材料微观结构与电磁场效应关系的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
材料微观结构对其电磁场效应有着直接的影响,由于受到电磁环境干扰和实验材料的不稳定性等多方面因素影响,实际工程实验在研究深度和广度上受到诸多限制。随着有限元方法和计算机技术的发展,人们可以利用有限元方法来模拟微观结构,以达到材料微观结构的性能导向型设计和性能预测的目的。本研究在对材料微观结构进行可视化模拟的基础上,选择有限元软件ANSYS设计了材料电磁场有效作用空间的计算模型,应用Poynting矢量算法计算了材料的电磁场效应。
     采用基于传输线理论的双端口算法,应用波导结构模型,从模型长度、模型尺寸级别、模型各部分厚度、单元大小、单元层数、边界条件及载荷施加等方面确定了材料电磁场有效作用空间。计算机实验表明,电磁场有效作用空间各区的厚度对材料电磁场效应计算影响很小,而各区的单元层数才是决定能否真实模拟的关键。原因是在有限元计算中,单元是电磁波传播和衰减的载体,而模型的几何尺寸仅仅能反映的是电磁波远场和近场关系。
     双端口算法的的优点是不考虑材料本身复杂的电磁场耦合作用,只在外部端口上整体研究电磁波对材料的影响,大大简化了研究过程。但这种算法带来了以下缺点:一是当工作频率进入材料结构的谐振区时,反射率数值可能远远大于100%,这不利于反射率、透射率和吸收率之间的对比;二是不能计算材料的多角度反射率;三是不能计算多层复合材料的分层吸收率及分层反射率。为了解决这些问题,本文设计了一种新的计算方法,通过可以表征电磁能量流动方向和大小的Poynting矢量来计算材料的电磁场效应。
     与本课题组同仁合作,对不同结构的铁氧体材料进行了微观结构设计,并以之为例,应用Poynting矢量算法,在铁氧体材料单元上研究材料在平面电磁波作用下的电磁场效应,解决了目前同类研究中不能计算材料多角度反射问题。计算机实验表明:铁氧体材料对平面电磁波有着优异的吸收能力,纳米球互穿结构铁氧体材料的电磁吸收能力高于含纳米球形孔的材料,这主要是由铁氧体材料的高电阻率及其复杂的内部结构决定。
     应用Poynting矢量算法计算了三层简单形体结构材料的分层电磁场效应,验证了方法的可行性。然后,采用这一算法计算了某四结构层复合材料的分层电磁场效应。计算机实验表明:该结构复合材料在宽频率范围内具有较低反射率,在低频段吸收率较高,随工作频率增加吸收率逐渐降低,当工作频率达到40GHz以上时,吸收率趋于稳定,数值在50%左右。这样的电磁场效应与复合材料采用了三维纤维编织结构和材料本身的电磁参数有关。对该结构进行的分层电磁场效应计算结果表明:入射平面电磁波能量主要集中于沿电磁波传播方向的前两个结构层上,这与材料的趋肤效应和工作频率有关。
     为了明确复合材料各相基本电磁参数在电磁场计算中的作用,以四结构层复合材料为研究对象,针对各相复电磁参数采用正交实验方法研究了复电磁参数变化对复合材料电磁场效应的影响规律。结果表明:复电磁参数实部增加有利于提高复合材料的电磁吸收率并降低反射率,而复介电常数虚部影响情况则刚好相反,复磁导率虚部对电磁场效应影响比较小。这与电磁参数的基本物理意义有关,复电磁参数实部代表材料的电磁能量储存能力,实部增加表示材料储存能量值增加,所以吸收率会上升。最后,为了获得复合材料宽频范围高吸收低反射性能,采用了与纤维分布相关的各向异性电磁参数计算了四结构层复合材料的电磁场效应。结果表明:在电磁波传播垂直方向具有较大复电磁参数实部的材料可以获得良好的宽频高吸收低反射电磁性能。
     计算机实验和理论分析证明,采用Poynting矢量算法计算材料的电磁场效应是可行的。研究方法有效的解决了材料的多角度反射率计算和分层电磁场效应计算问题。此外,研究内容对宽频高吸收低反射性能复合材料设计具有一定的指导意义。
Material microstructure impact electromagnetic filed effect directly. The practicalengineering experiments have many limitations in the depth and breadth by variousfactors, which include the electromagnetic environmental interference and theinstability of experimental material. With the development of finite element methodand computer technology, and the people can make use of finite element method tosimulate microstructure in order to achieve the goals of the performance-orienteddesign and performance prediction of material microstructure. In this paper, on thebase of visualized simulation for microstructure, finite element software ANSYS isapplied to design the calculation model of electromagnetic field effectiveoperation-space for materials, and calculated electromagnetic field effects of materialsby the Poynting vector method.
     The electromagnetic field effective operation-space for materials is determinedfrom model length, model size level, thickness of parts, element size, numbers ofelement layer, boundary conditions and load application by the two-port networkalgorithm based on transmission line theory and waveguide structure model. Thecomputer experiments show that the impacts of thickness of the electromagnetic fieldeffective operation-space component parts for electromagnetic field effect are tiny, andthe numbers of element layer is the key of simulation. The reason is that the elementsare carrier of the electromagnetic wave propagation and attenuation, while thegeometry size of model can only reflect the relationship of electromagnetic far-fieldand near-field in finite element simulation.
     The advantages of two-port network algorithm is not consider the complexelectromagnetic field coupling effect in material itself, and research the influence ofelectromagnetic wave on the external port for the whole material structure, and theresearch process is simplified greatly. However, this algorithm has brought thefollowing disadvantages. Firstly, the reflectivity may be far greater than100%whenthe working frequency arrive at the resonance region of the material structure, which isinconvenient the contrast of the reflectivity, transmittivity and absorptivity. Secondly,it can not calculate multi-angle reflectivity. Thirdly, it can not calculate layeredabsorptivity and layered reflectivity of multilayer composite materials. In order tosolve these problems, a new caculated method is designed in this study,electromagnetic field effects of materials are calculated by the Poynting vector which can characterize the flow direction and magnitude of electromagnetic field energy.
     The various microstructures of the ferrite materials are designed cooperation withcolleague in our studying team as example. The electromagnetic field effect iscalculated on the ferrite material elements in plane electromagnetic wave by thePoynting vector algorithm, and the problem is solved that the multi-angle reflectivitycould not calculation in similar research. Computer experiments show that: ferritematerial has excellent absorption capacity for plane electromagnetic wave, thenano-particles interpenetrating structure has better absorption capacity than thestructure containing nano-spherical pores of ferrite material. This is mainly determinedby the high resistivity and complex internal structure of the ferrite material.
     The layered electromagnetic field effect of a simple structure, which is composedthree-layer materials, was calculated by the Poynting vector algorithm. It verified thefeasibility of the algorithm. Then, the layered electromagnetic field effect is calculatedfor the fiber composite material with four structural layers. Computer experimentsshow that the composite material has a low reflectivity in a wide frequency range. Ithas high absorptivity in the low frequency band, and absorptivity decrease with theincrease of working frequency. The absorptivity is stable in about50%when theworking frequency is above40GHz. The electromagnetic field effect is determined bythe fiber weave structure of three-dimensional and the electromagnetic parameters ofmaterial itself. The calculation results of layered electromagnetic field effect for thestructure show that, in the incident plane electromagnetic wave, the electromagneticenergy is mainly concentrated in the previous two structural layers along the directionof electromagnetic wave propagation. This is related to the skin effect of material andworking frequency.
     In order to definitude in the influence of electromagnetic parameters of thecomposite material’s each phase in the calculation of the electromagnetic field effect,the fiber composite material with four structural layers is research object, usingorthogonal experimental method to research the impact regularity which is the changeof complex electromagnetic parameters against the composite electromagnetic fieldeffect for each phase of the composite material. The results showed that: theabsorptivity is increase and the reflectivity is decrease with the increase of real part ofcomplex electromagnetic parameters, and the influence of the imaginary part ofcomplex permittivity is just the opposite, and the influence of the imaginary part ofcomplex permeability is relatively small. This is related to the basic physicalsignificance of the complex electromagnetic parameters, the real part represent the capacity of electromagnetic energy, the increase of real part indicates that the materialstored energy values increase, so the absorptivity will rise.
     Finally, in order to obtain high-absorption and low-reflection properties of thecomposite materials in wide frequency band range, we calculated electromagnetic fieldeffect of the fiber composite material with four structural layers by anisotropicelectromagnetic parameters which is related to fiber distribution. The results showedthat: the larger real part of complex electromagnetic parameters of materials in thevertical direction of the electromagnetic wave propagation can obtain a high-absorptionand low-reflection properties in wide frequency band range.
     Computer experiments and theoretical analysis show that the method ofelectromagnetic field effect simulation is feasible by the Poynting vector algorithm.Research methods solve the problems of multi-angle reflectivity calculation andlayered electromagnetic effect calculation of materials. In addition, research contentshave guiding significance for composite materials design of high absorptivity and lowreflectivity properties in a wide frequency.
引文
[1]张玉龙.电磁屏蔽复合材料研究进展[R].中国兵器工业集团第五三研究所情报作息中心等,2007,(4):1-5.
    [2]刘顺华,刘军民,董星龙,等.电磁波屏蔽及吸波材料[M].北京:化学工业出版社,2006:67-70.
    [3]邹田春.活性碳纤维(毡)/环氧树脂吸波复合材料的设计与吸波性能的研究
    [D].天津:天津大学,2007:2.
    [4]张德慧,李恩花,孔令文.现代隐形杖术众其物理基础[J].中学物理教学参考,2005,34(12):58-59.
    [5]邓宝余.飞机和导弹的隐形技术[J].科技信息,2008,(3):271.
    [6]冯猛,张羊换,任江远,等.电磁屏蔽复合材料的研究现状[J].安全与电磁兼容,2005,(4):37-39.
    [7]张洪艳,王海泉,陈国华,等.新型导电填料-纳米石墨微片[J].塑料,2006,35(4):42-45.
    [8]汪桃生,吴大军,吴翠玲,等.纳米石墨基导电复合涂料的电磁屏蔽性能[J].华侨大学学报(自然科学版),2007,28(3):278-281.
    [9] Taosheng Wang,Guohua Chen,Cuiling Wu,et al.Study on the graphitenanosheets/resin shielding coatings[J].Progress in Organic Coatings,2007,(59):101-105.
    [10]侯进,陈国华.层状无机物和石墨复合涂层的吸波特性研究[J].红外与毫米波学报,2008,27(3):202-204.
    [11]靳武刚,碳纤维在电磁屏蔽材料中的应用[J],现代塑料加工应用,2004,16(1):24-27.
    [12]孙丽萍,张澎涛.碳纤维复合材料的电磁屏蔽特性[J].林业机械与木工设备,2005,33(3):46-47.
    [13]陈丽娟,李文军.螺纹碳纤维-雷达隐身的关键吸波材料[J].高技术纵临览,2005,(9):56-59.
    [14]张积桥,杨玉国,朱红,等.碳纤维化学镀镍表面改性的初步研究[J].电镀与涂饰,2008,27(4):26-27.
    [15]曾光群,康青,成步勇,等.碳纤维混凝土电磁特性的数值模拟[J].兵器材料科学与工程,2005,28(5):32-34.
    [16]易沛,甘永学.镀金属碳纤维吸波涂层添加剂的初探[J].航空学报,1991,12(13):655-657.
    [17]张清华,陈大俊.炭黑填充聚丙烯复合材料的制备及性能[J].高分子材料科学与工程,2004,20(3):213-215.
    [18]段玉平,刘顺华,胡雅琴,等.炭黑/ABS高密度复合体的电性能与电磁特性[J].功能材料,2006,37(1):36-39.
    [19]刘顺华,郭辉进,段玉平,等.炭黑/ABS/金属网复合材料电磁屏蔽性能的研究[J].材料工程,2004,(9):27-32.
    [20]段玉平,刘顺华,管洪涛,等.ABS复合平板材料屏蔽及吸波效能的分析[J].塑料工业,2004,32(12):36-39.
    [21]古映莹,邱小勇,胡启明,等.电磁屏蔽材料的研究进展[J].材料导报,2005,32(12):54-57.
    [22] Keith R Paton,Alan H Windle.Efficient microwave energy absorption by carbonnanotubes[J].Carbon,2008,(46):1935-1941.
    [23] Bunshi Fugetsu,Eiichi Sano,Masaki Sunad,et al.Electrical conductivity andelectromagnetic interference shielding efficiency of carbon nanotube/cellulosecomposite paper[J].Carbon,2008,(46):1256-1258.
    [24] Wern-Shiarng Jou,Huy-Zu Cheng,Chih-Feng Hsu,et al.The electromagneticshielding effectiveness of carbon nanotubes polymer composites[J].Journal ofAlloys and Compounds,2007,(434):641-645.
    [25]于仁光,乔小晶,张同来等.新型雷达波吸收材料研究进展[J].兵器材料科学与工程,2004,(2):63.
    [26]张政权,李铁虎,经德齐.雷达吸波材料的研究现状及其进展[J].材料导报,2007,21(5):307-309.
    [27] S Q Zhang,C G Huang,Z Y Zhou,et al.Investigation of the microwave absorbingproperties of carbon aerogels[J].Materials Science and Engineering B,2002,(90):38-41.
    [28] S Bergheul,A Haddad,H Tafat,et al.Magnetic,microwave and absorbingproperties Fe-Co of alloy synthesized by mechanical alloyingprocess[J]. Application of Contemporary Non-Destructive Testing inEngineering,2005,9:277-281.
    [29] I Nicolaescu.Radar absorbing materials used for target camouflage [J].Journal ofOptoelectronics and Andvanced Materials,2006,8(1):333-338.
    [30] Vitalija Rubeien,Ingrida Padleckien,Julija Baltunikait.Evaluation of CamouflageEffectiveness of Printed Fabrics in Visible and Near Infrared Radiation SpectralRanges[J].Materals Science,2008,4(14):361-365.
    [31] Q R Zheng, Y M Yan, X Y Cao, et al. High impedance groundplane(higp)incorporated with pesistance for Radar Cross Section(RCS) reductionof antenna[J].Progress in Electromagnetics Research,2008,(84):307-319.
    [32] Tadeusz W,Wickowski,Jarosaw M Janukiewicz. Methods for Evaluating theShielding Effectiveness of Textiles[J].FIBRES&TEXTILES in Eastern EuropeJanuary,2006,5(14):18-22.
    [33] K N Rozanov.Ultimate thickness to bandwidth ratio of radar absorbers[J].IEEETrans Antennas and Propagation,2000,8(48):1230-1234.
    [34] Engheta N.An idea for thin subwavelenrth cavity resonators using metamaterialswith negative permittivity and permeability[J].IEEE Antennas and Wireless,2002,(7):10-13.
    [35] He S,Y Jin,Z Ruan,et al.On subwavelength andopen resonators involvingmeta-materials of negative refraction index[J].New Journal of Physics,2005,(7):210.
    [36] Pendry J B.Negative refraction makes a perfect lens[J].Phys Rev Lett,2000,18(85):3966-3969.
    [37] Lagarkov,V N Semenenko,V N Kisel.Development and simulation of microwaveartificial magnetic composites utilizing nonmagnetic inclusions[J].J Magn MagnMater,2003,(258):161-166.
    [38]孙社营.吸波材料及其在舰船上的应用[J].材料开发与应用,1996,11(4):43-48.
    [39]张秀成,何华辉.多晶铁纤维铺层的雷达波反射特性研究[J].功能材料,2001,32(5):460-462.
    [40]刘孝会,周学梅,周光华,等.多孔层叠宽频吸波材料研究[J].功能材料,2010,41(增刊):292-296.
    [41]王翠平,方庆清,李民权,等.网状织物基多层材料的吸波性能研究[J].材料开发与应用,2008,23(4):5-8.
    [42] Hatakeyama K,Inui T.Electromagnetic Wave Absorber Using Ferrite AbsorbingMaterial Dispersed with Short Metal Fibers[J].IEEE Trans Magnetic,1984,20(5):1261-1265.
    [43] Mukesh C Dimri,Subhash C Kashyap,D C Dube.Complex permittivity andpermeability of Co-substituted NiCuZn ferrite at RF and microwavefrequencies[J].J Electroceram,2006,(16):331-335.
    [44] Thakur A,Singh M.Preparation and characterization of nanosize Mn0.4Zn0.6Fe2O4ferrite by citrate precursor method[J].Ceramics International,2003,29(5):505-511.
    [45] Elsa E Sileo,Ramiro Rotelo,Silvia E.Nickel zinc ferrites prepared by the citrateprecursor method[J].Physics B:Condensed Matter,2002,320(1):257-260.
    [46] Mu Guohong,Shen Haigen,Qiu Jianxun,et al.Microware absorption propertiesof composite powders with low density[J].Applied Surface Science,2006,(1):2278-2281.
    [47] Zhang H W,Shi Y,Zhong Z Y.Electric and magnetic properties of a newferrite-ceramic composite material[J].Chin Phys Lett,2002,19(2):269.
    [48]赵东林,周万城.涂覆型吸波涂层及其涂层结构设计[J].兵器材料科学与工程1998,21(4):58-60.
    [49]李保东,李巧玲,张存瑞,等.铁氧体复合吸波材料研究新进展[J].材料导报,2008,22:226-229.
    [50]李红英,施伟光,甘树才.稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性[J].吉林大学学报(工学版),2006,36(6):856-861.
    [51] Wang Jing, Zhang Hong, Bai Shuxin. Microwave absorbing properties ofrare-earth elements substituted W-type barium ferrite[J].J Magn Magn Mater,2007,312(2):310-313.
    [52] Sun Jing Jing, Li jiaobao, Sun Geliang. Effects of La2O3and Ga2O3onsomeproperites of Ni-Zn ferrite[J].J Magn Magn Mater,2002,250:20-24.
    [53] Ahmeda M A, Okashab N, Qafa M. The role of Mg substitution on themicrostructure and magnetic properties of (Ba-CoZn) W-type hexagonalferrites[J].J Magn Magn Mater,2007,314(2):128-134.
    [54]董艳玲,杜丕一,翁文剑,等.原位复合钛酸铅/镍(铅)铁氧体复相粉体的制备研究[J].无机材料学报,2005,20(5):1071-1076.
    [55]沈建红,周济,崔学民,等.BaTiO3/NiFe2O4复合材料的铁电性能和铁磁性能研究[J].四川大学学报(自然科学版),2005,42(2):495-497.
    [56]陈耿,谢建良,黄鹏.BST掺杂对M/Z型六角铁氧体复磁导率(1MHz-1GHz)的影响[J].功能材料,2006,36(3):362-364.
    [57] Miteoseriua L,Pallecchic I,Bacagliad V,et al.Magnetic properties of theBaTiO3-xNi0.5Zn0.5Fe2O4multiferroic composites[J].J Magn Magn Mater,2007,316(2):603-607.
    [58] Konenkam R,Word C R,Codinez M.Ultraviolet electroluminescence fromZnO/polymer heterojunction light-emitting diodes[J].Nano Lett,2005,5(10):2005-2008.
    [59]熊为华,方庆清,王保明,等.PANI/SrFe12O19复合材料的结构和吸波性能[J].磁性材料及器件,2007,38(3):30-33.
    [60]蒋静.聚苯胺/聚粃烙-尖晶石铁氧体的制备、表征和电磁性质研究[D].金华:浙江师范大学,2006.
    [61] Kim H S,Sohn B H,Lee W,et al.Mulfunctional layer-by-layer self-assemblyof conducting polymers and magnetic nano-particles[J].Thin Solid Films,2002,419(1):173-176.
    [62] Kazantseva N E,Vilcakova J,Kresalek V,et al.Magnetic behaviour of compositescontaining polyaniline coated manganese-zinc ferrite[J].J Magn Magn Mater,2004,269(1):30-37.
    [63]毛健,涂铭旌,陈家钊,等.Ni/聚乙烯复合材料复磁导率研究[J].功能材料与器件学报,1999,5(1):54-57.
    [64]毛健,陈家钊,涂铭旌,等.Ni/聚乙烯复合材料复介电常数研究[J].功能材料1999,30(2):212-213.
    [65]阮圣平,吴凤清,王永为,等.钡铁氧体纳米复合材料的制备及其微波吸收性能[J].物理化学学报,2003,19(3):275-277.
    [66]阮圣平,王兢,刘永刚,等.BaFe12O19纳米复合材料微波吸收性能的研究[J].吉林大学学报(理学版),2003,41(1):70-72.
    [67] Feng Y B,Qiu T,Shen C Y.Absorbing properties and structural design ofmicrowave absorbers based on carbonyl iron and barium ferrite[J].J Magn MagnMater,2007,318(1-2):8-13.
    [68]黄婉霞,毛健,吴行等.铁磁性MnZn,NiZn铁氧体与铁电性BaTiO3复合材料吸收电磁波能力研究[J].四川联合大学学报(工程科学版),1998,2(6):110-113.
    [69]张晏清,张雄.纳米锌铁氧体的制备与微波吸收性能研究[J].材料科学与工程学报,2006,24(4):504-507.
    [70] Qiu Jianxun,Lan Liyuan,Zhang Hong,et al.Microwave absorption propertiesof nanocomposite films of BaFe12O19and TiO2prepared by sol-gelmethod[J].Mater Sci Eng,2006,133(1/2/3):191-194.
    [71]庄稼,陈学平,迟燕华等.纳米Ni0.5Zn0.5Fe2O4铁氧体的制备及电磁损耗特性研究.功能材料[J],2006,37(1):43-46.
    [72]王璟,张虹,白书欣等.铁氧体/羰基铁粉复合吸波材料研究[J].兵器材料科学与工程,2007,30(1):39-41.
    [73]黎炎图,黄小忠,杜作娟等.结构吸波纤维及其复合材料的研究进[J].材料导报,2010,24(4):76-79.
    [74]周必成,蒋刚,蒋志新,等.碳团簇复合吸波材料的结构设计与性[J].宇航材料工艺,2010,5:69-72.
    [75]黄小忠,黎炎图,余维敏,等.短切磁性碳纤维泡沫复合材料吸波性能研究[J].磁性材料及器件,2010,41(5):15-18.
    [76] Nanni F,Travaglia P,Valentini M.Effect of carbon nanofibers dispersion on themicrowave absorbing properties of CNF/epoxy composites[J]. Compos SciTechn,2009,69(3-4):485-490.
    [77] Park Ki-Yeon, Han Jae-Hung, et al. Fabrication and electromagneticcharacteristics of microwave absorbers containing carbon nanofibers andNiFeparticles[J].Compos SciTechn,2009,69(7-8):1271-1278.
    [78] Zhao Naiqin,Zou Tianchun,et al.Microwave absorbing properties of activatedcarbon-fiber felt screens(vertica-larranged carbon fibers)/epoxy resincomposites[J].Mater Sci Eng B,2006,127(2-3):207-211.
    [79]姚承照,张晨,冯志海,等.电路模拟吸波材料带宽拓展方法探索[J].宇航材料工艺,2008,(5):33-36.
    [80]李家俊,郑长进,赵乃勤等.含碳化硅纤维正交电路屏的吸波复合材料的研究[J].材料工程,2005,3:6-10.
    [81]王军,陈革,宋永才等.以异型碳化硅纤维为吸收剂的结构吸波材料设计[J].材料工程,2000,(7):27-29.
    [82]陈志彦,王军,李效东,等.连续含铁碳化硅纤维及其结构吸波材料的研制[J].复合材料学报,2007,24(5):72-76.
    [83]杨康,师春生,赵乃勤,等.玻璃纤维布对ACF/FRP结构吸波复合材料导电性能和吸波性能的影响[J].中国科技论文在线,2008,3(4):250-255.
    [84] Park Ki-Yeon,Lee Sang-Eui,et al.Fabrication and electromagnetic characteristicsof electromagnetic wave absorbing sandwich structures[J].Compos Sci Techn,2006,66(3-4):576.
    [85] Lee Sang-Eui,Kang Ji-Ho,Kim Chun-Gon.Fabrication anddesign of multilayered radar absorbing structures of MWNT-filled glass/epoxy plain-weavecomposites[J].ComposStruct,2006,76(4):397-405.
    [86] Kim Jin-Bong,Lee Sang-Kwan,Kim Chun-Gon.Comparison study on the effectof carbon nanomaterials for single layer microwave absorbers in X-band[J].Compos SciTechn,2008,68(14):2909-2916.
    [87] Chin Woo-Seok, Lee Dai-Gil. Development of the compo site RAS(radarabsorbing structure)for the X-band frequency range[J].Compos Struct,2007,77(4):457-465.
    [88] Ge Min,Shen Zengmin,Chi Weidong,et al.Anisotropy of mesophase pitch-derived carbon foams[J].Carbon,2007,45(1):141-146.
    [89]邱琴,张晏清,张雄.电磁吸波材料研究进展.电子元件与材料,2009,28(8):78-81.
    [90] Jung-Hoon Oh,Kyung-Sub Oh,Chun-Gon Kim,et al.Design of radar absorbingstructures using glass/epoxy composite containing carbon black in X-bandfrequency ranges[J].Composites: Part B,2004,(35):49-56.
    [91] Sang-Eui Lee, Ji-Ho Kang, Chun-Gon Kim. Fabrication and design ofmulti-layered radar absorbing structures of MWNT-filled glass/epoxyplain-weave composites[J].Composite Structures,2006,(76):397-405.
    [92] Woo-Kyun Jung,Beomkeun Kim,Myung-Shik Won,et al.Fabrication of radarabsorbing structure(RAS)using GFR-nano composite and spring-backcompensation of hybrid composite RAS shells[J].Composite Structures,2006(75):571-576.
    [93] H L Fan, W Yang, Z M Chao. Microwave absorbing composite latticegrids[J].Composites Science and Technology,2007,(67):3472-3479.
    [94]康永.吸波材料研究进展[J].现代技术陶瓷,2010,(125):35-40.
    [95]杨国栋,康永,孟前进.微波吸波材料的研究进展[J].应用化工,2010,39(4):585-560.
    [96] Dongxiu Yu,Jiang Cheng,Zhuoru Yang.Performance of polyaniline-coated shortcarbon fibers in electromagnetic shielding coating[J].J Mater Sci Technol,2007,23(4):529-534.
    [97] Taejin Kim, D D L Chung.Mats and fabrics for electromagnetic interferenceshielding[J].Journal of Materials Engineering and Performance,Volume,2006,15(3):295-298.
    [98]黄少文,陈光华,邓敏等.石墨-碳纤维水泥基复合材料的电磁屏蔽效能[J].硅酸盐学报,2010,38(4):449-552.
    [99]龚春红,张玉,阎超,等.超细镍纤维复合材料的电磁屏蔽研究[J].稀有金属材料与工程,2010,39(7):1298-1302.
    [100]Liu Qinglei, Zhang Di, Fan Tongxiang et al. Amorphous carbon-matrixcomposites with interconnected carbon nano-ribbon networks for electromagneticinterference shielding[J].Carbon,2008,(46):461-465.
    [101]Zhang Lan,Zhu Hong.Dielectric,magnetic,and microwave absorbing propertiesof multi-walled carbon nanotubes filled with Sm2O3nanoparticles[J].Materialsletters,2009,(63):272-274.
    [102]Yong Li,Changxin Chen,Song Zhang.Electrical conductivity and electro-magnetic interference shielding characteristics of multiwalled carbon nanotubefilled polyacrylate composite films[J].Applied surface science,2008,(254):5766-5771.
    [103]C Mller,L Klinkenbusch.Electromagnetic and transient shielding effectivenessfor near-field sources[J].Advances in Radio Science,2007,(5):57-62.
    [104]Ozlem Ozgun,Raj Mittra,Mustafa Kuzuoglu.Parallelized characteristic basisfinite element method(CBFEM-MPI)-a non-iterative domain decompositionalgorithm for electromagnetic scattering problems[J].Journal of computationalphysics,2009,228(6):2225-2238.
    [105] Hill D A.Electomagnetic scattering by buried objects of low contrast[J].IEEETrans on Geosci Remote Sens,1988,26(2):195-203.
    [106]Vitebskiy S,Sturgess K,Carin L.Short-pulse plane-wave scattering from buriedperfectly conducting bodies of revolution[J].IEEE Trans on Antennas Propag,1996,44(2):143-151.
    [107]Frederick C O,Wong Y C,Edge F W.Two dimensional automatic meshgeneration for structural analysis[J].Int J Num Meth Eng,1970,(2):133-144.
    [108]Cendes Z J, Shenton D, Shahnasser H. Magnetic field computation usingDelaunay triangulation and complementary finite element methods[J].IEEE TransMag1983,19(6):2551-2557.
    [109]Barfield W D. Numerical method for generating orthogonal curvilinearmeshes[J].J Comp Phy,1970,(5):23-33.
    [110]Wong P B,Tyler G L,Baron J E,et al.A three-wave FDTD approach to surfacescattering with applications to remote sensing of geophysical surfaces[J].IEEETrans on Antennas Propag,1996,44(4):504-514.
    [111] Popvic B D, Kolund B M. Analysis of metallic antennas andscatters[M].London: IEE Press,1994.
    [112] Djordjevic M,Notaros B M.Double higher order method of moment s for surfaceintegral equation modeling of metallic and dielectric antennas andscatterers[J].IEEE Trans on AP,2004,52(8):2118-2129.
    [113]Demarest K,Plumb R,and Huang Z B.FDTD modeling of scatterers in stratifiedmedia[J].IEEE Trans on Antennas Propag,1995,43(10):1164-1168.
    [114]Demarest K, Huang Z B, and Richard P. An FDTD near-to far-zonetransformation for scatterers buried in stratified grounds[J]. IEEE Trans onAntennas Propag,1996,44(8):1150-1156.
    [115]Li Qing-liang,Ge De-biao.An approach for solving ground wave scattering fromobjects[J].Journal of Microwares,1998,14(1):23-28.
    [116]Wang Jun-hong.PML technique of lossy media and its application to objectdetection[J].Acta Electronica Sinica,1999,27(9):5-8.
    [117]Li Qing-liang,Ge De-biao.An fdtd near to far zone transformation for groundwave scattering from objects above a flat earth[J].Journal of Electronics,1999,21(3):428-432.
    [118]Berenger J P.A perfectly matched layer for the absorption of electromagneticwaves[J].J Comput Phys,1994,114(1):185-200.
    [119]K Lakshmi,Honey Johnc,K T Mathew,et al.Microwave absorption,reflectionand EMI shielding of PU-PANI composite[J].Acta Materialia,2009,57(2):371-375.
    [120]Benahmed Nasr Eddine. Accurate closed-form expressions for theelectromagnetic parameters of the shielded split ring line AEU-International[J].Journal of Electronics and Communications,2007,61(3):205-208.
    [121]Hongtao Zhang,Jinsong Zhang,Hongyan Zhang.Computation of radar absorbingsilicon carbide foams and their silica matrix composites[J]. ComputationalMaterials Science,2007,(38):857-864.
    [122]Mingji Chen,Yongmao Pei,Daining Fang.Computational method for radarabsorbing composite lattice grids[J].Computational Materials Science,2009,46(3):591-594.
    [123]Whilliam H.Hayt,John A.Buck箸,赵彦珍,李瑞程,孙晓华,译.工程电磁场(第七版)[M].西安:西安交通大学出版社,2008:304-319.
    [124]Robert R G Yang, Thomas T Y Wong. Electromagntic fields andwaves[M].Beijing:Higher education press,2006,206-207.
    [125]周希朗.电磁场[M].北京:电子工业出版社,2008,46-47.
    [126]路宏敏,赵永久,朱满座.电磁场与电磁波基础[M].北京:科学出版社,2006:115.
    [127]朱立群,古璟,李卫平,等.无纺布织物涂层的吸波性能[J].航空材料学报,2008,28(4):70-75.
    [128]王强,王军,楚增勇,等.多向铺层碳化硅纤维吸波材料吸波性能方向性研究[J].新技术新工艺,2008,(5):104-106.
    [129]王晓红,刘俊能.碳纤维复合材料的微波反射特性研究[J].功能材料,1999,30(4):387-389.
    [130]朱正吼.碳纤维复合材料电磁特性研究[J].机械工程学报,2011,25(11):14-16.
    [131]Woo IL Lee,Geo rge S Springer.Interaction of electromagnetic radiation withorganic matrix Composities[J]. Journal of Composite Material,1984,18:357-382.
    [132]赵伯琳,王卓,饶克谨.多向定向铁纤维吸波材料的雷达反射特性研究[J].电波科学学报,2004,19(3):280-285.
    [133]Hyun-Tai Kim,Kai Liu,Yong-Taek Lee,et al.Structure-dependent dielec-tricconstant in thin laminate substrates[J].Electronic Components and TechnologyConference,2011,61(3):1717-1722.
    [134]Jae-Woong Kim,Sung-Soo Kim.Microwave absorbers of two-layer compositeslaminate for wide oblique incidence angles[J].Materials and Design,2010,31(3):1547-1552.
    [135]Liangchi Zhang, Chunliang Zhang and Zichen Chen. Microwave absorbingproperties of radar absorbing structure composites filling with carbon nanotubes[J].Advanced Materials Research,2011,328-330:1109-1112.
    [136]Karel Matous,George J Dvorak.Optimization of electromagnetic absorption inlaminated composite plates[J].IEEE Transactions on Magnetics,2003,39(3):1827-1835.
    [137]Schultz J W,Cieszynski B.Sub-wavelength measurement of electromagneticinhomogeneities in materials[J].IEEE Antennas and Propagation Magazine,2007,49(4):225-230.
    [138] Fumeaux C,Baumann D,Almpanis G,et al.Finite-volume time-domain methodfor electromagnetic modelling: strengths, limitations and challenges[J].International Journal of Microwave and Optical Technology,2008,3(3):318-328.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700