热管式大功率电子模块散热器的研究与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热管是一种高效传热元件,特别适用于小温差高热流密度条件下的散热。随着电子技术的飞速发展,电子元件的热流密度亦愈来愈高,将热管技术应用于大功率电子元器件中的散热,已成为当前一个十分重要的课题。
    作为典型的大功率电子模块IGBT,具有与其它大功率电子元器件相似的热设计要求,本文针对IGBT,在查阅大量相关文献的基础上,应用理论分析和试验研究相结合的方法,系统地研究了此散热器中的传热核心元件——热虹吸管的性能,并开发研制热管式IGBT散热器。
    本文的主要研究结果为:
    (1) 热虹吸管启动性能的研究:通过对从不同充液量、启动前状态、内部汽化核心状态对启动的影响所进行的试验研究,认为大长径比的铜—水热虹吸管管内相变不仅仅为沸腾,而是以蒸发为主,伴有薄液膜的沸腾。本文从理论的角度,定性地分析了受蒸发面积控制的蒸汽生成量对热虹吸管启动性能的影响。通过管壁上某一特征热电偶的温度变化过程,分析说明了热虹吸管在启动整个过程内部的蒸汽压、蒸汽流量、相变面积以及蒸汽生成量的一些半定量的关系;
    (2) 最佳充液量的研究:热虹吸管的传热性能与其充液量有着密切的关系,本文采用理论分析与试验研究相结合方法,对热虹吸管内部的充液量进行研究,给出了较为简单且可靠的计算方法;
    (3) 热虹吸管在倾斜状态下的传热性能:本文讨论了热虹吸管在倾斜状态下的传热机理及性能,研究了正常工作情况下倾斜热虹吸管的传热性能,为热虹吸管在电子模块散热器中的进一步应用奠定了基础;
    (4) 开发研制了热管式IGBT散热器:经过理论分析、模拟计算和试验验证,证明所开发的热管式IGBT散热器完全能满足设计要求,并且进一步分析了接触热阻是影响散热器性能的关键因素之一。
    各项研究结果表明:热管式散热器是完全可以满足散热要求的,是解决大功率电子模块散热的有效途径。这些结果不但拓展了大功率电子模块散热器的方式,也为热管式大功率电子模块散热器走向市场奠定了基础。
As we know, heat pipe is a high efficient component of heat transfer which is especially applicable to the situation of high heat flux. With the rapid development of electronic technology, it becomes an important topic to apply heat pipe technology to high power electronic devices.
    As a typical power electronic module, IGBT has the same thermo design request as other high power electronic devices. Based on consulting a number of references, the performance of thermosyphon, which is the key component of heat pipe heat sink for IGBT, is studied, and the heat pipe heat sink for IGBT is developed and researched with the approach of combining the theoretic analysis and the experiment study.
    The main results in this paper are as follows:
    (1) Study on starting up performance of thermosyphon: According to the study on the states before and after starting up of thermosyphon with the various filling amount, it is considered that the phase change heat transfer inside the copper-water thermosyphon with a large ratio of length and diameter is not only influenced by the boiling degree of superheat, but also controlled by evaporation and companied with the boiling of the thin liquid film. The influence of the vapor amount from the controlled evaporation area to the performance of the thermosyphon is studied theoretically. The semi-quantitative correlation of vapor pressure, vapor flow amount, area of phase change and vapor amount inside the thermosyphon during the whole process of starting up is described by means of the temperature change of a thermocouple installed on the pipe wall.
    (2) Study on the optimal filling amount: The performance of thermosyphon is greatly affected by the filling amount. The work fluid filling amount in the thermosyphon is studied, and the more simple and reliable approach of calculating optimal filling amount is presented by means of combining the theoretic analysis and the experimental study.
    (3) Study on the performance of the inclined thermosyphon: The mechanism and performance of heat transfer inside the inclined thermosyphon, and heat transfer performance of the inclined thermosyphon in operating situation are discussed. The foundation of applying thermosyphon to heat sink for the electronic module is built.
    (4) Development of the IGBT heat pipe heat sink: It is found that the heat pipe heat sink for IGBT can completely meet the design requests through the theoretic analysis, simulating calculation and experimental verification. Then, the one of key factors of improving the performance of heat sink is the contact thermal resistance.
     All of research results indicated that heat pipe heat sink for IGBT can completely meet the thermodispersion request which is an effective method to solve the cooling of the power electronic module. These results not only develop the way of applying heat sink for power electronic module, but also establish the base of commercialization of heat pipe heat sink for power electronic module.
引文
[1] http://www.electronics-cooling.com/html/2000_jan_a2.html 2001-7-28[EB/OL];
    [2] L A Nelson, J E Frita. Pirect heat pipe cooling of semiconductor devices[C]. Proceedings of 3rd International heat pipe conference. 1978;
    [3] www.thermacore.com/pdfs/kilowatt.pdf Multi-Kilowatt Heat Pipe Heat Sink Performance[EB/OL]
    [4] www.thermacore.com/pdfs/mod_benefits.pdf Module and System Level Benefits of High Flux Heat Pipe Heat sinks[EB/OL];
    [5] T.汉达, S.爱伊达, J.乌兹诺米亚. 高速高密度芯片模块的热设计[J]. 计算机工程与科学. 1994(2): 82~86;
    [6] 陈恩湾, 卢锷. 空间遥感器CCD组件热设计[J]. 光学精密工程 2000, 8(6)
    [7] 谢德仁. 电子设备热设计工作点评[J]. 电子机械工程. 1999(1)
    [8] Manferd, Groll, Marcus, Schneider, Valérie Sartre et al.Thermal control of electronic equipment by heat pipes [J]. Rev. Gén. Therm. 1998 ( 37): 323~352;
    [9] Babin, B.R, Leiner W, Peterson GP. Cooling electronic components with thermosyphons, American Society of Mechanical Engineers[J]. Heat Transfer Division. (Publication) HTD 1990, 153(25-30)
    [10] www.thermacore.com/pdfs/hpcp2.pdf. The Use of Heat Pipes In the Cooling of Portables with High Power Packages[J].
    [11] T. P. Cotter. Theory of heat pipe s LA-3246-MS . 1965
    [12] 庄骏. 热管与热管换热器[M]. 上海: 上海交通大学出版社. 1989,5
    [13] V. Maziuk, A. Kulakov, M. Rabetsky, L. Vasiliev, M. Vukovic. Miniature heat-pipe thermal performance prediction tool software development[J]. Applied Thermal Engineering . 2001(52): 559-571;
    [14] 王水平, 武芒. IGBT功率开关模块的发展及应用[J]. 电子科技.1997, 42(4)
    [15] 李恩玲, 周如培. IGBT的发展现状及应用[J]. 半导体杂志. 1998, 23(3)
    
    
    [16] 黄挚雄,李志勇,危韧勇. 智能功率模块IGBT-IPM及其应用[J]. 电气传动自动化. 2002,24(2)
    [17] 薛英杰, 徐之文, 毕英满, 李耀光. 大功率IGBT的并联技术在变频器中的应用[J]. 电机电器技术. 1997(4)
    [18] 孙继先, 徐道恒, 张德宽, 曲国杰. 多路开关电源在 IGBT变频器上的应用与研究[J]. 电气传动. 2000(3)
    [19] 唐义良, 崔文进, 彭进. IGBT驱动拓扑及IR2130在变频器中的应用[J]. 电气传动. 1999(1)
    [20] 王海峰, 罗应力, 刘道中. IGBT在变频装置中的应用[J]. 机械工程师. 1994(3)
    [21] 戴育航. IGBT中频变频装置及其在感应加热领域中的应用[J]. 工业加热. 2002(1)
    [22] 王 志. IGBT在石油感应加热电源中的应用[J]. 电力电子技术. 1999(2)
    [23] 陈军安, 蔡 晓. 国产IGBT模块在弧焊电源中的应用[J]. 电力电子技术. 1997(4)
    [24] 尹国云, 马良增. IGBT逆变式直流手弧焊机在黄金企业的应用[J] 矿山机械. 2002(2)
    [25] 代彦锦. 新型精密线性光耦器件在IGBT. 逆变焊机中的应用[J]. 电焊机. 1999,29(3): 9~12
    [26] 孙荣棣, 戴广明. IGBT在雷达发射机调制器中的应用[J]. 现代雷达. 2002(4)
    [27] 李孝全, 白小青, 仵浩. IGBT在某静变电源中的应用[J]. 现在电子技术. 2001(1)
    [28] 董 兵, 张庆海, 钟循进. IGBT在雷达发射机中的应用[J]. 电力电子技. 2000(4)
    [29] 张红莲,宋立琴. IGBT-PWM调速系统在机床电力拖动中的应用[J]. 机电工程. 2002, 19(1)
    [30] 张红莲,宋立琴. IGBT-PWM调速系统在机床电力拖动中的应用[J]. 水利电力机械. 2001, 23(4)
    [31] 薛志勇, 朱玫. IGBT在表面处理方面的应用实践[J]. 大连大学学报. 2002, 23(2)
    [32] 张传胜, 刘秀娥, 彭鸿雁, 郭 昆, 张晓平. 应用IGBT的小型化医用二氧化碳激光器电源[J]. 黑龙江电子技术. 1999(2)
    [33] 石季英, 邢歧容, 沈宇霞, 王清月. IGBT在大功率脉冲激光器中的应用[J]. 电力电子技术. 1995(4)
    
    
    [34] 张曙红, 刘勃, 刘亚满. IGBT模块在激光电源中的应用及其对激光电源性能的改进[J]. 应用激光. 1999, 19(1)
    [35] 刘 斌,胡 骁. IGBT在激光电源中的应用[J]. 电焊机. 2000, 30(11): 26~28
    [36] 王雪洁, 娄 莹. IGBT调压式直流充电机的设计与应用[J]. 电工技术杂志. 2002(1)
    [37] Thomas Luttin. (瑞士) 大功率应用中的IGBT技术[J]. 国外内燃机车. 2001(5)
    [38] 姚银燕. IGBT在电力牵引机车斩波回馈制动中的应用[J]. 沈阳电力高等专科学校学报. 2000(2)
    [39] H-D Haake, C.Kassow, L.Schulting. IGBT直流调节器在铁路动力车辆上的首次应用-传动系统. 现代化[J]. 国外内燃机. 1998(3)
    [40] Hans-Joachim, Knaak. 采用IGBT技术的牵引变流器-新晶体管技术应用的优点和运用经验[J]. 国外内燃机车. 1996(10)
    [41] 来献达. 应用IGBT的大功率稳压电源设计[J]. 机电工程. 1994(3)
    [42] 王军. IGBT及其在线切割机脉冲电源中的应用[J]. 电加工与模具. 2001(1)
    [43] 张新, 赵长汉, 高广智. IGBT型8~15kHz/250kW双频电源的开发和应用[J]. 工业加热.1998(1)
    [44] 汪伟, 刘闯, 高长水. 零电压开关下的IGBT在电火花加工脉冲电源中的应用研究[J]. 航空精密制造技术. 1999, 35(4)
    [45] 黄采伦, 何早红. EXB系列IGBT驱动模块及其应用[J]. 国外电子元器件. 1999(6)
    [46] 陈宁, 周继华, 焦振宏. GTR、IGBT、在RDCLI在变频调速装置中的应用特点[J]. 电力电子技术. 1996(3)
    [47] 王巍. CT高频X线机IGBT的应用原理及故障分析[J]. 医疗设备信息. 1995(5)
    [48] 赵有洲. 电阻温度系数测量技术[J]. 混合微电子技术. 13(3)
    [49] http://www.fairchildsemi.com/[EB/OL]
    [50] http://accelconf.web.cern.ch/AccelConf/a98/APAC98/4D017.PDF[EB/OL]
    [51] http://www.ece.rutgers.edu/~ksheng/research/pdf/IEEE_TIE_sheng.pdf[EB/OL]
    [52] http://em.tycoelectronics.com/images/pcim2001.pdf[EB/OL]
    [53] 王彦刚, 武力, 崔雪青. IGBT模块封装热应力研究[J]. 电力电子技术. 2000(6)
    张胜红,王国忠,程兆年. 电子封装功率模块PbSnAg焊层热循环可靠
    
    [54] 性[J]. 中国有色金属学报. 2001, 11(1)
    [55] 郑利军, 任天良, 姜燕. 电力电子技术. PWM方式开关电源中IGBT的损耗分析[J]. 1999(5)
    [56] http://www.eupec.com/p/e/pdf/ed_igbtstateof97.pdf[EB/OL]
    [57] http://www.ece.rutgers.edu/~ksheng/research/pdf/IEEE_TPE_igbt_gate.pdf[EB/OL]
    [58] http://www.iea.lth.se/~ielper/power_electronics/EPE01_PP00110-paper.pdf[EB/OL]
    [59] http://www.scut-co.com/maindoc/techtrade/fuji/documents/ipm/600V/6MBP30RY060.pdf [EB/OL]
    [60] http://accelconf.web.cern.ch/AccelConf/p95/ARTICLES/WAA/WAA11.PDF[EB/OL]
    [61] Ehchao Yu, Yogandea. Joshi heat transfer enhancement from enclosed discrete component using pin-fin heat sinks[J]. heat and mass transfer. 2000( 45) :4957-4966
    [62] Kambiz Vafai,Lu Zhu. Analysis of two-layered micro-channel heat sink concept in electronic cooling[J]. Heat and Mass Transfer. 1999(42): 2287-2297
    [63] Kambiz Vafai,Lu Zhu. Analysis of two-layered micro-channel heat sink concept in electronic cooling[J]. Heat and Mass Transfer.  1999(42): 2287-2297
    [64] Andrei G, Fedorov, Raymond, Viskanta. Three-dimensional conjugate heat transfer in the microchannel heat sink for electronic packaging[J]. Heat and Mass Transfer. 2000(43): 399-415
    [65] C.Y. Zhao, T.J. Lu. Analysis of microchannel heat sinks for electronics cooling[J]. Heat and Mass Transfer. 2002(45): 4857-4869
    [66] Alain Bricard a., Charlotte Gillot b, Corinne Perret b. Christian Schae.er Micro-échangeurs intégrés à des composants de puissance[J]. Mec. Ind. 2001(2): 435-442
    [67] G. Hetsroni, A. Mosyak, Z. Segal, G. Ziskind. A uniform temperature heat sink for cooling of electronic devices[J]. Heat and Mass Transfer .2002(45): 3275-3286
    [68] Rahmatollah Khodabandeh, Bj?rn .Palm Influence of system pressure on the boiling heat transfer coefficient in a closed two-phase thermosyphon loop [J]. Int. J. Therm. Sci..2002(41): 619-624;
    赵蔚琳 充液量对钠热管启动运行影响的实验研究[J] 山东建材学院学
    
    [69] 报1994年12月第8卷第4期;
    [70] 捷曼尔 M. G.,胡亚才,冯踏青,屠传经. 钠钾合金高温热管性能试验研究[J] 浙江大学学报(工学版) 1999年7月第33卷第4期;
    [71] Jean Mechel Tournier, Mohanmed El-Genk. A vapor flow model for analysis of liquid-metal heat pipe startup from a frozen state [J]. Int. J. Heat Mass Transfer Vol. 39 No. 18 pp. 3767-3780. 1996;
    [72] Jong Hoon Jang, Cleverland. Startup characteristic of a potassium heat pipe from frozen state [J]. J Thermophysics & Heat Transfer, 9 , 1, 1995;
    [73] Jean Mechel Tournier, Mohanmed El-Genk. Startup of a horizontal lithium-molybdenum heat pipe from a frozen state [J]. International Journal of Heat and Mass Transfer 46(2003) 671-685;
    [74] 彭晓峰 王补宣 胡杭英等 零重力中平行通道热管启动融化特性的地面实验[J] 应用基础与工程科学学报 1997年6月第5卷第2期;
    [75] 袁竹林 赵孝保 新型温控热管运行特性及启动过程试验研究[J] 热能动力工程 2002年5月第17卷(总第99期);
    [76] Ioan Sauciuc, Aliakbar Akbarzadeh, Peter Johnson. Temperature control using variable conductance closed two-phase heat pipe [J]. Int. Comm. Heat Mass Transfer, Vol. 23, No. 3, pp. 247-433, 1996;
    [77] Y. Wang, K. Vafai. Transient characterization of flat plate heat pipes during startup and shutdown operations [J]. International Journal of Heat and Mass Transfer 43(2000) 2641-2655;
    [78] N. Zhu, K. Vafai. Analytical modeling of the startup characteristics of asymmetrical flat-plate and disk-shaped heat pipes [J]. Int. J. Heat Mass Transfer. Vol. 44 No. 17. pp. 2619-2637. 1998;
    [79] Tim J. LaClair, Issam Mudawar. Thermal transients in a capillary evaporator to the initiation of boiling [J]. International Journal of Heat and Mass Transfer 43 (2000) 3937-3952;
    [80] K.S. Ong, Md. Haider-E-Alalhi. Experimental investigation on the hysteresis effect in vertical two-phase closed thermosyphons [J]. Applied Thermal Engineering. 1999(19): 399-408;
    [81] 李菊香 徐通明分离式热管的传热极限[J] 南京化工大学学报 1998年1月第20卷 第1期;
    [82] 王文 熊锐 屠传经 分离型热管的充液量分析[J] 动力工程 1997年6月 第17卷第3期;
    [83] 张红 分离式热管换热器最佳工作状态的研究[J] 石油化工设备技术,1996 17(3);
    
    
    [84] 曹子栋 沈月芬 庄正宁 分离式热管换热器充液率的试验研究[J] 化工机械 1997年第21卷 第5期;
    [85] 易杰 王经 张红 庄骏 小螺线管蒸发段分离式热管充液量分析[J] 石油化工设备 2001年7月 第30卷 第4期;
    [86] Jie Yi, Zhen-Hua Liu, Jing Wang. Heat transfer characteristics of the evaporator section using small helical coiled pipes in a looped heat pipe [J]. Applied Thermal Engineering 23 (2003) 89-99;
    [87] S. Rittidech, P. Terdtoon, M. Murakami et al. correlation to predict heat transfer characteristics of a closed-end oscillating heat pipe an normal operating conduction.[J] Applied Thermal Engineering 23 (2003) 497-510;
    [88] Sameer Khandekar, Nicolas Dollinger, Manfred Groll. Understanding operational régimes of closed loop pulsating heat pipes: an experimental study [J]. Applied Thermal Engineering 23 (2003) 707-719;
    [89] 庄骏 张红 热管技术及其工程应用[M] 北京 化学工业出版社 2000年6月 第1版pp. 80-81;
    [90] 庄正宁 沈月芬 张焕等 分离式热管倾斜布置蒸发管流动特性的试验研究[J] 化工机械 1998 第25卷 第1期;
    [91] 朱玉琴 分离式热管倾斜蒸发段流动特性实验[J] 西北电力技术 2000年第3期
    [92] 朱玉琴 曹子栋 分离式热管倾斜蒸发端传热特性的试验研究[J] 动力工程 2001年4月第21卷第2期;
    [93] Adnan M. Shariah, A. Ecevir. Effect of hot water load temperature on the performance of a thermosyphon solar water heated with auxiliary electric heated [J]. Energy Comers. Mgml Vol. 36 No. 5, pp. 289-296 1995;
    [94] I. M. Michealides, S. A. Kalogirou, I. Chrysis et al. Comparison of performance and cost effectiveness of solar heaters at different collector tracking modes in Cyprus and Greece [J]. Energy Conversion & management 40 (1999) 1287-1303;
    [95] T. Payakaruk, P. Terdtoon, S. Ritthidech. Correlations to predict heat transfer characteristics of an inclined closed two-phase thermosyphon a normal operating conditions [J]. Applied Thermal Engineering. 2000(20): 781~790;
    [96] Zuo Z.J. & Gunnerson F. S., Heat transfer analysis of an inclined two-phase closed thermosyphon [J]. Transaction-ASME: Journal of Heat Transfer, 1995, 117/4(1073-0075);
    Robert Thomas Dobson. Simulation of the two-phase flow in thermosyphon
    
    [97] using an inclined transparent tube with the low-end closed and the upper-end open [J]. Rev. Gen. Therm. (1998) 37,968-972;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700