压电式推力测试系统动态性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
姿控发动机启动、关机频繁,而且主要以脉冲方式工作,产生一系列持续时间不等的脉冲力调整姿态,并且推力随时间快速变化,这就对测试系统提出了比较高的要求,不仅要求推力测试系统的灵敏度要高,更要求系统的动态性能良好。
     分析了发动机动态推力测试的难点,分别从力敏元件的选择、测试台架的结构以及信号采集单元对推力测试系统进行总体方案的讨论。针对研制成功的以压电传感器为核心的新型发动机推力测试系统,本文对其动态性能进行了研究。数学模型是研究系统性能的基础,采用机理分析法建立了压电测力平台的二阶传递函数模型,分析了其阶跃响应性能。采用系统辨识法建立了整个测试系统的高阶数学模型,并对模型进行了回归效果验证,结果表明理论模型与实测曲线吻合较好。根据建立的数学模型,采用仿真与实验结合的方法对系统的动态特性进行了研究。在MATLAB中仿真分析了推力测试系统的阶跃响应和梯形脉冲响应。采用矩形脉冲力模拟实际推力进行了动态标定试验,获得了矩形力激振时测试系统的动态响应曲线。研究了阻尼比对测试系统动态性能的影响。结果表明,压电式推力测试系统具有高刚度、高固有频率的特性,满足推力测试要求,但是阻尼比低,有一定超调误差。为了减小测试误差,采用阻尼补偿的方法对系统的动态特性进行改善,对补偿前后系统的阶跃响应、梯形响应以及动态标定结果进行比较,结果表明,对于压电式推力测试系统,采用阻尼补偿的方法改善了系统的动态性能,减小了动态推力测试的误差。
Attitude-control rocket starts and shuts frequently, working in the impulse way. It generates a series of impulse force, which is differently lasted and quickly changed, to adjust attitude. These propose higher requirements to thrust testing system:not only high sensitivity, but also good dynamic performance.
     The difficulties of motor thrust measurement is analysed, and scheme of the thrust testing system is discussed from the aspects of sensor selection, stand structure and signal acquisition. Taking piezoelectric as the core, a novel motor thrust measurement system is developed. Based on this fact, dynamic performance of the new thrust testing stand is studied in this paper. The groundwork of performance studying is mathematical model. The second order transfer function model of the piezoelectric force test platform is established via mechanism analysis, and the step response performance is studied. Besides, the high order mathematical model is built for the whole of the measurement system, and the regression effect of the model is examined. The results indicate that the theoretical model agreed well with the experiment curve. Based on the mathematical model established, dynamic performance of the testing system is studied, combing with simulation and experimental methods. The step response performance and the response of trapezoidal pulse is analysed by the means of simulation in MATLAB. Dynamic calibration is carried out by using square impulse to simulate the engine thrust, and the response curve is obtained. Influence on dynamic performance of the testing system by damping ration is studied. The results show that piezoelectric thrust testing system has advantages of high stiffness and natural frequency, it can meet the requirements of thrust test, but the damping ration is low and the overshoot is big. In order to decrease the measurement error, dynamic performance of the system is improved by the using of the damping compensation. The followings are compared with and without damping compensation:step response, trapezoid impulse response and dynamic calibration curve. The compensation results show that, by the means of damping compensation, dynamic performance of the piezoelectric thrust testing system can be improved and measurement error can be decreased.
引文
[1]陈启智,沈赤兵,王克昌.国外小推力液体火箭发动机的最新进展[J].上海航天.1996(03):41-45.
    [2]薛群,徐向东.固体火箭发动机测试与试验技术[M].北京:宇航出版社,1994.
    [3]刘伟亮.姿控发动机高空模拟试车动态推力测试技术研究[D].国防科学技术大学,2005.
    [4]郭霄峰.液体火箭发动机试验[M].北京:中国宇航出版社,1990.
    [5]OLLIGES J D, KILLINGSWORTH M D, LILLY C T. Thrust Stand Mass Balance Measurements of Hybrid Motor Mass Flow[C].43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cincinnati, OH,2007.
    [6]NOBUHIRO Y, TOSHIYA K, KOICHI O. Transient Analysis of the LE-7A Rocket Engine Using the Rocket Engine Dynamic Simulator[C].40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Florida,2004.
    [7]DIMITRI T, STEFAN Z G, ADAM G, et al. Pulse Performance Evaluation for Orbital Propulsion Thrusters[C].42st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Sacramento, California,2006.
    [8]刘伟亮,吴建军.机电一体化推力测量系统的研制及应用[J].火箭推进.2004,30(06):50-54.
    [9]江文杰.500N发动机新型推力架的研制[J].推进技术.1988(02):88-91.
    [10]RUNYAN R B, RYND J P, SEELY J F. Thrust Stand Design Principles[C].17th Aerospace Ground Testing Conference, Nashville, TN,1992.
    [11]JEROLD W E, DANIEL H S. Progress in Thrust Measurements from Micro Pulsed Plasma Discharges[C].43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cincinnati, OH,2007.
    [12]BRIAN C D, ANDREW D K. Development of a Nano-Impulse Balance for Micropropulsion Systems [C].41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Tucson, Arizona, 2005.
    [13]HAAG T W. Thrust Stand for Pulsed Plasma Thrusters[J]. Review of Scientific Instruments. 1997,5(68):2060-2067.
    [14]BOCCALETTO L. Design and Testing of a Micro-Newton Thrust Stand for FEEP[C].36th AIAA/ASIVIE/SAE/ASEE Joint Propulsion Conference, Huntsville, AL,2000.
    [15]JUNKINS E J. A Pulse Performance Test Stand[C]. AIAA 2nd Flight Test, Simulation and Support Conference, Los Angeles, California,1968.
    [16]RUNYAN R B, DEKEN L R, MILLER J T. Structural Dynamics of a Small Rocket Thrust Stand[C]. 28th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Nashville, TN,1992.
    [17]欧阳华兵,徐温干.姿控发动机推力测量系统的动态建模与补偿[J].航天控制.2006,24(05): 78-81.
    [18]董洪强,袁杰红.小推力液体火箭发动机动态推力测试台架设计[J].中国测试技术.2007,33(02):38-41.
    [19]王洪业.传感器工程[M].长沙:国防科技大学出版社,1997.
    [20]侯向荣.固体火箭发动机试验架性能试验方法[J].推进技术.1994(02):72-77.
    [21]孙宝元,张贻恭.压电石英力传感器及动态切削测力仪[M].北京:计量出版社,1985.
    [22]钱敏,孙宝元,张军.整体式三维压电测力平台的研制[J].大连理工大学学报.2000,40(05):570-572.
    [23]李卫民,杨红义,王宏祥.ANSYS工程结构应用案例分析[M].北京:化学工业出版社,2007.
    [24]黄俊钦.静、动态数学模型的实用建模方法[M].北京:机械工业出版社,1988.
    [25]杨叔子,杨克冲,吴波.机械工程控制基础[M].武汉:华中科技大学出版社,2005.
    [26]徐科军.传感器动态特性的实用研究方法[M].合肥:中国科学技术大学出版社,1999.
    [27]曲国杰.压电式四维切削测力仪的研制[D].大连理工大学,2009.
    [28]杨肃,唐恒龄,廖伯瑜.机床动力学(上)[M].北京:机械工业出版社,1983.
    [29]于连栋.动态测量系统现代建模理论研究[D].合肥:合肥工业大学,2003.
    [30]马思娟.频域法在热工对象辨识中的应用研究[D].北京:华北电力大学,2008.
    [31]李言俊,张科.系统辨识理论及应用[M].北京:国防工业出版社,2003.
    [32]黄长艺,严普强.机械工程测试技术基础[M].第二版.北京:机械工业出版社,2001.
    [33]傅志方,华宏星.模态分析理论与应用[M].上海:上海交通大学出版社,2000.
    [34]陈奎孚,焦群英.半功率点法估计阻尼比的误差分析[J].机械强度.2002,24(04):510-514.
    [35]翟怡,孙宝元,钱敏,等.压电石英推力与推力矢量传感器的研制[J].压电与声光.2007,29(02):164-166.
    [36]MARQUART J E, COULTER M S. Impulse Measurement Technology Development at the Arnold Engineering Development Center (AEDC) [C].36th Aerospace Sciences Meeting and Exhibit,Reno,NV,1998.
    [37]张伟.基于LabVIEW的应变式力传感器动态特性及动态测量平台的研究[D].中国计量科学研究院,2010.
    [38]孔祥东,王益群.控制工程基础[M].北京:机械工业出版社,2008.
    [39]张丽丽,孙宝元,钱敏,等.可控式梯形脉冲信号发生装置的研制[J].仪表技术与传感器.2008(04):71-73.
    [40]LEE T S, POTAPKIN A. The Performance of a Hybrid Rocket with Swing GOx Injection[C]. Proceedings of International Conference on the Methods of Aerophysical Research, Novosibirsk, Russia,2002.
    [41]王志勇,孙宝元,张军,等.对火箭发动机推力矢量测试系统的标定[J].传感器与微系统.2007,26(01):64-66.
    [42]张丽丽.火箭发动机小力值动态测试推力发生装置研制[D].大连理工大学,2007.
    [43]戴德沛.阻尼技术的工程应用[M].北京:清华大学出版社,1991.
    [44]张友南,杨军,贺才春,等.阻尼材料的研究与应用[J].噪声与振动控制.2006(02):38-41.
    [45]黄俊钦.测试系统动力学[M].北京:国防工业出版社,1996.
    [46]王洪业.试车台动态性能分析及网络补偿[J].国防科技大学学报.1983(02):7-16.
    [47]武俊生,周生国.固体火箭发动机脉冲推力补偿技术的研究[J].推进技术.1998,19(04):28-32.
    [48]欧阳华兵,徐温干.基于动态补偿技术的姿控发动机瞬态推力测量[J].兵工学报.2007,28(05):608-612.
    [49]孙海波,孔德仁,何瑛,等.传感器动态误差修止方法探讨[J].南京理工大学学报.2000,24(04):330-333.
    [50]陈琳,李建勋,陈杰.动态推力测量数字补偿设计[J].宇航学报.2009,3(30):1154-1158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700