仿生合成石质文物二氧化硅保护膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国拥有许多珍贵的石质文物,它们大都暴露野外,在经历漫长的历史变迁后,已遭受到不同程度的风化腐蚀,近现代工业发展所造成的环境污染更加剧了文物的损坏。目前应用于石质文物的保护材料有很多,对文物的保护起到了一定的效果,但也存在许多问题。为了能更有效的保护石质文物,新型保护材料的开发研究就显得尤为重要。
     国内外的野外考察都曾发现一些石刻古迹表面天然形成了一层防护膜,膜的主要成分是一水草酸钙。这些保护膜的存在使文物历经千年而完好无损,表现出极其优良的性能。现对石材表面一水草酸钙膜的仿生合成和评价已有初步研究。通过对天然一水草酸钙膜的研究和仿制,文物保护工作者注意到仿生无机材料具有优越的耐候性、与基底石材相容性好、合成条件(常温常压)温和以及对环境无污染等优点,认为是一种很有潜力的新型石质文物保护材料。
     受天然草酸钙保护膜的启发,首次采用仿生合成方法,分别以正硅酸乙酯(TEOS)和氟硅酸钠(Na_2SiF_6)为硅源,在室温条件下于青石基片表面上制备出一层SiO_2保护膜。方法一以乙醇为溶剂,用氨水催化TEOS水解,在模板剂十六烷基三甲基溴化铵(CTAB)的调控下于青石表面生长SiO_2膜。方法二以Na_2SiF_6为硅源,加入硼酸(H_3BO_3)促进其水解,在CTAB的调控下于青石表面生长SiO_2膜。讨论了青石预处理、合成组分配比、催化剂及用量、添加剂、处理时间、干燥条件等制备工艺对膜制备和膜性能的影响,探讨了反应机理,获得了优化的制备工艺,实验了膜的耐酸、耐污、接触角、吸水透气等性能,并利用XRD、SEM、FTIR等表征了膜的结构。
     实验结果表明:两种方法保护处理的青石,与原青石相比,均具有优良的耐酸、耐污性能;透气性略有下降,水的接触角有所提高,但仍保持良好的透气性和亲水性;外观没有明显变化,且具有一定的耐候性。特别是以Na_2SiF_6为硅源时膜的耐酸性和耐污性更优。添加丙三醇及在湿度较大的环境中干燥都可以防止膜的开裂。用CTAB预处理青石基片,获得的膜具有更好的性能。采用仿生合成方法制备二氧化硅保护膜用于石质文物保护具有可行性,表明是一种很有潜力的新型保护材料。
China is home to many precious historic stones, mostly exposed the wild, which have been subjected to varying degrees of weathering erosion in a lengthy historical changes, and especially been aggravated damage by the pollution caused with the development of modern industrial. At present, the application of many materials in historic stone conservation has a certain effect. But there are also some problems, so the research of new materials appears to be particularly important in order to provide more effective protection historic stone.
     Recently, the researchers have found a layer of natural protective coating formed on the surface of carved stone in the field investigation at home and abroad, whose main component is the calcium oxalate. The historic stones with this protective film are intact after Millennium, showing the film's good performance. After the preliminary biomimetic synthesis and evaluation of oxalate calcium film, the heritage conservation workers note the biomimetic inorganic material is a new potential protecting material in stone conservation for its advantages of excellent weatherability. suitable compatibility with the basement of stone, moderate reaction condition and environment pollution-free.
     Enlightened by the natural oxalate calcium protective films, for the first time the SiO_2 film was prepared on the surface of stone substrates, respectively Ethyl silicate (TEOS) and Sodium fluosilicate (Na_2SiF_6) as silicon source, at room temperature conditions in the way of biomimetic synthesis. One method is that the SiO_2 film was prepared on the surface of stone, by ammonia catalytic hydrolysis of TEOS in alcohol solvent, under the control of Cetyltrimethyl ammonium bromide(CTAB) templates. The other is that the CTAB templated silica film was prepared by hyfrolysis of Sodium fluosilicate under the condition of adding boric acid. The pretreatment of stone, the resource ratio, the amount of catalyst, the additive, the time of reaction, and the condition of drying etc. on the preparation and capability of film were investigated in the experiments of resisting acid, soil and water, the contact angle, water permeability, XRD. SEM, and FTIR. The optimized preparation process was determined. Furthermore, the reaction mechanism was simply discussed.
     Experimental results show: the protected stone in previous ways, compared with the original stone, has an excellent performance of resisting acid and soil; a slight decline breathe, the improved contact angle, but still maintains the good breath and hydrophilicity, and no significant changes in appearance. Especially, the resisting acid and soil performance of prepared film is better when Na_2SiF_6 as the silica source. Adding Glycerin and increasing humidity can prevent film cracking in the drying process. After pretreatment by using CTAB. the film on the stone surface has a better performance. The prepared biomimetic SiO_2 film is a new potential protecting material in stone conservation for its feasibility and superiority.
引文
[1] 洪坤,詹予忠,刘家永.仿生无机材料在石质文物保护中的应用[J].材料科学与与工程学报,2006,24(6):948-950.
    [2] 惠路华,洪坤,詹予忠,等.新型石质文物保护材料的应用探索[J].化工新型材料,2006,34(7):8-10.
    [3] Dewards H G M, Farweel D W, Jenkins R, et al. Vibrational Raman spectroscopic studies of calcium oxalate monohydrate and dehydrate in lichen encrustation on Renaissance frescoes[J]. Jourmal of Raman Spectroscopy, 1992, 27:185-189.
    [4] Matteini M, Moles A, Giovannoni S. Calcium oxalate as a protective mineral system for wall paintings: Methodology and analyses[C]. The Conservation of Monuments in the Mediterranean Basin. Proceedings of the 3rd International Symposium, Venice, 1994:155-162.
    [5] Matteini M, Giovannoni S. The Protective effect of ammonium oxalate treatment on the surface of wall paintings In: Painted Facades[C]. Proceedings of the Eurocare Project, Vienna 1996: 95-101.
    [6] 张秉坚,尹海燕,陈德余,等.一种生物无机材料——石质古迹上天然草酸钙保护膜的研究[J].无机材料学报,2001,16(4):752-756.
    [7] 李火明,张秉坚,刘强.一类潜在的石质文物表面防护材料——仿生无机材料[J].文物保护与考古科学,2005,17(1):59-64.
    [8] 刘强,张秉坚.石质文物表面生物矿化保护材料的仿生制备[J].化学学报,2006,64(15):1601-1605.
    [9] 王丽琴,党高潮,赵西晨,等.加固材料在石质文物保护中应用的研究进展[J].材料科学与工程学报,2004,22(5):778-782.
    [10] Yoon Y H, Brimblecombe P. Contribution of dust at floor level to particle deposit within the Sainsbury Centre for Visual Arts[J]. Studies in Conservation, 2000, 45(2): 127-137.
    [11] Yoon Y H, Brimblecombe P. Clothing as a source of fibres within museums[J]. Journal of Cultural Heritage, 2000, 1(4): 445-454.
    [12] Wang L Q, Dang G C, Wang X Q. Analysis and protection of One Thousand Hand Buddha in Dazu stone sculptures [J]. Chinese J. of Chemistry, 2004, 22(2): 172-176.
    [13] Van G R, Delalieux F, Gysels K. Cultural heritage and the environment[J]. Pure Appl . Chem., 1998, 70(12): 2327-2331.
    [14] 王君龙,程德润.环境对文物的影响与控制[J].延安大学学报(自然科学版),1998,17(2):54-57.
    [15] Machill S, Russ K, Estel K, et al. Mobility of iron during weathering of Elbe sandstone by various organic and inorganic acids. CANAS' 95 ,Colloq[J]. Anal Atomspektrosk, 1996: 595-600.
    [16] 张孝绒,张兴群.乾陵地衣调查报告[J].文物保护与考古科学,2002,14(1):15-22.
    [17] 张秉坚,周环,贺莜蓉.石质文物微生物腐蚀机理的研究[J].文物保护与考古科学,2001,13(2):15-20.
    [18] 张秉坚,周环.建筑石材的生物腐蚀[J].腐蚀与防护,2001,22(6):233-236.
    [19] 中华人民共和国文物保护法[M].北京:中国民主法制出版社,2002:1-28.
    [20] 郭宏.论文物保护科学研究的内容与方法[J].文物保护与考古科学,2003,15(3):61-64.
    [21] 陈坤龙,铁付德.材料科学在文物保护中的应用[J].中原文物,2002,1:86-88.
    [22] 韩冬梅,郭广生,石志敏,等.化学加固材料在石质文物保护中的应用[J].文物保护与考古科学,1999,11(2):41-44.
    [23] Peter M. Breathing new life into the statues of wells[J]. New Scientist, 1977, 76: 754-756.
    [24] Lee C H, Choi S W, Suh M. Natural deterioration and conservation treatment of the granite standing Buddha of Daejosa Temple, Republic of Korea [J]. Geotechnicai and Geological Engineering, 2003, 21(1): 63-77.
    [25] Lewin S Z,王金华(译).用于石刻艺术的化学合成物的现状[J].文物保护与考古科学,2001,13(2):58-64.
    [26] Lucia T, Chiara C, Marco R, et al. Evaluation of barium hydroxide treatment efficacy on a dolomatic marble[J]. Ann Chim., 2001, 91(11-12): 813-821.
    [27] 王丽琴,党高潮,梁国正.露天石质文物的风化和加固保护探讨[J].文物保护与考古科学,2004,16(4):58-63.
    [28] 甑广全.WD-10在石质文物表面封护中的应用[J].化工新型材料,2001,29(9):48-50.
    [29] 许长青.合成树脂及塑料手册[M].北京:化工出版社,1991:201.
    [30] Coatings prepared from trialkoxysilanes[P]. US Patent:4113665.
    [31] Charles M, Selwitz. The use of epoxy resins in field projects for stone stabilization[J]. Mat Res Soc Symp Proc, 1992, 267: 925-934.
    [32] Banthia A K, Gupta A P. American Chemical Society, polymer preprints[J]. Division of polymer chemistry, 2000, 4(1): 227-278.
    [33] 曹玉廷,王国建,李榕生.功能性丙烯酸/MBAM体系共聚产物的研制[J].宁波大学学报,2004,17(2):185-187.
    [34] Kumar R, Ginell W S. Evaluation of consolidants for stabilization of weak Maya limestone Methods ofevaluating products for the conservation of porous building materials in monument [M]. ICCROM, 1995: 163-178.
    [35] Puterman M, Jansen B, Kober H. Development of organosilicone-polyurethanes as stone preservation andconsolidation materials[J]. Journal of Applied polymer science, 1996, 59(8): 1237-1242.
    [36] 郭广生,韩冬梅,王志华,等.有机硅加固材料的合成及应用[J].北京化工大学学报,2000,27(1):98-100.
    [37] Bhargav J S, Mishra R C, Das C R. Environmental deterioration of stone monuments of Bhubaneswar, the temple city of India[J]. Studies in conservation, 1999, 44(1): 1-11.
    [38] 和玲,梁国正,武予鹏.有机氟聚合物加固保护砂岩文物的可行性[J].材料导报,2003,17(2):82-85.
    [39] Volpe C D, Toniolo L, Bruqnare M, et al. Partially fluorinated acrylic copolymers for stone protection: characterization and surface properties[J]. Materials Research Society Symposium Proceeding, 2002, 712(3): 91-97.
    [40] 许淳淳,何海平,何宗虎.用纳米材料改性的石质文物防护剂的耐老化性及重涂性研究[J].腐蚀与防护.2005,26(1):18-20.
    [41] Vicini S, Princi E, Pedemonte E, et al. In situ polymerization of unfluorinated and fluorinated acrylic copolymers for the conservation of stone[J]. Journal of Applied polymer science, 2004, 91(5): 3202-3213.
    [42] Wheeler G S, Shearer G L, et al. Toward a better understanding of B72 Acrylic Resin/MTMOS stone consolidants[J]. Mater Res Soc Symp Proc., 1991,185: 209-225.
    [43] 温晓龙.纳米材料在石质文物保护中的应用与展望[J].文物世界,2004,5:77-78.
    [44] 刘吉平,郝向阳.纳米科学与技术[M].北京:科学出版社,2002.
    [45] 许淳淳,何宗虎,李伟,等.添加TiO_2、SiO_2纳米粉体对石质文物防护剂改性的研究[J].腐蚀科学与防护技术,2003,15(6):320-323.
    [46] Wang Y P, Zhu L, et al. Biomimetic synthesis technology and its application researches [J]. Chemical Industry and Engineering, 2001, 15(5): 272-278.
    [47] Kresge, Charles T. Hierarchical inorganic materials[J]. Advanced Materials, 1996, 2(8): 181-182.
    [48] Mann S, Ozin G A. Synthesis of inorganic materials with complex form[J]. Nature, 1996, 382(25): 313-318.
    [49] Garty J, Kunin P, Delarea, et al. Calciumoxalate and sulphate containing structures on the thallial surface of the lichen Ramalina lacera: response to polluted air and simulated acid rain [J]. Plant Cell Environ, 2002, 25(12): 1591-1604.
    [50] Arocena J M, Hall K. Calcium phosphate coatings on the Yalour Islands, Antarctica: formation and geomorphic implications[J]. Arctic Antarctic and Alpine Res, 2003, 35(2): 233-241.
    [51] Shi J M, Ding C X, Wu Y H. Biomimetic apatite layers on plasmasprayed titanium coatings after surface modification [J]. Surf Coat Technol, 2001, 137: 97-103.
    [52] Noll F, Sumper M, Hampp N. Nanostructure of diatom silica surfaces and of biomimetic analogues[J]. Nano Lett, 2002, 2(2): 91-95.
    [53] 马豫峰,蔡继业,杨培慧,等.高分子基质作用下草酸钙的仿生合成[J].高分子材料科学与工程,2004,20(4):195-198.
    [54] 张秉坚,尹海燕,铁景沪.石质文物表面防护中的问题和新材料[J].文物保护与考古科学,2000,12(2):1—4.
    [55] Baer N S, Snethlage R. Saving our architectural heritage(the conservation of historic stone structure) [M]. Berlin: John Wiley & Sons Press, 1996:181-233.
    [56] Erhard M, Winkler. Weathering and weathering rates of natural stone[J]. Environ Geol Sic, 1987, 9(2): 85-92.
    [57] Archibald D D, Mann S. Template mineralization of self-assembled anisotropic lipid microstructures [J]. Nature, 1993, 364(29): 430-433.
    [58] Heuer A H, Fink D J, et al. Innovative materials processing strategies: a biomimetic approach [J]. Science, 1992, 255(28) : 1098-1105.
    [59] Arias J L, Fernandez M S. Biomimetic processes through the study of mineralized[J]. Shells Mater Charact, 2003, 50: 189-195.
    [60] Cui F Z, Zhou L F, Cui H, et al. Phase diagram for controlled crystallization of calcium phosphateunder acidic organic mono-layers[J]. J Crystal Growth, 1996, 169(3): 557-562.
    [61] Mao C, Li H, Cui F, et al. Oriented growth of hydroxyapatite on (0001) textured titanium with functionalized self-assembled silane monolayeras template[J]. J Mater Chem, 1998, 8: 2795.
    [62] Yang H, Kuperman A, Coombs N, et al. Synthesis of oriented films of mesoporous silica on mica [J]. Nature, 1996, 379(6560-6568): 703-705.
    [63] Bunker B C, Rieke P C, Tarasevich B J, et al. Ceramic thin-film formation on functionalized interfaces through biomimetic processing[J]. Science, 1994, 264(5155): 48-55.
    [64] Kresge C T, Leonowicz M E, Roth W J, et aL Ordered mesoporous molecular sievessynthesized by a liquid-crystal template mechanism[J]. Nature, 1992,359(59): 710-712.
    [65] Tanev P T, Pinnavaia T J. Biomimetic templating of porous iamellar silicas by vesicular surfactant assemblies[J]. Science, 1996, 271 (5253):1267-1269.
    [66] Grun M, Lauer I, Unger K K. Synthesis of micrometer- and submicrometer-size spheres of ordered mesoporous oxide MCM-41 [J]. Advanced Materials, 1997,9(3): 254-257.
    [67] Krukm, Jaroniec N, Ryoo R, et al. Characterization of high-quality MCM-48 and SBA- 1 mesoporous silicas [J]. Chem Mater, 1999, 11: 2568-2572.
    [68] He J B, Wen S L. Biomineralization [J]. Nature(China), 1996, 19(5): 272-276.
    [69] Abe Y, Kokubo T, Yamamuro T. A simplified method for captureing primary fracture surfaces for fractographic analysis [J]. J Mater Sci Mater Med, 1990, 9: 233-238.
    [70] Oliver S, Kuperman A, et al. Lameilar aluminophosphates with surface patterns that mimic diatom and radiolarian microskeletons [J]. Nature, 1995, 378(6552): 47-50.
    [71] Li F, Feng Q L, Cui F Z, et al. A simple biomimetic method for calcium phosphate coating [J]. Surf Coat Technol, 2002, 154(1): 88-93.
    [72] 中华人民共和国国家标准,GB/T9995,纺织材料含水率和回潮率的测定烘箱干燥法[M].北京:中国标准出版社,1997.
    [73] 陈丽琼,刘杰,刘伟,等.有机硅改性丙烯酸酯乳液性能的研究[J].中山大学学报,2003,42(2):38-41.
    [74] 王晓萍,于云,胡行方,等.液相沉积法制备氧化物薄膜[J].功能材料,2000,31(4):341-343.
    [75] Nagayama H, Honda H, Kawahara H. A New Process for Silica Coating[J] J. Electrochem. Soc., 1988, 135(8): 2013-2016.
    [76] Koji T, Tomoyuki A, Nobusuke Y, et al. Liquid phase deposition of a flm of silica with an organic functional group[J]. J. of Non-Crystalline Solids, 1998, 231 (8): 161-168.
    [77] Awazu K, Kawazoe H, Seki K. Growth mechanism of silica glasses using the liquid phase deposition(LPD)[J]. J. Non-Cryst. Solids, 1992, 151 (1-2): 102-108.
    [78] Lin Y S, Kumakiri I, Nair B N, Alsyouri H. Microporous inorganic membranes[J]. Separation and purification methods, 2002, 31 (2): 229-379.
    [79] 马建华,吴广明,魏建东,等.折射率可调疏水型SiO_2光学薄膜的制备研究[J].原子能科学技术,2002,36(4/5):335-339.
    [80] 房俊卓,高继红,徐崇福.有机氟改性丙烯酸乳液的合成及其膜表面性能的研究[J].宁夏大学学报,2006,27(2):252-254.
    [81] 曲园园,陈美玲,高宏.有机硅改性丙烯酸酯/纳米SiO_2复合低表面能防污涂料[J].化工新型材料,2006,34(8):40-41.
    [82] 高朋召,王红洁,金志浩.SiO_2溶胶-凝胶转变过程的动力学研究及应用[J].复合材料学报,2003,20(4):122-127.
    [83] 李智,姚熹,张良莹.sol-gel法制备多孔纳SiO_2薄膜[J].电子元件与材料,2005,24(2):32-34.
    [84] 熊华山.溶胶—凝胶法制备SiO_2增透膜的研究[D].四川大学硕士学位论文,2004,4.
    [85] 肖进新,赵振国.表面活性剂应用原理[M].北京:化学工业出版社,2003:32.
    [86] 周树学,武利民,游波,等.有机.无机纳米复合涂料的制备、结构和性能[C].中国化工学会(IESC)年会,2006:389-402.
    [87] 张秉坚,尹海燕,铁景沪.石质文物表面防护中的问题和新材料[J].文物保护与考古科学,2000,12(2):1-4.
    [88] L.J.贝拉米.复杂分子的红外光谱[M].北京:科学出版社,1975:426-428、431、418-421.
    [89] 张勇,王民权.SiO_2凝胶基质对邻苯二甲酸光、热性能的影响[J].硅酸盐通报,1999,(1):58-61.
    [90] 范玉殿等.薄膜内应力的起源[J].材料科学与工程,1996,14(1):5-12.
    [91] 方平安,吴召平.溶胶-凝胶制备二氧化硅薄膜的开裂问题研究[J].玻璃与搪瓷,2000,28(3):14-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700