压电式深小孔钻削测力仪的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深小孔钻削作为特殊的钻削工艺,由于其钻杆刚性差,排屑难,不易散热等缺点,严重影响了深小孔钻削的质量和效率,制约了包括精密工程、航天工业等相关领域的发展。
     国内外对车、刨、磨等的研究较多,而对钻削的研究却很少。本文以深小孔钻削力为检测对象,研制了一套压电式测力装置。通过测力仪对钻削力的准确、实时检测,提高了深小孔钻削的自动化程度,从而降低了深小孔加工的废品率,提高了深小孔的生产效率和加工质量;钻削力是深小孔钻削的重要参数,它的检测有助于理解钻削机理,优化刀具参数以及为机床部件的设计提供依据。
     压电式钻削测力仪以石英晶体的压电效应为基础,它的制作包括内部核心元件-传感器的制作和测力仪整体外壳结构设计两部分。深小孔钻削力属于动态小力,本文参照小力值传感器的设计要求制作传感器,涉及转化机理的选择,灵敏度的设计,晶片尺寸参数的优选,组序排列等内容。选择了两传感器配置的结构型式,确定测力仪的量程范围为Fz=0~600N,Mz=±100N.m.
     采用Inventor软件应力分析模块对测力仪壳体结构进行优化,以跨距Φ2R和上盖厚度h为优化参数,通过这两个参数的优选使测力仪变形和固有频率最优化。
     建立测力仪静动态标定系统,对测力仪进行静动态标定,实验结果证明测力仪具有很高的灵敏度和固有频率,线性度、相间干扰等也达到了CIRP-STCC规定的切削测力仪标准。轴向灵敏度一致性实验表明,该测力仪可进行无定心测量。深小孔钻削实验证明,测力仪能实现动态小力值的测量,动态漂移小。
As a special technology, the small-deep-hole drilling has some disadvantages, for instance, the low rigidity of drill pipe, the difficulties of the chip removal and heat dissipation and so on. All above the weakness affects the quality and efficiency of the drilling seriously and also restricts development of the correlative fields including precision engineering and aerospace industry.
     More research has been put into the turning, planning and milling, but the drilling study is far less. With the objective of the monitoring of forces caused by the small-deep-hole drilling, this paper developed piezoelectric force-testing equipment. The achievement that the drilling forces can be detected accurately and in real-time will raise the degree of automation in small-deep-hole drilling, reduce rejection rate during the drilling process, and the efficiency will be improved obviously. As one of the important parameters, the drilling forces detection contributes to understanding the drilling mechanism, optimizing the tool parameters, and providing the information for the machine components design.
     The piezoelectric drilling dynamometer is based on the piezoelectric effect of quartz crystal. And its manufacture contains two parts:the core component-sensor and the whole structure design of the dynamometer. The force from the small-deep-hole drilling is dynamic and its magnitude is small. Manufacture of the inside sensor consults the design requirements of the micro-force sensor, the process referring to choosing transfer mechanism, the sensitivity design, optimizing the chips dimensions, arranging the wafer class and so on. At last, the structure with two sensors combination is confirmed and the measurement range is: Fz=0-600N, Mz=±100N·m.
     The structure optimization of the dynamometer's shell is realized through the stress analysis by aid of the Inventor software. And the main optimization parameters are the spanΦ2R and the cover thickness h. With the optimization of the two parameters, the objective to get the dynamometer's deformation and the natural frequency optimal can be done.
     In order to calibrate the static and dynamic parameters, the static and dynamic calibration system has been developed for the dynamometer. The experiments prove the dynamometer both has the high sensitivity and natural frequency; also the linearity and interphone interferences meet the CIRP-STCC standards which defined for the cutting dynamometer. The experiments verifying the axial sensitivity consistency demonstrate this dynamometer can make the no-centering measurement. And the dynamic small-force measurement can come true with this dynamometer proved by the experiments for the small-deep-hole drilling and also has low dynamic drift.
引文
[1]刘锡海,王晓东,赵凤桐.φ2mm深孔钻削微机监控系统的研究[J].吉林工学院学报,1995.6,16(2):1-4.
    [2]北京市《金属切削理论与实践》编委会.金属切削理论与实践[M].‘第一版.北京出版社,1980.
    [3]宋蕾,朱林,王江萍.深孔钻削加工刀具状态监测的研究[J].《新技术新工艺》·机械加工与自动化,2002(4):74-75.
    [4]钮忻蔚.深孔的钻削加工[J].石油化工设备,2008.5,37(3):62-63.
    [5]何定健,李建勋,王勇.深孔加工关键技术及发展[J].航空制造技术,2008(21):90-93.
    [6]Pezos-Instrumentation Kistler. Two-Component measuring platform Type 9271A [P]. Kistler Instrument AG.
    [7]徐晓栋.深孔钻削中的智能控制[D].兰州理工大学,硕士学位论文,2008.
    [8]徐年富,周国华.钻削技术的新进展[J].南京工业职业技术学院学报,2001,1(1):37-40.
    [9]王立平,杨兆军,王立江,杨叔子.用有限元法研究振动钻头寿命[J].华中理工大学报,1998,26(8):29-31.
    [10]徐旭松,杨将新,孙志英等.小直径深孔振动钻削钻头的研究[J].中国机械工程,2005,16(9):764-766.
    [11]韩旭,吴伏家.振动钻削技术在深孔加工中的应用[J].机械管理开发,2007, (4):85-86.
    [12]Huseyin Metin Ertunc, Cuneyt Oysu. Drill wear monitoring using cutting force signals. Mechatronics 14 (2004):533-548.
    [13]雷继荣.刀具监控技术的现状与发展[J].组合机床与自动化加工技术,1995,(5):32-37.[27]白万民等.深孔钻削的力学特性分析[J].新技术新工艺,2000.
    [14]G. Byrne, G. E. O'Donnell. An Integrated Force Sensor Solution for Process Monitoring of Drilling Operations [J]. Annals of the CIRP,2007,56 (1):89-92.
    [15]刘战锋,王天琦.小直径深孔钻削监测系统[J].工具技术,2007,41(4):74-75.
    [16]Suleyman Yald(?)z, Faruk Unsacar. A dynamometer design for measurement the cutting forces on turning. Measurement 2005,9:80-89.
    [17]白万民等.深孔钻削的力学特性分析[J].新技术新工艺,2000.
    [18]李纪明.直筋式钻削测力仪的设计[J].淮海工学院学报,2000,9(3):18-2I.
    [19]杨永梅,杨兆军,鄂世举等.应变式微小孔钻削测力仪钻削力的实验研究[J].试验技术与试验机,1999,39(1、2):37-38.
    [20]张贻恭,刘恩福,钱敏.YDXL-I1187A压电晶体三向小力值传感器的研究[J].大连理工大学学报,1990,30(3):301-306.
    [21]张贻恭,王继尚.新型高灵敏度压电式钻削测力仪[J].机械设计与制造,1990:14-16.
    [22]谢大纲,袁哲俊.钻削力测量的新方法[J].工具技术.1999,3(9):18-20.
    [23]孙宝元,张贻恭.压电石英力传感器及动态切削测力仪[M].第一版.北京:计量出版社,1985.
    [24]姚英学,陈朔冬,袁哲俊.一种新结构多用途切削测力仪的研制[J].哈尔滨工业大学学报,1994,26(4):85-89.
    [25]高长银,赵辉,马龙梅等.新型压电扭矩传感器的结构与标定[J].仪表技术与传感器,2006,(5):6-8.
    [26]Scientific Technical Committees of CRIP-STCC. Reports of the scientific technical committees of CRIP-STCC; recommendation of calibration and operation of machined-tool dynamometer[S].CIRP,1974,23(2):295-306.
    [27]韩丽丽.三向压电钻削测力仪的设计及扭矩加载器的研制[D].大连理工大学博士学位论文,2006.
    [28]韩丽丽.无定心钻削测力仪的结构优化设计[D].大连理工大学硕士学位论文,2005.
    [29]曲国杰.压电式四维切削测力仪的研制[D].大连理工大学硕士学位论文,2009.
    [30]张贻恭.压电晶体压电式力传感器的单晶(djm)转换及晶组的排列与组合.传感技术学报,1988,1:18-25.
    [31]张贻恭.WL-TJ99微小力值传感器.组合机床,1984,8:12-17.
    [32]彭文生,黄华梁.机械设计[M].武汉:华中理工大学出版社,2000.
    [33]董永进.Inventor10中文版机械设计精彩实例与进阶教程[M].第1版.北京:化学工业出版社,2007:270.
    [34]王春露.对电磁干扰的探讨[J].科技创新导报,2009,(14).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700