聚乙烯醇/蒙脱土/二氧化钛复合薄膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物-无机纳米复合材料由于它在力学性能、耐热性、光学性能、阻燃性、气体阻隔性、耐老化性及抗菌性等方面的性能而弥补了一般聚合物包装材料的不足,成为了包装领域的研究热点。为了进一步提高包装材料的性能,本课题研究了聚乙烯醇/蒙脱土/二氧化钛(PVA/MMT/TiO_2)复合薄膜的制备、结构、物化性能和抗菌性,主要工作分为三个部分:
     首先,采用插层一溶胶凝胶法,以聚乙烯醇、蒙脱土、二氧化钛为原料制备了PVA/MMT/TiO_2复合薄膜,并对其进行了结构表征。从SEM图片中观察到MMT、TiO_2均匀的分散于PVA基体中,相容性较好;IR测试结果表明,MMT、TiO_2已成功分散于PVA基体中,且形成网络结构;TG-DSC分析表明,由于MMT、TiO_2的协同增强作用,复合薄膜的热性能比纯PVA薄膜有较大提高。
     其次,通过研究TiO_2的质量百分含量、pH值、搅拌时间和反应温度对薄膜物理性能的影响确定了最佳制备条件。力学性能测试表明,TiO_2含量为1%(质量分数),MMT含量为3%(质量分数)时,PVA/MMT/TiO_2复合薄膜的拉伸强度比纯PVA薄膜提高了49.46%,弹性模量、直角撕裂强度分别是纯PVA薄膜的1.8倍和1.4倍,断裂伸长率则由329.33%降低至181.15%;透光率测试显示,PVA/MMT/TiO_2复合薄膜对不同波长的紫外光透射率在50%-60%之间,对可见光的透射率较高;耐水性能测试表明,复合薄膜的吸水率先增大后趋于平衡,饱和时达到236.77%;水蒸气透过性测试显示,PVA/MMT/TiO_2复合薄膜的水蒸气透过率为3.05 g/(h·m~2),比纯PVA薄膜降低了57.64%;PVA/MMT/TiO_2复合薄膜对食用油的阻隔性较高,透油率基本保持在较低的0.0216%左右。
     最后,对PVA/MMT/TiO_2复合薄膜的老化性能和杀菌性能进行了研究。结果表明,经过老化之后,PVA/MMT/TiO_2复合薄膜的各项性能有所降低,但由于MMT、TiO_2的协同增强作用,其性能仍优于其它薄膜。抗菌性能测试表明,MMT及TiO_2对细菌有一定的杀灭作用。
Polymer Matric Nanocomposites (PMN) have been widely studied in packagingfield in recent years because of its amazing performances in mechanical, thermal,optical, anti-aging and anti-bacterial compared to pure polymers or conventionalcomposites. In order to improve the properties of the packaging materials, thepreparation, characterization, physical-chemical properties and anti-bacterial ofPoly(Vinyl Alcohol)/Montmorillonite/Titanium Dioxide (PVA/MMT/TiO_2) compositefilms were studied in this paper, with its main working as follows:
     First, PVA/MMT/TiO_2 composite films were prepared directly from PVA solution,MMT aqueous suspension and TiO_2 sol by solution intercalation and sol-gel process.The fracture morphology, molecule structure and thermal properties were investigatedby SEM, FTIR and TG-DSC respectively. The SEM images showed that MMT andTiO_2 particles are well dispersed in the Poly(Vinyl Alcohol). The IR results revealedthat, net-structure was formed after MMT and TiO_2 composing with PVA, whichindicated that MMT and TiO_2 had been successfully dispersed in PVA matrix. TheTG-DSC results showed that, the thermal performances of composite films haveincreased greatly as the synergistic effect of the two inorganic particles.
     Second, TiO_2 mass fraction, pH, stirring time and reaction temperature werestudied to optimize the preparation conditions of the PVA/MMT/TiO_2 composite films.The mechanical test showed that, when the TiO_2 mass fraction is 1.0% and MMT massfraction is 3.0%, the tensile strength of PVA/MMT/TiO_2 composite films increased 49.46% than that of pure PVA films. The right elastic modulus and angle tearingstrength are 1.8 and 1.4 times as high as that of pure PVA films respectively. Theelongation rate decreased from 329.33% to 181.15%. The light transmittance resultsshowed that different wavelength ultraviolet radiation. transmittance kept between50%-60%, and the visible light transmittance were high. The water absorbing rateincreased firstly and then reached to 236.77%. The water vapor transmittance of thePVA/MMT/TiO_2 composite films was 3.05 g/(h·m~2), and decreased 57.64% than thatof pure PVA films. The oil transmittance of the PVA/MMT/TiO_2 composite films keptin about 0.0216%.
     Finally, the aging and anti-bacterial properties of PVA/MMT/TiO_2 compositefilms were also studied. The results showed that, after aging, the physical-chemicalproperties of PVA/MMT/TiO_2 composite films were reduced. But its properties werealso better than others because of the synergistic effect of MMT, TiO_2 particles. Theanti-bacterial test revealed that MMT, TiO_2 particles can kill some bacterias.
引文
[1] 吴人洁.下世纪复合材料发展趋[J].工程塑料应用,1999,27(2):28.
    [2] 华幼卿.聚烯烃纳米复合材料研究进展Ⅰ.聚烯烃/粘土纳米复合材料[J],高分子材料科学与工程,2002,18(2):1-5.
    [3] 漆宗能,尚文宇.聚合物/层状硅酸盐纳米复合材料理论与实践[M].北京:化学工业出版社,2002,1.
    [4] 尚东升,崔建华.聚合物/纳米无机粒子复合材料的制备方法[J].化学推进剂与高分子材料,2005,3(2):15-18.
    [5] Emmanuel P, Giannelis. Polymer-Layered Silicate Nanocomposites: Synthesis, Properties and Applications.[J] Appl. Organometal. Chem, 1998, (12):675—680.
    [6] 唐玉朝,李薇,胡春,等.TiO_2形态结构与光催化活性关系的研究[J].化学进展(Pregress In Chemistry),2003,15(5):379-384.
    [7] 付国柱,于运花,徐瑞芬,等.纳米TiO_2改性聚乙烯膜抗菌性能的研究.工程塑料应用[J],2003.31(4):37-39.
    [8] Wu TM, Cheng J C, Yan M C, et al. Crystallization and thermoelectric behavior of conductive-filler-filled poly(ε-caprolactone)/poly(vinyl butyral)/montmorillonite nanocomposites[J]. Polym, 2003,44:2553-2562.
    [9] Yano K, Usuki A, Okada A. Synthesis and properties of polyimide-clay hybrid films[J]. J Polymer Sci, Part A, 1997,35(11):2281-2500.
    [10] Yang S M, Chen K H. Synthesis of polyaniline-modified montmorillonite nanocomposi te[J]. Synthetic Metals, 2003,135:51-52.
    [11] Vaia R A, Giannelis E P. Polymer Melt Intercalation in Organically-Modified Layered Silicates[J]. Model Predictions and Experiment Macromolecules, 1997,30(25):8000-8010.
    [12] Lebaron P C, Wang Z, Pinnavaia T J. Polymer-layered silicate nanocomposites: an overview[J]. Appl Clay Science, 1999,15(1):11-29.
    [13] 黄明福,于九皋,林通.聚合物基纳米复合材料性能及理论研究.高分子通报[J],2005(1):38-43,59.
    [14] Michael Alexander, Philippe Dubois. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials[J]. Materials Science and Engineering, 2000,(28):1-63.
    [15] 杨雅秀,张乃娴,等.中国粘土矿物[M].北京:地质出版社,1994.
    [16] 孙宝歧,吴一善,梁志标.非金属矿深加工[M].北京:冶金工业出版社,1995,120-123.
    [17] ZhiQi Shen, Jodge P, Simon, et al. Comparison of solution intercalation and melt intercalation of polymer-clay nanocomposites[J]. Polymer, 2002, 43(15):4251-4260.
    [18] Peter C. LeBaron, Zhen Wang, Thomas J, et al. Polymer-layered silicate nanocomposites: an overview[J]. Applied Clay Science, 1999,(15):11-29.
    [19] J.G. Doh, I. Cho. Synthesis and properties of polystyrene-organoammonium montmorillonite hybrid[J]. Polym Bull, 1998,(41):511-517.
    [20] Ramanan Krishnamoorti, Richard A, Vaia et al. Structure and Dynamics of Polymer-Layered Silicate Nanocomposites[J]. Chem. Mater, 1996,(8):1728-1734.
    [21] 韩海军,梁淑君.聚合物/无机纳米复合材料的研究现状[J].科技情报开发与经济,2005,15(7):148-150.
    [22] 傅宏刚,王建强,王哲.TiO_2光催化剂表面修饰研究进展[J].黑龙江大学自然科学学报,2001,18(3):85.
    [23] 范崇政,肖建平,丁延伟.纳米TiO_2的制备与光催化反应研究进展[J].科学通报,2001,46(4):265-272.
    [24] 王兆波,宗绪彦,张志煜.纳米TiO_2抗菌解内毒素家电塑料应用研究[J].家电科技,2004(9):63-64.
    [25] 冒爱琴,宋洪昌,杨毅,等.超细TiO_2的表面改性与表征[J].涂料工业,2003,33(7):35-38.
    [26] 吴越,催化化学[M].北京:科学出版社,2000.829-861.
    [27] 蒋子铎,吴壁耀,刘安华.二氧化钛的表面化学改性[J].现代化工,1991,5(5):14-18.
    [28] 李晓娥,邓红,樊安,等.纳米TiO_2粉体的表面有机处理研究[J].西北大学学报(自然科学版),2002,32(5):523-525.
    [29] 徐群华,孟卫,杨绪杰,等.纳米二氧化钛增强增韧不饱和聚酯树脂的研究[J].高分子材料科学与工程,17(2):158-160.
    [30] 赵彦保,周静芳,吕莹,等.PS/TiO_2复合纳米微球的制备和结构表征[J].物理化学学报,2000.16:1035-1038.
    [31] Landry C J, Bradley KC, Jeffrey P, et al. In situ polymerization of tetrathoxysilane in polymers:chemical water of the interaction.[J]. Pol, 1992,33(7):1496-1506.
    [32] 闻艳,杜予民,李湛.壳聚糖/纳米复合膜的制备和性能[J].武汉大学学报,2002,6(48):701-704。
    [33] Caris C.H.M. Polymer Encapsulation of Inorganic Submicron Particles in Aqueous Dispersio[J]. British Polym.J, 1989,(21):133-140.
    [34] 田存萍,张瑛,周集体.纳米TiO_2在有机材料上的固定化研究进展[J].工业催化,2005,13(4):7-12.
    [35] 郝维昌,王天民,郑树凯,等.TiO_2/PSS自组装薄膜的光催化性能[J].稀有金属材料与工 程,2004,33(1):63-66.
    [36] 邱晓清.聚苯乙烯/纳米TiO_2复合粒子的制备及聚苯乙烯胶体晶的研究[J].武汉大学,2004:1-54.
    [37] GoodallA R, WillksonL C. Mechanism of Emulsion Polymerization of Styrene in Soap Free SystemsJ Polym.Sci.Part A[J]. Polym Chem Ed, 1997,15:2193-2202.
    [38] 张燕豪.吸附作用[M].上海科技出版社,1989.2.
    [39] 龙复,王伟,许涌深.无机溶胶粒子的有机高分子的胶囊化研究[J].高分子材料科学与工程,1995,11(3):13-16.
    [40] 胡金生,曹同玉,刘庆普,等.乳液聚合[M].北京:化学工业出版社,1987.371.
    [41] Koji Nakane, Takeharu Kurita, Takashi Ogihara, et al. Properties of poly(vinyl butyral)/TiO_2 nanocomposites formed by sol-gel process[J]. Composites, 2004,35:219-222.
    [42] Jing Zhanga, Xin Jua, Bo-jie Wangc, et al. Study on the optical properties of PPV/TiO_2 nanocomposites[J]. Synthetic Metals, 2001,118:181-185.
    [43] 童玉清,田明,徐瑞芬,等.新型的高杀菌纳米二氧化钛/聚丙烯复合材料的结构和物理特性研究[J].复合材料学报,2003,20(5):88-94.
    [44] 杨庆泉,宋勇志,李齐芳.聚合物/无机纳米复合材料研究进展[J].合成树脂及塑料,2004,21(3):81.
    [45] 宋玉春.聚合物纳米复合材料发展现状[J].化工科技市场,2005,(2):18-22.
    [46] 钟宝望.食品包装市场创新空间宽广[J].中国包装工业,2006,4:24.
    [47] 刘白玲,曾祥成,杨金华,等.聚乙烯醇生物降解的影响因素[J].材料研究学,2000,14(Suppl):108-112.
    [48] 张兴鹏.水速溶性聚乙烯醇包装膜的研究[D].苏州大学,2002.
    [49] 黄棋尤.塑料包装薄膜一生产、性能、应用[M].机械工业出版社,2003.
    [50] 项爱民,刘万蝉,赵启辉,等.后处理对PVA吹塑薄膜性能的影响[J].中国塑料,2003,17(7):56-59.
    [51] 李明,李元庆,付绍云.蒙脱土/二氧化钛/聚酰亚胺纳米杂化薄膜低温力学及热稳定性能研究[J].复合材料学报,2006,23(1):69-74.
    [52] 吴性良,朱万森,马林.分析化学原理[M].化学工业出版社,2004,339.
    [53] 彭人勇,张英杰.聚乙烯醇/蒙脱石纳米复合材料的结构与性能[J].塑料科技,2005,(2):15-19.
    [54] 施春荧,何映平.聚合物/纳米TiO_2复合材料研究进展[J].华南热带农业大学学报,2006,12(2):56-60.
    [55] Bajpai, A.K., Vishwakarma, N. Adsorption of polyvinyi alcohol onto Fuller's earth surfaces[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003,220 (1-3):117-130.
    [56] N. Ogata, S. Kawakage, T. Ogihara. Poly(vinyl alcohol)-clay and poly(ethylene oxide)-clay blend prepared using water as solvent[J]. Journal of Appllied Polymer Science, 1997,66(3):573-581.
    [57] D.J. Greenland. Adsorption of polyvinylalcohols by montmorillonite. Journal of Colloid Science, 1963,18:647-664.
    [58] K.A. Carrado, L.Q. Xu. In situ synthesis of polymer-clay nanocomposites from silicate gels[J]. Chemistry of Materials, 1998,10(5):1440-1445.
    [61] Liang Z M, Yin J, Xu H J. Polyimide/montmorillonite nano-composites based on thermally stable , rigid-rod aromatic amine modifiers [J]. Polymer,2003, 44(5):1391-1399.
    [62] RumpfH. Particle technology [M]. Dordrecht Hard-bound: Chapman & Hall, 1990,116-120.
    [59] 刘舒扬,杨明娇,淡宜.PMMA/TiO_2复合粒子光催化降解有机污染物的性能[J].高分子材料科学与工程,2006,22(3):93-96.
    [60] 彭富昌,邹建新,叶蓬,等.PP/TiO_2复合材料的力学性能研究[J].攀枝花学院学报,2005,22(5):116-118.
    [63] 王宝辉,陈颖,等.光致增强TiO_2超微粉体在水相中的分散作用[J].高等学校化学学报,2003,24(9):1662-1665.
    [64] 李越湘,吕功煊,李树本,等.污染物甲醛为电子给体Pt/TiO_2光催化制氢[J].分子催化,2002,16(4):241-245.
    [65] 李协吉,姚亚东,尹光福,等.纳米TiO_2分散稳定性及降解甲醛的研究.化学研究与应用[J],2006,18(3):276-279.
    [66] 魏阳,杨武,谭鸿,等.水性聚氨酯-SiO_2/TiO_2复合涂料的制备与研究[J].聚氨酯工业,2004,19(6):17-20.
    [67] 徐冬梅,张可达,樊智虹,等.纳米SiO_2改性聚乙烯醇渗透汽化膜[J].化工科技,2003,11(2):25-27.
    [68] 北京有机化工厂研究所.聚乙烯醇性质和应用[M].北京纺织工业出版社,1979,81-90.
    [69] 陈静,苏花平,李中华,等.有机硅-聚丙烯酸酯共聚乳液的防水性研究[J].现代涂料与涂装,2006,4:7-9.
    [70] 曲园园,陈美玲,高宏.有机硅改性丙烯酸酯/纳米SiO_2复合低表面能防污涂料[J].化工新型材料,2006,34(8):40-41.
    [71] 宋宝丰.纳米复合包装材料的高阻隔性[J].中国包装工业,2000,71(5):42-43.
    [72] 刘娅.甲基玉米淀粉/PVA生物可降解薄膜的研制[D].西南工业大学,2004.
    [73] 曹建军,郭刚,汪斌华,等.PP/TiO_2纳米复合材料的研制及其抗老化机理分析[J].工程塑 料应用,2004,32(7):43-46.
    [74] McGreen M.气候及老化之因素[J].环境技术,2001,(6):14.
    [75] 曹建军,郭刚,段小平,等.金红石型纳米TiO_2及改性聚丙烯的紫外-可见光谱特性研究[J].钢铁钒钛,2006,27(1):44-49.
    [76] 马承银,杨翠纯.新型无机抗菌材料[J].化工新型材料,1996,(4):41-44.
    [77] Matsunaga T, NambaY. Selective determination of microbial cells by graphite electrode[J]. Anal Chim Acta, 1984,159(1):87-94.
    [78] Yashihiko Kikuchi, Kayano Sunada, et al. Photocatalytic bactericidal effect of TiO_2 thin films: dynamic view of the active oxygen species responsible for the effect[J]. J Photochem Photobio A: Chemistry, 1997,106:51-56.
    [79] 徐瑞芬,何晓因,张鹏,等.纳米TiO_2/硅丙复合乳液的光催化抗菌性能研究[J].精细化工,2005,22(3):168-170.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700