预处理后剩余污泥中温两相厌氧消化效能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国城市化进程的加快和环境质量标准的提高,污水处理率和处理程度逐年提高,污水处理过程中副产物——剩余污泥的量也急剧增加。由于剩余污泥中含有大量有机质,一般需对其进行稳定化处理后再进行在最终处置,污泥厌氧消化处理技术是应用最为广泛的污泥稳定化技术,但目前应用的污泥厌氧消化工艺,普遍存在处理周期长、甲烷产率低等问题。
     本研究采用中温两相厌氧消化工艺对剩余污泥进行处理,首先对比分析单独热水解、单独高压以及高压与热水解联合应用对污泥厌氧消化性能的影响;之后对预处理后污泥进行中温两相厌氧消化,将产酸相控制在乙醇型发酵阶段,在系统稳定运行的基础上,探讨了中温两相厌氧消化工艺运行特性,研究了厌氧消化后污泥VS、沉降性能、脱水性能及重金属形态分布的变化情况,建立了剩余污泥厌氧消化动力学模型;最后对剩余污泥经乙醇型发酵后上清液作为反硝化碳源的特性进行了研究。
     高压与热水解联合处理对污泥的厌氧消化性能提高明显优于高压和热水解单独处理,而且可缩短热水解处理的时间,联合处理在5MPa、150℃处理30min后剩余污泥厌氧消化性能高于单独采用热水解170℃处理45min后污泥。
     以5MPa,150℃条件下处理30min后剩余污泥为基质,考察了中温两相厌氧消化系统的运行效能。结果表明,污泥VS去除率随着有机负荷的增加而下降,在有机负荷为0.98、1.57、2.35和3.13kgVS/m~3d时,系统VS去除率分别为59.4%、54.7%、50.21%和42.2%。接种经驯化后的乙醇型发酵污泥,可快速将产酸相控制在乙醇型发酵阶段,在不同有机负荷下,产酸相出泥VFA组分中乙醇和乙酸的量占总VFA的比例不同,产酸相比氢气产率也各不相同;在产酸相有机负荷为4.40、7.05、10.56和14.08kgVS/m~3d时,平均比氢气产率分别为0.0183、0.0238、0.0221和0.0194 L·H_2/g·VS。
     高压与热水解联合预处理后污泥沉降性能和脱水性能得到明显改善,之后进行中温两相厌氧消化,其污泥沉降性能和脱水性能变差,但均优于原剩余污泥;污泥经高压与热水解联合预处理后污泥中以稳定态分布的Zn、Cu含量明显提高,进行中温两相厌氧消化后Zn、Cu稳定性进一步提高。
     在Lawrence - McCarty模型基础上,结合微生物生长和有机底物降解规律,得出剩余污泥中温两相厌氧消化动力学的4个基本参数:单位基质下微生物理论产率Y、微生物衰减常数K_d、基质最大比去除速度v_(max)以及饱和常数K_s分别为0.2471、0.3697、2.1767和10.4158。
     产酸相有机负荷为10.56kgVS/m~3·d时,发酵后污泥上清液作为反硝化碳源,在C/N和MLVSS相近的条件下,上清液和甲醇作为反硝化碳源的反硝化过程总比反硝化速率分别为2.26、2.23mgNO_3~--N/ gVSS·h,是生活污水的2.86倍。
With the acceleration of urbanization and the improvement of environmental quality standards in China, the disposal rate and degree of sewage is raising year by year while the by product—surplus sludge generated in the course of sewage treatment is increasing rapidly. As surplus sludge contains a great deal of organic matter, it needs a stabilization treatment before the ultimate disposal. The sludge anaerobic digestion treatment technology should be the most widespread sludge stabilization technology at present, but all the existing sludge anaerobic digestion techniques have the deficiencies like long digestion time, low yield of methane.
     Dealing with surplus sludge by applying mesophilic two-phase anaerobic digestion technique, this study first compares the effect separate thermal hydrolysis, separate high pressure and the combined application of thermal hydrolysis and high pressure have on surplus sludge anaerobic digestion performance; then conducts mesophilic two-phase anaerobic digestion for the pre-treated sludge and keeps the acidogenic phase in the stage of ethanol-type fermentation. On the basis of the stable operation of the system, this study discussed the operating characteristic of mesophilic two-phase anaerobic digestion, researched the change of sludge VS, settling property and dewatering performance as well as species distribution of the heavy metals in sludge after anaerobic digestion, built a dynamic model of surplus sludge anaerobic digestion and studied the property of surplus sludge after ethanol-type fermentation with supernatant as denitrifying carbon source.
     The combined treatment of high pressure and thermal hydrolysis is obviously better for the improvement of anaerobic digestion performance of sludge than the separate treatment of high pressure or thermal hydrolysis, and can reduce the treatment time of thermal hydrolysis. The anaerobic digestion performance of surplus sludge after 30 minutes of combined treatment at 5MPa,150℃is slightly higher than that of the sludge after 45 minutes of the separate treatment of thermal hydrolysis at 170℃.
     With surplus sludge after being treated for 30 minutes at 5MPa,150℃as matrix, the operating efficiency of mesophilic two-phase anaerobic digestion system was examined. The result showed that the removal rate of sludge VS decreased as organic load increased and the removal rate of the system VS was 59.4%、54.7%、50.21% and 42.2% respectively when the organic load was 0.98、1.57、2.35 and 3.13kgVS/m~3·d. Inoculating sludge of ethanol-type fermentation after acclimation can rapidly maintain acidogenic phase in the stage of ethanol-type fermentation. The composition study of acidogenic phase VFA found that under different organic loads, the proportion of ethanol or acetic acid in the total VFA and specific hydrogen production rate were different. The specific hydrogen production rate was 0.0183、0.0238、0.0221 and 0.0194 L·H_2/g·VS respectively when the organic load of acidogenic phase was 0.98, 1.57, 2.35 and 3.13kgVS/m~3·d.
     Both the settling property and dewatering performance of the surplus sludge were significantly improved after combined pre-treatment of thermal hydrolysis and high pressure. After mesophilic two-phase anaerobic digestion, both the settling property and dewatering performance of surplus sludge were deterioration, but better than the original surplus sludge; the stability of heavy metals Zn, Cu in the sludge improves remarkably.
     Based on the Lawrence– McCarty model and according to the rule of microbial growth and degradation of organic substrates, we obtained four basic parameters of reactor anaerobic digestion dynamics with surplus sludgeafter the combined pre-treatment of high temperature and pressure as matrix: microbial theoretical yield per unit of matrix Y , microbial attenuation constant K_d, matrix maximal ratio removal velocity v_(max) and saturation constant K_s are 0.2471、0.3697、2.1767 and 10.4158 respectively.
     When the organic load of acidogenic phase was 10.56kgVS/m~3·d and in the condition that C/N and MLVSS are about the same, the denitrification rates in the denitrification processes with supernatant as denitrifying carbon source and with supernatant and methane as denitrifying carbon source show little difference, being 2.26, 2.23mgNO_3~--N/gVSS·h respectively, 2.86 times as much as that of sanitary sewage.
引文
AYOL A. Enzymatic treatment effects on dewaterability of anaerobically digested biosolids-I: performance evaluations. Process Biochemistry. 2005, 40(7): 2427-2434.
    A. Valo, H. Carrère, J.P. Delgenès. Thermal, chemical and thermo-chemical pre-treatment of waste activated sludge for anaerobic digestion. J. Chem. Technol. Biotechnol. 2004, 79 (11) : 1197-1203.
    A.H. Mouneimne, H. Carrère, N. Bernet, et al. Effect of saponification on the anaerobic digestion of solid fatty residues. Bioresour. Technol. 2003, 90 (1) : 89-94.
    Battistoni P., Paci B., Fatone F., et al. Phosphorus removal from anaerobic supernatants: Start-up and steady state conditions of a fluidized bed reactor full-scale plant. Industrial& Engineering Chemistry Research, 2006, 45(2): 663-669.
    Benyi Xiao, Junxin Liu. Biological hydrogen production from sterilized surplus sludgeby anaerobic self-fermentation. Journal of Hazardous Materials. 2009, (168): 163-167.
    Cai M L, Liu J X, Wei Y S. Enhanced biohydrogen production from surplus sludgewith alkaline pretreatment. Environmental Science and Technolgy. 2004, 38(11): 3195-3202.
    C. Bougrier, A. Battimelli, J.P. Delgenes, et al. Combined ozone pretreatment and anaerobic digestion for the reduction of biological sludge production in wastewater treatment. Ozone-Sci. Eng. 2007, 29(3): 201-206.
    C.Bougrier, C.Albasi, J.P.Delgenès, et al. Effect of ultrasonic thermal and ozone pre-treatments on waste activated sludge solubilisationand anaerobic biodegradability. Chem.Eng.Proc. 2006, 45(8): 711-718.
    C. Bougrier, H. Carrère, J.P. Delgenès, Solubilisation of waste-activated sludge by ultrasonic treatment, Chem. Eng. J. 2005, 106 (2): 163–169.
    C.Bougrier, J.P.Delgenès, H.Carrère. Combination of thermal treatmentsand anaerobic digestion to reduce surplus sludgequantity and improvebiogaz yield. Process Saf.Environ.Protect. 2006, 84(B4): 280-284.
    C. Dumas, S. Perez, E. Paul, et al. Combined thermophilic aerobic process and conventional anaerobic digestion: Effect on sludge biodegradation and methane production. Bioresour. Technol. 2010, 101 (8): 2629-2636.
    C.M. Braguglia, G. Mininni, A. Gianico, Is sonication effective to improve bio?gas production and solids reduction in excess sludge digestion? Water Sci. Technol. 2008, 57 (4) : 479–483.
    Cohen A, Gemert JM, Zoeremeyer RJ, et.al. Main Characteristics and Stoichiometric Aspects of Acidogenesis of Soluble Carbihydrate Containing Wastewater. Proc. Biochem. 1984, 19(6):228-232.
    C.P. Chu, D.J. Lee, B.V. Chang, et al.“Weak”ultrasonic pre?treatment on anaerobic digestion of ?occulated activated biosolids, Water Res. 2002, 36 (11): 2681-2688.
    Ekama G, Dold P L, Marais G R. Procedures for determining influent COD fraction and the maximum specific growth rate of heterotrophs in activate sludge system. Wat. Sci. Tech., 1985, 18(6): 91-114.
    E. Neyens, J. Baeyens. A review of thermal sludge pre-treatment processes to improve dewaterability. Journal of Hazardous Materials. 2003,B98: 51-67.
    F. G. Poland, S Ghosh. Anaerobic Stabilization of organic wastes two-phase concept. Envir. Lett. 1981,(1): 255-266.
    Ghosh S, Klass D L. Two-phash anaerobic digestion. process Biochem. 2001, 19(1): 11-15.
    Gossett J M, McCarty P L, Wilson J C, et al. Anaerobic digestion of sludg from chemical treatment. Journal Water Pollution Control Federation. 1978, 50(3): 533-542.
    Hamers A, Mason C A, Hamers G, Death and lysis during aerobic thermophilic sludge treatment; characterization of recalcitrant products. Wat. Res., 1994,28(4):863-869.
    Hang Sik Shin, Jin Young Jung, et al. Phase-separated anaerobic toxicity assays for sulfate and sulfide. Water Enmronment Research,1995, 67(5): 802-806.
    H.Carrèrea, C.Dumasa, A.Battimellia, et al. Pretreatment methods to improve sludge anaerobic degradability : A review. Journal of Hazardous Materials 2010 (183) 1-15.
    Henze M, Grady C P L Jr, Gujer W, et al. Activated sludge model No.1. (IAWPRC scientific and technical report No.1). London: IAWPRC,1987.
    H.N. Gavala, U. Yenal, I.V. Skiadas, et al. Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. Effect of pre-treatment at elevated temperature, Water Res. 2003, 37 (19): 4561-4572.
    I. Dogan, F.D. Sanin. Alkaline solubilization and microwave irradiation as a combined sludge disintegration and minimization method, Water Res. 2009, 43 (8): 2139-2148.
    I. Ferrer, E. Serrano, S. Ponsa, et al. Enhancement of thermophilic anaerobic sludge digestion by 70℃pre-treatment: energy considerations, J. Residuals Sci. Technol. 2009, 6(1) : 11-18.
    I. Ferrer, S. Ponsa, F. Vazquez, et al. Increasing biogas production by thermal (70℃) sludge pre-treatment prior to thermophilic anaerobic digestion. Biochem. Eng. J. 2008, 42 (2): 186-192.
    I.T. Yeom, K.R. Lee, Y.H. Lee, et al. Effects of ozone treatment on the biodegradability of sludge from municipal wastewater treatment plants. Water Sci. Technol. 2002,46 (5): 421-425.
    J.A.C. Rivero, N. Madhavan, M.T. Suidan, et al. Enhancement of anaerobic digestion of excess municipal sludge with thermal and/or oxidative treatment, J. Environ. Eng. ASCE, 2006, 132 (6): 638-644.
    Jaffer Y., Clark T. A., Pearce P., et al. Potential phosphorus recovery by struvite formation. Water Res. 2002, 36(7): 1834-1842.
    Jason Dwyer, Daniel Starrenburg, Stephan Tait, et al. Decreasing activated sludge thermal hydrolysis temperature reduces product colour,without decreasing degradability. water research. 2008, (42): 4699-470.
    J.I. Houghton, J. Quarmby, T. Stephenson, Municipal wastewater sludge dewaterability and the presence of microbial extracellular polymer, Water Sci. Technol. 2001, 44 (2–3): 373-379.
    J. Kim, C. Park, T.H. Kim, et al. Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J. Biosci. Bioeng. 2003, 95 (3): 271-275.
    J. Kopp, J. Müller, N. Dichtl, J. Schwedes, Anaerobic digestion and dewatering characteristics of mechanically disintegrated sludge, Water Sci. Technol. 1997, 36 (11): 129–136.
    J. Muller, L. Pelletier, Désintégration mécanique des boues activées, L’eau, l’industrie, les nuisances. 1998, (217) : 61–66.
    J. Pere, R. Alen, L. Viikari, L. Eriksson, Characterization and dewatering of activated sludge from the pulp and paper industry, Water Sci. Technol. 1993,28 (1) : 193–201.
    J.T.Novak, M.E.Sadler, S.N.Murthy. Mechanisms of floc destruction during anaerobic and aerobic digestion and the effect on conditioning and dewatering of biosolids. Wat.Res. 2003, 37: 3136-3144.
    J. Zabranska, M. Dohanyos, P. Jenicek, J. Kutil, et al. Mechanical and rapid thermal disintegration methods of enhancement of biogas production-Full scale applications, in: IWA Specialized conference: Sustainable sludge management: state of the art, challenges and perspectives, Moscow, Russia, 2006.
    J. Zabranska, M. Dohanyos, P. Jenicek, J. Kutil, Disintegration of excess activated sludge - evaluation and experience of full-scale applications, Water Sci. Technol. 2006,53 (12) : 229-236.
    Kelso B H L, Smith R V, Laughlin R J, et al. Dissimilatory nitrate reduction in anaerobic sediments leading to river nitrite accumulation. Application of Environmental Microbiology. 1997,63(12): 4679-4685.
    Komatsu T, Kudo K, Inoue Y, et al. Anaerobic codigestion of surplus sludgeand rice straw. Canada: IWA proceeding of specialists conference on wastewater biosolids sustainability. 2007, 233-238.
    Martins S I F. A review of Maillard reaction in food and implications to kinetic modeling . Trends in food science﹠technology, 2001,11(9-10): 364-373.
    M. Engelhart , M. Krüger, J. Kopp. et al. Effects of disintegration on anaerobic degradation of surplus sludgein down?ow stationary fixed film digester, in: II International Symposium on Anaerobic Digestion of Solid Waste, Barcelona, 1999.
    M.J.Murthy, J.T.Novak. Characterization of exocellular protein and its role in bioflocculation. J.Environ.Eng. 1997, 123: 479-485.
    M.R. Salsabil, A. Prorot, M. Casellas, C. Dagot, Pre-treatment of activated sludge: Effect of sonication on aerobic and anaerobic digestibility, Chem. Eng. J. 2009, 148 (2–3): 327–335.
    MünchV. E.,BarrK. Controlled struvite crystallization for removing phosphorus from anaerobic digester sidestreams. WaterRes., 2001, 35(1): 151-159.
    N.J.Anderson, D.R.Dixon, P.J.Harbour, et al. Complete characterisation of thermally treated sludges. Water Sci.Technol. 2002, 46(10):51-54.
    P. A. Vesilind, H. A. Davis. Using the CST device for characterizing sludge dewaterability. Water Sci. Technol. 1988, 20: 203-205.
    R.A.Fisher, S.J.Swanwick . High temperature treatment of sewage sludge.Water Pollut. Control. 1971, 71(3): 255-370.
    R.Borja, A.Martin, E.Sanchez, et al. Kinetic modelling of the hydrolysis, acidogenic and methanogenic steps in the anaerobic digestion of two-phase olive pomace(TPOP). Process Biochemistry. 2005, 40: 1841-1847.
    Ren N Q, Wang BZ, Huang JC. Ethanol Fermentation from Carbohydrate in High Rate Acidogenic Reactor . Biotechnol . Bioeng . 1997, 54(5): 428-433.
    REN Nan-qi, ZHANG Bing, ZHOU Xue-fei. Hydrodynamics research of wastewater treatment bioreactors. Journal of Harbin Institute of Technology(New Series) 2009, 16 (3): 309-317.
    R. Roberts, W. J. Davies, C. F. Forster. Two-stage, thermophilic ic-mesophilic anaerobic digertion of sewage sludge. Trans IChemE. 1999,77(B):93-97.
    R. M. Dinsdale, G.C. Premier, F.R. Hawkes, et. al. Two-stage anaerobic co-digestionof waste activated sludge and fruit/vegetable waste using inclined tubular digesters. Bioresource Technology. 2000, (72): 159-168.
    Sanjoy K. Bhattacharya, Richard L. Madura, David A. Walling, et.al. Volatile solids reduction in two-phase and conventional anaerobic sludge digestion. Wat. Res. 1996, (30)5:1041-1048.
    Sergio Ponsá, Ivet Ferrer, Felícitas Vázquez, et.al. Optimization of the hydrolytic-acidogenic anaerobic digestion stage(55℃) of sewage sludge: Influence of pH and solid conent. WATER RESEARCH. 2008,(42): 3972-3980.
    Shanableh A, Joma S. Production and transformation of volatile fatty acids from sludge subjected to hydrothermal treatment. Water Science and Technology, 2001,44(10):129-135.
    Vlyssides A G, Karlis P K.. Thermal-alkaline solubilization of wasteactivated sludge asa pre-treatment stage for anaerobic digestion. Bioresource Technology. 2004, (91): 201-206.
    V. Urbain, J.C. Block, J. Manem, Bio?occulation in activated sludge: an analytical approach, Water Res. 1993, 27 (5): 829–838.
    Wang C C, Chang C W, Chu C P, et.al. Hydrogen production from wastewater sludge using a Clostridium strain. Journal of Environmental Science and Health part A,2003,38(9):1867-1875
    Wang C C, Chang C W, Chu C P, et al. Producing hydrogen from wastewater Sludge by Clostridium biofermentans. Journal of Biotechnolgy. 2003, 102(1): 83-92.
    Wang C C, Chang C W, Chu C P, et al. Efficient production of hydrogen from waste water sludge.Journal of Chemical Technolgy and Biotechnolgy. 2004, 79 102(4): 426-427.
    Weemaes M, Grootaerd H, Simorns F, et al. Anaerobic digestion of ozonized biosolids. Wat. Res. 2000, 34(8):2330-2336.
    YIN Jun, ZHANG Li-guo,LIU Lei,et al.Two-Phase Mesophilic Anaerobic Digestion of Waste Activated Sliudge by Ultrasonic and Alkaline Pretreatment. ACTA SCIENTIARUM NATURALIUM UNIVERSITATIS SUNYATSENI. 2007, 46:119-120.
    Yu Liu. Chemically reduced excess sludge production in the activated sludge process.Chemosphere. 2003 (50): 1-7.
    Zheng J, Graff R A, Rinard I. Incorporation of rapid thermal conditioning into a wastewater treatment plant. Fuel Procceding Technology, 1998, 56(3): 183~200.
    Zhijun Wang, Wei Wang, Xihui Zhang, et al. Digestion of thermally hydrolyzed surplus sludgeby anae-robic sequencingbatch reactor. Journal of Hazardous Materials. 2009, (162): 799-803.
    白晓慧.污泥厌氧消化反应器设计中不同形式的优劣比较.给水排水.2000, 26(12): 32-34.
    蔡木林,刘俊新.污泥厌氧发酵产氢的影响因素.环境科学. 2005, 26(2): 98-101.
    陈春云,王鹏,庄源益.剩余污泥吸附剂的制备及其吸附性能研究.环境科学与技术. 2006, 29(8): 88-90.
    方平,岑超平,陈定盛.脱水污泥制备含炭吸附剂及其应用研究.环境污染与防治. 2008, 30(8): 41-45.
    高廷耀,周恭明,周增炎.污泥两相和单相厌氧消化性能比较研究.同济大学学报. 1997, 25(6): 629-634.
    高廷耀,周恭明,周增炎.气浮浓缩污泥两相厌氧消化.同济大学学报. 1999, 27(1): 43-46.
    葛士建,王淑莹,杨柳明.反硝化过程中亚硝酸盐积累特性分析.土木建筑与环境工程. 2011, 33(1): 140-146.
    古晋川,蒋文举,雍毅.城市污水厂污泥处理与资源化.北京:化学工业出版社. 2008.
    郭亮.污水厂剩余污泥水解及其厌氧发酵产氢技术研究.博士学位论文.长沙:湖南大学, 2009.
    郭婉茜,任南琪,曲媛媛.两种类型生物制氢反应器的运行及产氢特性.哈尔滨工业大学学报.2009, 41(4):72-76.
    何品晶,顾国维,李笃中,等.城市污泥处理与利用.北京:科学出版社. 2003.
    何玉凤,杨凤林,胡绍伟,等.碱处理促进剩余污泥高温水解的试验研究.环境科学. 2008, 29(8): 2260-2265.
    郝凌云,周荣敏,周芳,等.磷酸铵镁沉淀法回收污水中磷的反应条件优化.工业用水与废水. 2008, 39(1): 58-61.
    贺延龄.废水的厌氧生物处理.北京:中国轻工业出版社, 1998.148~149.
    姜蔚,闫波,李芬.污泥质活性炭吸附剂的制备和吸附性能研究进展.化工进展. 2010, 29(8): 1562-1566.
    金儒林,刘永龄.污泥处置.中国建筑工业出版社. 1982, 8.
    金宜英,杜欣,王志玉,等.采用污水厂污泥制陶粒的烧结工艺及配方研究.中国环境科学. 2009,29(1): 17-21.
    李刚,欧阳锋,杨立中,等.两相厌氧消化工艺的研究与进展.中国沼气. 2001,19(2): 25-29.
    李欢,金宜英,聂永丰.污泥减量新工艺探讨.中国给水排水.2005,21(12):24-26.
    李宇庆,陈玲,仇燕翎,等.上海化学工业区土壤重金属元素形态分析.生态环境. 2004, 13 (2): 154-155.
    李志东,李娜,张勇,等.城市污水处理厂剩余污泥厌氧消化试验研究.水处理技术. 2007, 33(9): 78-80.
    刘敏,陈滢,任南琪.利用不同类型种泥启动生物制氢反应器的试验研究.四川大学学报(工程科学版).2009, 41(1):86-90.
    林志高,张守中.废弃活性污泥加碱预处理后厌氧消化的试验研究.给水排水. 1997, 23(1):10-16.
    刘春光,孙红文,朱琳.污水厂污泥在天津滨海地区盐渍土改良上的应用前景分析.环境卫生工程. 2005, 13(2): 10-15.
    卢培利,张代钧,刘颖,等.活性污泥法动力学模型研究进展和展望.重庆大学学报(自然科学版). 2002, 25(3): 109-114.
    马守贵,许红林,吕效平,等.超声波促进处理剩余活性污泥中试研究.化学工程.2008,36(2)46-49.
    牟艳艳,袁守军,崔磊,等.γ射线预处理对改善污泥厌氧消化特性影响研究.核技术. 2005, 28(10): 751-754.
    乔玮,曾光明,袁兴中,等.易腐有机废物与剩余污泥混和厌氧消化处理.农业环境科学学报. 2004, 23(3):607-610.
    瞿广飞,宁平,李军燕,等.剩余污泥低温裂解催化剂的筛选研究.武汉理工大学学报. 2007, 29(11): 44-46.
    任南琪.产酸发酵细菌演替规律研究——pH≤5条件下ORP的影响.哈尔滨建筑大学学报.1999,32(2): 29-34.
    任南琪,秦智,李建政.不同产酸发酵菌群产氢能力的对比与分析.环境科学. 2003, 24(1):70-74.
    任南琪,王爱杰.厌氧生物技术原理与应用.北京:化学工业出版社. 2004: 73-75.
    任南琪,李建政,林明,等.产酸发酵细菌产氢机理探讨.太阳能学报. 2002, 23 (1): 124-128.
    任南琪,刘敏,王爱杰,等.两相系统中产甲烷相有机酸转化规律.环境科学. 2003, 24 (4): 89-93.
    王静,卢宗文,田顺,等.国内外污泥研究现状及进展.市政技术. 2006,24(3): 140-143.
    王建芳,赵庆良,刘志刚,等.好氧-沉淀-厌氧工艺剩余污泥减量化的影响因素.中国环境科学. 2008, 28(5): 427-432.
    王星,赵天涛,赵由才.污泥生物处理技术.北京:冶金工业出版社. 2010年4月: 41-42.
    王治军,王伟.热水解预处理改善污泥的厌氧消化性能.环境科学.2005,26(1):68-71.
    王治军,王伟,高殿森,等.高温和中温ASBR处理热水解污泥的对比.环境科学. 2005, 26(2): 88-91.
    王治军,王伟,倪达峰. ASBR处理热水解污泥的启动试验研究.中国环境科学. 2004, 24(6): 750-753.
    王治军,王伟,夏州,等.热水解污泥的厌氧消化试验研究.中国给水排水.2003,19(9): 1-4.
    王治军.剩余污泥“热水解-ASBR”处理工艺研究.博士学位论文.北京:清华大学, 2004.154- 155.
    谢波,郭亮,李小明,等.三种预处理方式对污泥的破解效果.中国环境科学. 2008,28(5):417-421.
    杨晓奕,蒋展鹏,毛鹏生.湿式氧化-两相厌氧消化处理剩余污泥.中国给水排水. 2003, 19(4): 48-51.
    尹军,谭学军.污水污泥处理处置与资源化利用.北京:化学工业出版社.2005.
    尹军,赵纯广,张立国,等.中温两相厌氧消化工艺处理混合污泥的效能.中国给水排水. 2008, 24(5): 1-4.
    苑宏英,张华星,陈银广,等. pH对剩余污泥厌氧发酵产生的COD、磷及氨氮的影响.环境科学. 2006, 27(7): 1358-1361.
    袁守军,郑平,牟艳艳,等.γ-射线辐照法改善城市污水厂剩余污泥厌氧消化特性的研究.环境污染治理技术与设备. 2006, 7(8): 36-39.
    余兰兰,钟秦.城市污泥的处置及资源化展望.环境监测管理与技术. 2006,18(2): 32-34.
    余兰兰,钟秦,冯兰兰.剩余污泥制备活性炭吸附剂及其应用研究.安全与环境学报. 2005, 5(4): 39-42.
    赵丹,任南琪,王爱杰. pH、ORP制约的产酸相发酵类型及顶级群落.重庆环境科学. 2003,25(2): 33-36.
    赵庆良,王宝贞, G·库格尔.高温/中温两相厌氧消化处理污水污泥和有机废水.哈尔滨建筑工程学院学报. 1995, 28(1): 30-40.
    赵庆良,王宝贞, G·库格尔.高温/中温两相厌氧消化反应中有机酸的变化.环境科学.1996, 17(3): 44-49.
    赵庆祥.污泥资源化技术.北京:化学工业出版社. 2002.
    张立国,尹军,刘蕾,等.预处理低有机质剩余污泥两相厌氧消化.哈尔滨工业大学学报. 2008, 40(12): 1941-1944.
    张莉平,伏苓,张格红,等.城市污水处理厂污泥两相与单相厌氧消化工艺的比较.西北农林科技大学学报(自然科学版). 2007, 35(11): 213-217.
    张自杰,林荣忱,金儒霖欢.排水工程(第四版).中国建筑工业出版社.2000年6月.
    郑幸雄,林秋裕,李季眉,等.厌氧生物产氢机制及程序控制之技术研发概论.工业污染防治. 2001, 79(2): 173-193.
    邹绍文,张树清,王玉军,等.中国城市污泥的性质和处置方式及土地利用前景.中国农学通报. 2005, 21(1): 198-201.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700