N, Schreiber SL, Yoshida M, Toi M. Significance of HDAC6 regulation via estrogen signaling for cell motility and prognosis in estrogen receptor-positive breast cancer. Oncogene 2005; 24:4531-4539.
    66王栋,李玉泉,张炎,姜宗来.切应力条件下与血管平滑肌细胞联合培养的内皮细胞整合素β1和f-actin的变化.医用生物力学2004; 19:2-5.
    67丛兴忠,姜宗来,李玉泉,等.用于内皮细胞与平滑肌细胞联合培养的流动腔系统.医用生物力学2001; 16:1-5.
    68 Bazzoni G, Tonetti P, Manzi L, Cera MR, Balconi G, Dejana E. Expression of junctional adhesion molecule-A prevents spontaneous and random motility. Journal of Cell Science 2005; 118:623-632.
    69 Oemar BS, Werner A, Garnier JM, Do DD, Godoy N, Nauck M, Marz W, Rupp J, Pech M,Luscher TF. Human connective tissue growth factor is expressed in advanced atherosclerotic lesions. Circulation 1997; 95:831-839.
    70 Lau LF, Lam SC. The ccn family of angiogenic regulators: The integrin connection. Experimental Cell Research 1999; 248:44-57.
    71 Hu YL, Li S, Miao H, Tsou TC, del Pozo MA, Chien S. Roles of microtubule dynamics and small GTPase Rac in endothelial cell migration and lamellipodium formation under flow. Journal of Vascular Research 2002; 39:465-476.
    72 Spagnoli LG, Villaschi S, Neri L, Palmieri G. Gap junctions in myo-endothelial bridges of rabbit carotid arteries. Experientia 1982; 38:124-125.
    73 Otero K, Martinez F, Beltran A, Gonzalez D, Herrera B, Quintero G, Delgado R, Rojas A. Albumin-derived advanced glycation end-products trigger the disruption of the vascular endothelial cadherin complex in cultured human and murine endothelial cells. the Biochemical Journal 2001; 359:567-574.
    74 Tardy Y, Resnick N, Nagel T, Gimbrone MA Jr., Dewey CF Jr.. Shear stress gradients remodel endothelial monolayers in vitro via a cell proliferation-migration-loss cycle. Arteriosclerosis Thrombosis and Vascular Biology 1997; 17:3102-3106.
    75 Wang HQ, Huang LX, Qu MJ, Yan ZQ, Liu B, Shen BR, Jiang ZL. Shear stress protects against endothelial regulation of vascular smooth muscle cell migration in a coculture system. Endothelium 2006; 13:171-180.
    76 Shimo T, Nakanishi T, Nishida T, Asano M, Kanyama M, Kuboki T, Tamatani T, Tezuka K, Takemura M, Matsumura T, Takigawa M. Connective tissue growth factor induces the proliferation, migration, and tube formation of vascular endothelial cells in vitro, and angiogenesis in vivo. Journal of Biochemistry 1999; 126:137-145.
    77 Schroder EA, Tobita K, Tinney JP, Foldes JK, Keller BB. Microtubule involvement in the adaptation to altered mechanical load in developing chick myocardium. Circulation Research 2002; 91:353-359.
    78 Cambray-Deakin MA, Burgoyne RD. Posttranslational modifications of alpha-tubulin: Acetylated and detyrosinated forms in axons of rat cerebellum. Journal of Cell Biology 1987; 104: 1569-1574.
    79 Wang HQ, Bai L, Shen BR, Yan ZQ, Jiang ZL. Coculture with endothelial cells enhances vascular smooth muscle cell adhesion and spreading via activation of beta1-integrin and phosphatidylinositol 3-kinase/Akt.. European Journal of Cell Biology 2007; 86:51-62.
    80 Chiu JJ, Chen LJ, Lee CI, Lee PL, Lee DY, Tsai MC, Lin CW, Usami S, Chien S. Mechanisms of induction of endothelial cell E-selectin expression by smooth muscle cells and its inhibition by shear stress. Blood. 2007; 110(2):519-28
    1 Lauffenburger DA, Horwitz AF. Cell migration. A physically integrated molecular process. Cell 1996; 84:359-369.
    2 Ridley AJ. Rho GTPases and cell migration. Journal Cell Science 2001; 114:2713-2722.
    3 Petit V, Thiery JP. Focal adhesions: Structure and dynamics. Biology of the Cell 2000; 92: 477-494.
    4 Carter SB. Haptotaxis and the mechanism of cell motility. Nature 1967; 213:256-260.
    5 Kusuhara M, Takahashi E, Peterson TE, Abe J, Ishida M, Han J, Ulevitch R, Berk BC. p38 Kinase is a negative regulator of angiotensin II signal transduction in vascular smooth muscle cells: effects on Na+/H+ exchange and ERK1/2. Circulation Research 1998; 83:824- 831.
    6 Sato Y, Kanno S, Oda N, Abe M, Ito M, Shitara K, Shibuya M. Properties of two VEGF receptors, Flt-1 and KDR, in signal transduction. Annals of the New York Academy of Sciences 2000; 902:201-205.
    7 Tsuboi R, Sato Y, Rifkin DB. Correlation of cell migration, cell invasion, receptor number, proteinase production, and basic fibroblast growth factor levels in endothelial cells. The Journal of Cell Biology 1990; 110:511-517.
    8 Funamoto S, Meili R, Lee S, Parry L, Firtel RA. Spatial and temporal regulation of
    3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell 2002; 109: 611- 623.
    9 Yano Y, Geibel J, Sumpio BE. Cyclic strain induces reorganization of integrin alpha 5 beta
    1 and alpha 2 beta 1 in human umbilical vein endothelial cells. Journal of Cellular Biochemistry 1997; 64:505-513.
    10朱妤,严志强,沈宝荣,姜宗来.机械张应变诱导蛋白激酶b活化对血管平滑肌细胞迁移都影响.医用生物力学2006; 21:259-266.
    11 Liu B, Qu MJ, Qin KR, Li H, Li ZK, Shen BR, Jiang ZL. Role of cyclic strain frequency in regulating the alignment of vascular smooth muscle cells in vitro. Biophysical Journal 2008; 94:1497-1507.
    12 Putnam AJ, Cunningham JJ, Pillemer BB, Mooney DJ. External mechanical strain regulates membrane targeting of Rho GTPases by controlling microtubule assembly American Journal of Physiology-Cell Physiology 2003; 284:C627-639.
    13 Katsumi A, Milanini J, Kiosses WB, del Pozo MA, Kaunas R, Chien S, Hahn KM, Schwartz MA. Effects of cell tension on the small GTPase Rac. Journal of Cell Biology2002; 158: 153 - 164.
    14 Li S, Butler P, Wang Y, Hu Y, Han DC, Usami S, Guan JL, Chien S. The role of the dynamics of focal adhesion kinase in the mechanotaxis of endothelial cells. Proceedings of the National Academy of Sciences of the United States of America 2002; 99:3546-3551.
    15 Branemark PI. Capillary form and function. The microcirculation of granulation tissue. Biblothetic Anatomic 1965; 7:9-28.
    16黄朗献,白玲,王汉琴,曹烨,王燕华,姜宗来.切应力对与血管平滑肌细胞联合培养的内皮细胞微管骨架重构都影响.医用生物力学2006; 21:254-258.
    17 Girard PR, Nerem RM. Endothelial cell signaling and cytoskeletal changes in response to shear stress. Frontiers of Medical and Biological Engineering 1993; 5:31-36.
    18 Tzima E, Kiosses WB, del Pozo MA, Schwartz MA, Localized cdc42 activation, detected using a novel assay, mediates microtubule organizing center positioning in endothelial cells in response to fluid shear stress. Journal of Biological Chemistry 2003; 278:31020-31023.
    19 Wojciak-Stothard B, Ridley AJ. Shear stress-induced endothelial cell polarization is mediated by Rho and Rac but not Cdc42 or PI 3-kinases. J Cell Biology 2003; 161: 429 -439.
    20 Hsu PP, Li S, Li YS, Usami S, Ratcliffe A, Wang X, Chien S. Effects of flow patterns on endothelial cell migration into a zone of mechanical denudation. Biochemical and Biophysical Research Communication 2001; 285:751-759.
    21 Kiosses WB, Shattil SJ, Pampori N, Schwartz MA. Rac recruits high-affinity integrin alphavbeta3 to lamellipodia in endothelial cell migration. Nature Cell Biology 2001; 3:316-320.
    22 Tzima E, Irani-Tehrani M, Kiosses WB, Dejana E, Schultz DA, Engelhardt B, Cao GY, DeLisser H, Schwartz MA. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 2005; 437:426-431.
    23 Davies PF, Robotewskyj A, Griem ML. Quantitative studies of endothelial cell adhesion. Directional remodeling of focal adhesion sites in response to flow forces. Journal of Clinical Investigation 1994; 93:2031-2038.
    24 Xie B, Zhao J, Kitagawa M, Durbin J, Madri JA, Guan JL, Fu XY. Focal adhesion kinase activates Stat1 in integrin-mediated cell migration and adhesion. Journal of Biological Chemistry 2001; 276: 19512-19523.
    25 Sastry SK, Horwitz AF. Integrin cytoplasmic domains: Mediators of cytoskeletal linkages and extra- and intracellular initiated transmembrane signaling. Currient Opinion of Cell Biology 1993; 5:819-831.
    26 Chen KD, Li YS, Kim M, Li S, Yuan S, Chien S, Shyy JY. Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc. Journal of Biological Chemistry 1999; 274:18393-18400.
    27 Jalali S, del Pozo MA, Chen K, Miao H, Li Y, Schwartz MA, Shyy JY, Chien S.Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix(ECM) ligands. Proceedings of the National Academy of Sciences of the United States of America 2001; 98:1042-1046;
    28 Shyy JY, Chien S. Role of integrins in endothelial mechanosensing of shear stress. Circulation Research 2002; 91:769-775.
    29 Urbich C, Dernbach E, Reissner A, Vasa M, Zeiher AM, Dimmeler S. Shear stress-induced endothelial cell migration involves integrin signaling via the fibronectin receptor subunits alpha(5) and beta(1). Arteriosclerosis Thrombosis Vasccular Biological 2002; 22:69-75.
    30 Schwartz MA, Schaller MD, Ginsberg MH. Integrins: Emerging paradigms of signal transduction. Annual Review of Cell Developmental Biological 1995; 11:549-599.
    31 Liu Y, Chen BP, Lu M, Zhu Y, Stemerman MB, Chien S, Shyy JY. Shear stress activation of SREBP1 in endothelial cells is mediated by integrins. Arteriosclerosis Thrombosis Vascular Biology 2002; 22:76-81.
    32 Olesen SP, Clapham DE, Davies PF. Haemodynamic shear stress activates a k+ current in vascular endothelial cells. Nature 1988; 331:168-170.
    33 Hutcheson IR, Griffith TM. Heterogeneous populations of K+ channels mediate EDRF release to flow but not agonists in rabbit aorta. American Journal of Physiology 1994; 266:H590-596.
    34 Hoger JH, Ilyin VI, Forsyth S, Hoger A. Shear stress regulates the endothelial kir2.1 ion channel. Proceedings of the National Academy of Sciences of the United States of America 2002; 99:7780-7785.
    35 Yamamoto K, Korenaga R, Kamiya A, Ando J. Fluid shear stress activates Ca(2+) influx into human endothelial cells via P2X4 purinoceptors. Circulation Research 2000; 87: 385- 391.
    36 Nilius B, Droogmans G. Ion channels and their functional role in vascular endothelium. Physiological Reviews 2001; 81:1415-1459.
    37 Ando J, Komatsuda T, Kamiya A. Cytoplasmic calcium response to fluid shear stress in cultured vascular endothelial cells. In Vitro Cellular & Development Biology 1988; 24:871-877.
    38 Gudi SR, Clark CB, Frangos JA. Fluid flow rapidly activates G proteins in human endothelial cells. Involvement of G proteins in mechanochemical signal transduction. Circulation Research 1996; 79:834-839.
    39 Hsieh HJ, Li NQ, Frangos JA. Shear-induced platelet-derived growth factor gene expression in human endothelial cells is mediated by protein kinase C. Journal of Cellular Physiology 1992; 150:552-558.
    40 Bao X, Lu C, Frangos JA. Mechanism of temporal gradients in shear-induced ERK1/2 activation and proliferation in endothelial cells. American Journal of Physiology-Heart and Circulatory Physiology 2001; 281:H22-29.
    41 Gudi S, Nolan JP, Frangos JA. Modulation of GTPase activity of G proteins by fluid shearstress and phospholipid composition. Proceedings of the National Academy of Sciences of the United States of America 1998; 95:2515-2519.
    42 Gudi S, Huvar I, White CR, McKnight NL, Dusserre N, Boss GR, Frangos JA. Rapid activation of Ras by fluid flow is mediated by Galpha(q) and Gbetagamma subunits of heterotrimeric G proteins in human endothelial cells. Arteriosclerosis Thrombosis Vascular Biology 2003; 23:994-1000.
    43 Jo H, Sipos K, Go YM, Law R, Rong J, McDonald JM. Differential effect of shear stress on extracellular signal-regulated kinase and N-terminal Jun kinase in endothelial cells. Gi2- and Gbeta/gamma-dependent signaling pathways. Journal of Biological Chemistry 1997; 272:1395-1401.
    44 Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science 2005; 310:1139-1143.
    45 Orr AW, Helmke BP, Blackman BR, Schwartz MA. Mechanisms of mechanotransduction. Developmental Cell 2006; 10:11-20.
    46 Zaidel-Bar R, Ballestrem C, Kam Z, Geiger B. Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells. Journal of Cell Science 2003; 116:4605-4613.
    47 Grosheva I, Vittitow JL, Goichberg P, Gabelt BT, Kaufman PL, Borras T, Geiger B, Bershadsky AD. Caldesmon effects on the actin cytoskeleton and cell adhesion in cultured HTM cells. Experimental Eye Research 2006; 82:945-958.
    48 Szczepanowska J, Korn ED, Brzeska H. Activation of myosin in hela cells causes redistribution of focal adhesions and F-actin from cell center to cell periphery. Cell Motility and the Cytoskeleton 2006; 63:356-374.
    49 Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T, Narumiya S, Kam Z, Geiger B, Bershadsky AD. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. Journal of Cell Biology 2001; 153:1175-1185.
    50 Tan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS. Cells lying on a bed of microneedles: An approach to isolate mechanical force. Proceedings of the National Academy of Sciences of the United States of America 2003; 100:1484-1489.
    51 Galbraith CG, Yamada KM, Sheetz MP. The relationship between force and focal complex development. Journal of Cell Biology 2002; 159:695-705.
    52 Zamir E, Katz M, Posen Y, Erez N, Yamada KM, Katz BZ, Lin S, Lin DC, Bershadsky A, Kam Z, Geiger B. Dynamics and segregation of cell-matrix adhesions in cultured fibroblasts. Nature Cell Biology 2000; 2:191-196.
    53 Shewan AM, Maddugoda M, Kraemer A, Stehbens SJ, Verma S, Kovacs EM, Yap AS. Myosin 2 is a key rho kinase target necessary for the local concentration of e-cadherin at cell-cell contacts. Molecular Biology of the Cell 2005; 16:4531-4542.
    54 Osawa M, Masuda M, Kusano K, Fujiwara K. Evidence for a role of platelet endothelial cell adhesion molecule-1 in endothelial cell mechanosignal transduction: is it amechanoresponsive molecule? Journal of Cell Biology 2002; 158:773-785.
    55 Critchley DR. Focal adhesions - the cytoskeletal connection. Current Opinion in Cell Biology 2000; 12:133-139.
    56 Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton. Science 1993; 260:1124-1127.
    57 Li S, Kim M, Hu YL, Jalali S, Schlaepfer DD, Hunter T, Chien S, Shyy JY. Fluid shear stress activation of focal adhesion kinase. Linking to mitogen-activated protein kinases. Journal of Biological Chemistry 1997; 272:30455-30462.
    58 Helmke BP, Davies PF. The cytoskeleton under external fluid mechanical forces: Hemodynamic forces acting on the endothelium. Annals of Biomedical Engineering 2002; 30:284-296.
    59 Schnittler HJ, Puschel B, Drenckhahn D. Role of cadherins and plakoglobin in interendothelial adhesion under resting conditions and shear stress. Americal Journal of Physiology 1997; 273:H2396-2405.
    60 Yoshikawa N, Ariyoshi H, Ikeda M, Sakon M, Kawasaki T, Monden M. Shear-stress causes polarized change in cytoplasmic calcium concentration in human umbilical vein endothelial cells (HUVECs). Cell Calcium 1997; 22:189-194.
    61 Busse R, Fleming I. Regulation of NO synthesis in endothelial cells. Kidney & blood pressure research 1998; 21:264-266.
    62 Li YS, Shyy JY, Li S, Lee J, Su B, Karin M, Chien S. The Ras-JNK pathway is involved in shear-induced gene expression. Molecular and Cell Biology 1996; 16:5947-5954.
    63 Tseng H, Peterson TE, Berk BC. Fluid shear stress stimulates mitogen-activated protein kinase in endothelial cells. Circulation Research 1995; 77:869-878.
    64 Traub O, Berk BC. Laminar shear stress: Mechanisms by which endothelial cells transduce an atheroprotective force. Arteriosclerosis Thrombosis Vascular Biology 1998; 18:677-685.
    65 Khachigian LM, Resnick N, Gimbrone MA Jr, Collins T. Nuclear factor-kappa B interacts functionally with the platelet-derived growth factor B-chain shear-stress response element in vascular endothelial cells exposed to fluid shear stress. Journal of Clinical Investigation 1995; 96:1169-1175.
    66 Ohno M, Cooke JP, Dzau VJ, Gibbons GH. Fluid shear stress induces endothelial transforming growth factor beta-1 transcription and production. Modulation by potassium channel blockade. Journal of Clinical Investigation 1995; 95:1363-1369.
    67 Nagel T, Resnick N, Atkinson WJ, Dewey CF Jr., Gimbrone MA Jr. Shear stress selectively upregulates intercellular adhesion molecule-1 expression in cultured human vascular endothelial cells. Journal of Clinical Investigation 1994; 94:885-891.
    68 Sampath R, Kukielka GL, Smith CW, Eskin SG, McIntire LV. Shear stress-mediated changes in the expression of leukocyte adhesion receptors on human umbilical vein endothelial cells in vitro. Annals of Biomedical Engineering 1995; 23:247-256.
    69 Resnick N, Collins T, Atkinson W, Bonthron DT, Dewey CF Jr, Gimbrone MA, Jr.Platelet-derived growth factor B chain promoter contains a cis-acting fluid shear-stress- responsive element. Proceedings of the National Academy of Sciences of the United States of America 1993; 90:4591-4595.
    70 Malek AM, Greene AL, Izumo S. Regulation of endothelin 1 gene by fluid shear stress is transcriptionally mediated and independent of protein kinase C and cAMP. Proceedings of the National Academy of Sciences of the United States of America 1993; 90:5999-6003.
    71 Levesque MJ, Nerem RM. The elongation and orientation of cultured endothelial cells in response to shear stress. Journal of Biomechnical Engineering 1985; 107:341-347.
    72 Tzima E. Role of small GTPases in endothelial cytoskeletal dynamics and the shear stress response. Circulation Research 2006; 98:176-185.
    73 Wennerberg K, Rossman KL, Der CJ. The Ras superfamily at a glance. Journal of Cell Science 2005; 118:843-846.
    74 Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature 2002; 420:629-635.
    75 Ridley AJ, Hall A. The small GTP-binding protein Rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 1992; 70:389-399.
    76 Tzima E, Del Pozo MA, Kiosses WB, Mohamed SA, Li S, Chien S, Schwartz MA. Activation of Rac1 by shear stress in endothelial cells mediates both cytoskeletal reorganization and effects on gene expression. Embo Journal 2002; 21:6791-6800.
    77 Ren XD, Kiosses WB, Schwartz MA. Regulation of the small GTP-binding protein rho by cell adhesion and the cytoskeleton. Embo Journal 1999; 18:578-585.
    78 Shiu YT, Li S, Marganski WA, Usami S, Schwartz MA, Wang YL, Dembo M, Chien S. Rho mediates the shear-enhancement of endothelial cell migration and traction force generation. Biophysical J 2004; 86:2558-2565.
    79 Wesselman JP, Kuijs R, Hermans JJ, Janssen GM, Fazzi GE, van Essen H, Evelo CT, Struijker-Boudier HA, De Mey JG. Role of the Rhoa/Rho kinase system in flow-related remodeling of rat mesenteric small arteries in vivo. Journal of Vascular Research 2004; 41:277-290.
    80 Lehoux S, Tedgui A. Signal transduction of mechanical stresses in the vascular wall. Hypertension 1998; 32:338-345.
    81 Reusch HP, Chan G, Ives HE, Nemenoff RA. Activation of JNK/SAPK and ERK by mechanical strain in vascular smooth muscle cells depends on extracellular matrix composition. Biochemical and Biophysical Research Communications 1997; 237:239 - 244.
    82 Takahashi M, Berk BC. Mitogen-activated protein kinase(ERK1/2) activation by shear stress and adhesion in endothelial cells. Essential role for a herbimycin-sensitive kinase. Journal of Clinical Investigation 1996; 98:2623-2631.
    83 Schlaepfer DD, Hunter T. Focal adhesion kinase overexpression enhances Ras-dependent integrin signaling to ERK2/mitogen-activated protein kinase through interactions with and activation of c-Src. Journal of Biological Chemistry 1997; 272:13189-13195.
    84 Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK,JNK, and p38 protein kinases. Science 2002; 298:1911-1912.
    85 Anand-Apte B, Zetter BR, Viswanathan A, Qiu RG, Chen J, Ruggieri R, Symons M. Platelet-derived growth factor and fibronectin-stimulated migration are differentially regulated by the Rac and extracellular signal-regulated kinase pathways. Journal of BiologicalChemistry 1997; 272:30688-30692.
    86 Klemke RL, Cai S, Giannini AL, Gallagher PJ, de Lanerolle P, Cheresh DA. Regulation of cell motility by mitogen-activated protein kinase. Journal of Cell Biology 1997; 137:481-492.
    87 Webb DJ, Nguyen DH, Gonias SL. Extracellular signal-regulated kinase functions in the urokinase receptor-dependent pathway by which neutralization of low density lipoprotein receptor-related protein promotes fibrosarcoma cell migration and matrigel invasion. Journal of Cell Science 2000; 113:123-134.
    88 Shono T, Kanetake H, Kanda S. The role of mitogen-activated protein kinase activation within focal adhesions in chemotaxis toward FGF-2 by murine brain capillary endothelial cells. Experimental Cell Research 2001; 264:275-283.
    89 Degryse B, Orlando S, Resnati M, Rabbani SA, Blasi F. Urokinase/urokinase receptor and vitronectin/alpha(v)beta(3) integrin induce chemotaxis and cytoskeleton reorganization through different signaling pathways. Oncogene 2001; 20:2032-2043.
    90 Jo M, Thomas KS, Somlyo AV, Somlyo AP, Gonias SL. Cooperativity between the Ras-ERK and Rho-Rho kinase pathways in urokinase-type plasminogen activator- stimulated cell migration. Journal of Biological Chemistry 2002; 277:12479-12485.
    91 Nguyen DH, Catling AD, Webb DJ, Sankovic M, Walker LA, Somlyo AV, Weber MJ, Gonias SL. Myosin light chain kinase functions downstream of Ras/ERK to promote migration of urokinase-type plasminogen activator-stimulated cells in an integrin-selective manner. Journal of Cell Biology 1999; 146:149-164.
    92 Gonzalez FA, Raden DL, Davis RJ. Identification of substrate recognition determinants for human ERK1 and ERK2 protein kinases. Journal of Biological Chemistry 1991; 266:22159-22163.
    93 Deak M, Clifton AD, Lucocq LM, Alessi DR. Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. Embo Journal 1998; 17:4426-4441.
    94 Frodin M, Gammeltoft S. Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction. Molecular and Cellular Endocrinology 1999; 151:65-77.
    95 Fukunaga R, Hunter T. MNK1, a new map kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. Embo Journal 1997; 16:1921-1933.
    96 Hunger-Glaser I, Salazar EP, Sinnett-Smith J, Rozengurt E. Bombesin, lysophosphatidic acid, and epidermal growth factor rapidly stimulate focal adhesion kinase phosphorylation at ser-910: Requirement for ERK activation. Journal of Biological Chemistry 2003; 278: 22631-22643.
    97 Glading A, Bodnar RJ, Reynolds IJ, Shiraha H, Satish L, Potter DA, Blair HC, Wells A. Epidermal growth factor activates m-calpain (calpainⅡ), at least in part, by extracellular signal-regulated kinase-mediated phosphorylation. Molecular and Cellular Biology 2004; 24:2499-2512.
    98 Liu ZX, Yu CF, Nickel C, Thomas S, Cantley LG. Hepatocyte growth factor induces ERK-dependent paxillin phosphorylation and regulates paxillin-focal adhesion kinase association. Journal of Biological Chemistry 2002; 277:10452-10458.
    99 Dourdin N, Bhatt AK, Dutt P, Greer PA, Arthur JS, Elce JS, Huttenlocher A. Reduced cell migration and disruption of the actin cytoskeleton in calpain-deficient embryonic fibroblasts. Journal of Biological Chemistry 2001; 276:48382-48388.
    100 Wang HQ, Huang LX, Qu MJ, Yan ZQ, Liu B, Shen BR, Jiang ZL. Shear stress protects against endothelial regulation of vascular smooth muscle cell migration in a coculture system. Endothelium 2006; 13:171-180.
    101 Ishibe S, Joly D, Zhu X, Cantley LG. Phosphorylation-dependent paxillin-ERK association mediates hepatocyte growth factor-stimulated epithelial morphogenesis. Molecular Cell 2003; 12:1275-1285.
    102 Subauste MC, Pertz O, Adamson ED, Turner CE, Junger S, Hahn KM. Vinculin modulation of paxillin-FAK interactions regulates ERK to control survival and motility. Journl of Cell Biology 2004; 165:371-381.
    103 Hughes PE, Renshaw MW, Pfaff M, Forsyth J, Keivens VM, Schwartz MA, Ginsberg MH: Suppression of integrin activation. A novel function of a Ras/Raf-initiated MAP kinase pathway. Cell 1997; 88:521-530.
    104 Palecek SP, Loftus JC, Ginsberg MH, Lauffenburger DA, Horwitz AF. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 1997; 385:537-540.
    105 Haggarty SJ, Koeller KM, Wong JC, Grozinger CM, Schreiber SL. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proceedings of the National Academy of Sciences of the United States of America 2003; 100:4389-4394.
    106 Zhang Y, Li N, Caron C, Matthias G, Hess D, Khochbin S, Matthias P. HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. Embo Journal 2003; 22:1168- 1179.
    107 Small JV, Kaverina I. Microtubules meet substrate adhesions to arrange cell polarity. Current Opinion in Cell Biology 2003; 15:40-47.
    108 Cabrero JR, Serrador JM, Barreiro O, Mittelbrunn M, Naranjo-Suárez S, Martín-Cófreces N, Vicente-Manzanares M, Mazitschek R, Bradner JE, Avila J, Valenzuela-Fernández A, Sánchez-Madrid F. Lymphocyte chemotaxis is regulated by histone deacetylase 6, independently of its deacetylase activity. Molecular Biology of the Cell 2006; 17:3435 -3445.
    109 Gao YS, Hubbert CC, Lu J, Lee YS, Lee JY, Yao TP. Histone deacetylase 6 regulatesgrowth factor-induced actin remodeling and endocytosis. Molecular and Cellular Biology 2007; 27:8637-8647.
    110 Zhang X, Yuan Z, Zhang Y, Yong S, Salas-Burgos A, Koomen J, Olashaw N, Parsons JT, Yang XJ, Dent SR, Yao TP, Lane WS, Seto E. Hdac6 modulates cell motility by altering the acetylation level of cortactin. Molecular Cell 2007; 27:197-213.
    111 Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin NV, White M, Yang XJ, Zhao Y. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Molecular Cell 2006; 23:607-618.
    112 Ballermann BJ, Dardik A, Eng E, Liu A. Shear stress and the endothelium. Kidney international. Supplement 1998; 67:S100-S108.
    113 Frye SR, Yee A, Eskin SG, Guerra R, Cong X, McIntire LV. cDNA microarray analysis of endothelial cells subjected to cyclic mechanical strain: Importance of motion control. Physiological Genomics 2005; 21:124-130.
    114 Redmond EM, Cahill PA, Sitzmann JV. Flow-mediated regulation of g-protein expression in cocultured vascular smooth muscle and endothelial cells. Arteriosclerosis Thrombosis Vascular Biology 1998; 18:75-83.
    115姜宗来,陈双红,张炎,张传森,李玉泉,丛兴忠.与平滑肌细胞联合培养的内皮细胞的形态学和生长增殖.解剖学报2003; 3:274-276.
    116 Wang HQ, Bai L, Shen BR, Yan ZQ, Jiang ZL. Coculture with endothelial cells enhances vascular smooth muscle cell adhesion and spreading via activation of beta1-integrin and phosphatidylinositol 3-kinase/Akt.. European Journal of Cell Biology 2007; 86:51-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700