交通信号协调控制基础理论与关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市交通量的增长与路网密度的增强,交叉口之间的相关性日益明显,如何从整个系统战略角度出发,进行有效的交通信号协调控制设计,已成为城市交通控制发展的新要求。本文针对现有交通信号协调控制理论方法的不足,结合现代城市交通信号控制的发展需求与技术特点,在交通控制子区的动态划分、绿波协调控制模型的建立、停车延误协调控制模型的建立、交通信号协调控制关键技术的实现等方面进行了相关研究与探讨,完成的主要科研工作与取得的重要研究成果概括如下:
     1.通过分析相邻交叉口间距、路段交通量以及交叉口信号配时参数等因素对相邻交叉口关联性的作用影响,提出了一个定量化描述相邻交叉口之间关联性强弱的交通参量——相邻交叉口关联度,并对其计算方法与科学合理性进行了相关论述,进一步给出了多交叉口组合关联度的定义与计算公式,实现了交叉口之间相关性要素的有效综合;通过将各控制子区划分方案映射为相应字符解、设置基于交叉口关联度的子区划分约束条件、选取评判子区划分方案优劣的评价指标,建立了一套基于交叉口关联度分析的控制子区划分模型,设计了一套完整的最佳控制子区划分方案获取流程,采用子区划分层扩散算法实现了对控制子区划分方案的综合性分析评价,并通过算例分析对基于交叉口关联度分析的控制子区划分方法进行了详细阐述与有效性验证。
     2.改进了进口对称放行方式下的双向绿波协调控制经典数解算法,提出了基于公共信号周期允许变化范围的理想交叉口间距取值范围确定法则,给出了基于偏移绿信比概念的绿波带宽度计算方法,建立了最大偏移绿信比最小化的最佳理想交叉口间距选取原则;设计了进口单独放行方式下的双向绿波协调控制数解算法,实现了公共信号周期、信号相序组合以及相位差的优化设计,并通过理论与算例分析有效验证了进口单独放行方式下双向绿波协调控制数解算法的适用范围特点与正确有效性;建立了进口混合放行方式下的通用双向绿波协调控制模型,设计了一套基于协调控制模型的信号配时优化流程,利用混合整数线性规划方法实现了控制模型的优化求解,并给出了不同带宽需求下的双向绿波协调控制目标函数通式,为干道双向绿波协调控制设计提供了一种适用面广、实用性强、准确度高的新方法。
     3.分析了上游交叉口信号相位设置对下游交叉口获取理想停车延误协调控制效果的影响,针对未饱和与过饱和两种不同交通状态,根据行驶车队头车到达下游交叉口进口道的不同时刻,利用交叉口进口道车辆停车延误分析图,分别建立了相应的停车延误协调控制模型,得到了行驶车队停车延误与相邻交叉口相对相位差之间的函数关系,并设计了基于停车延误协调控制模型的信号配时优化流程,给出了信号相位绿信比与交叉口相位差的优化方法;通过公式推导与仿真分析验证了未饱和与过饱和两套基准阻滞停车延误模型的一致性和准确性,从基准阻滞和随机与过饱和阻滞两个方面分析比较了不同控制方式与不同交通状态下的交叉口进口道停车延误。
     4.通过对比现有交通信号控制系统的结构框架,提出了一种动态分层式区域交通信号控制结构,构建了控制系统的物理框架与逻辑框架,描述了控制系统的硬件组成与功能模块;建立了交通信号控制系统的路网实时信息数据库,设计了控制子区快速动态划分流程,研究了交叉口关联度大小与协调控制方式选取之间的对应关系,确定了协调控制最佳信号配时方案的选取依据,给出了一种协调控制方案快速平滑过渡算法;以东莞市虎门镇连升路交通信号协调控制系统设计为例,依次介绍了单交叉口的信号配时设计、控制子区的划分步骤流程以及最佳信号配时方案的计算选取过程,并通过交通仿真分析与实际系统运行,综合有效地验证了本文所述控制子区划分理论与协调控制模型方法的科学合理性。
Under the influence of increasing traffic volume and density of road network, correlation among intersections has become increasingly evident. How to design traffic signal coordinated control efficiently from a system point of view, has become a new requirement for the development of traffic control. Considering the defects in existing theory and method of traffic signal coordinated control, combining with development needs and technical characteristics in modern urban traffic control, this dissertation has researched and discussed in the following areas, including dynamic division theory of traffic control subareas, green wave coordinated control models, stop and delay coordinated control models, and implementation of key technologies in traffic signal coordinated control. The main scientific research and research results in this dissertation include:
     1. Analyzing the influences of distance and traffic volume between neighboring intersections, and signal timing parameters of connected intersections, neighboring intersection correlation degree, as a new traffic parameter, is put forward to quantitatively describe the degree of correlation between two neighboring intersections. The corresponding calculation method and scientific rationality are proposed. Then, the definition and calculation formula of multi-intersection combinatorial correlation degree are presented. The intersection correlation degree realizes an effective integration of influencing factors. After that, by translating division scheme into corresponding character solution, setting constraint conditions and evaluation criteria of division scheme, a division model of traffic control subareas based on the theory of correlation degree is established. The whole division process which is used to get the optimal scheme is proposed. Under this condition, the subarea division schemes are analyzed and evaluated with the layer diffusion algorithm. An example is presented to test and verify the division method of traffic control subareas based on the theory of correlation degree.
     2. First of all, the algebraic method of bidirectional green wave coordinated control for symmetry phase design has been improved. The value range of ideal intersection distance is determined by allowable value range of common signal cycle, a new calculation method for green wave bandwidth based on bias-split is presented, and a new selection rule of minimizing the maximum bias-split for optimal ideal intersection distance is established. Then, an algebraic method of bidirectional green wave is presented which can be used for arterial road coordinate control in the signal design mode of one-phase-one-approach. This method can optimize common signal cycle, phase sequence of each intersection, and signal offsets. Analysis in theory and applications have demonstrated that the character of application scope and effectiveness of the method. Finally, a general coordinated control model of bidirectional green wave for different traffic released mode is proposed. Signal timing optimization process based on the control model is designed. The control model can be solved by the method of mixed-integer linear programming, and a general object function of bidirectional green wave coordinated control for different bandwidth needs is established. It is a widely used, practical and accurate method for arterial road coordinate control.
     3. The effect of upstream intersection signal setting on platoon’s stop and delay at downstream intersection has been analyzed. With the different time that platoon reaches downstream intersection and the cumulative arrival-departure diagrams, this dissertation proposes corresponding stop and delay coordinated control models for under-saturated and over-saturated traffic conditions. The functional relationship between platoon’s stop and delay and neighboring intersections’offset is obtained. Signal timing optimization process based on the coordinated control model is designed, and the optimization methods for split and offset are also given. Then, uniform stop and delay models for under-saturated and over-saturated traffic conditions are proved to be consistent and accurate by formula derivation and simulation. This dissertation analyses the stop and delay at intersection approach for different control modes and different traffic conditions from uniform and stochastic resistance.
     4. Initially, the dynamic hierarchical structure, physical architecture, and logical framework for area traffic signal control system are developed by contrast to all existing systems. Hardware components and function modules are described. Besides, database of network real-time information for traffic signal control system is established. The fast dynamic division process of control subareas is proposed. Relationship between intersection correlation degree and coordinated control style is discussed. Basis for the selection of optimal signal timing scheme is presented. A signal timing scheme transition algorithm which can transfer from one scheme to another quickly and smoothly is given. Eventually, take traffic signal coordinated control systems on Liansheng Road, Humen Town, Dongguan City, as an example, signal timing for each intersection, division process for control subareas, and the process to calculate optimal signal timing scheme are introduced. Scientific rationality of the division theory of control subareas and the method of coordinated control are verified by traffic simulation and practice.
引文
[1] Gazis D. C.. Traffic Theory[M]. New York: Kluwer Academic Publishers, 2002
    [2] Wong C. K., Wong S. C., Tong C. O.. Optimization Methods for Off-Line Traffic Signal Settings: Recent Advances and Prospective Future Research[J]. Journal of Transportation Systems Engineering and Information Technology, 2005, 5(2): 36-54
    [3]刘智勇.智能交通控制理论及其应用[M].北京:科学出版社, 2003
    [4] Robertson D. I.. TRANSYT: A Traffic Network Study Tool: TRRL Report 253[R]. Berkshire: Transport and Road Research Laboratory, 1969
    [5] Hunt P. B., Robertson D. L., Bretherton R. D.. The SCOOT On-Line Traffic Signal Optimization Technique[J]. Traffic Engineering and Control, 1982, 23(4): 190-192
    [6] Martin P. T., Hockaday S. L. M.. SCOOT- An Update[J]. Institute of Transportation Engineers Journal, 1995, 65(1): 44-48
    [7] Luk J. Y. K.. Two Traffic-Responsive Area Traffic Control Methods: SCAT and SCOOT[J]. Traffic Engineering and Control, 1984, 25(1): 14-22
    [8] Lowrie P. R.. The Sydney Coordinated Adaptive Traffic System- Principles, Methodology, Algorithms[C]. Proceedings of the International Conference on Road Traffic Signalling, London, 1982, 67-70
    [9] Mauro V., Di Taranto C.. UTOPIA[C]. Proceedings of the 6th IFAC/IFIP/IFORS Symposium on Control, Computers and Communications on Transportation, Paris, 1989, 245-252
    [10] Mirchandani P., Head L.. A Real-Time Traffic Signal Control System: Architecture, Algorithms and Analysis[J]. Transporation Research Part C, 2001, 9(6): 415-432
    [11] Gartner N. H.. OPAC: A Demand-Responsive Strategy for Traffic Signal Control[J]. Transportation Research Record, 1983, 906: 75-84
    [12] Gartner N. H., Tarnoff P. J., Andrews C. M.. Evaluation of the Optimized Policies for Adaptive Control (OPAC) Strategy[J]. Transportation Research Record, 1991, 1324: 105-114
    [13] Yagoda H. N., Principle E. H., Vick C. E., et al. Subdivision of Signal Systems into Control Areas[J]. Traffic Engineering, 1973, 43(12): 42-45
    [14] NAC. Traffic Control Devices Handbook[M]. Washington, D.C.: Federal Highway Administration, 1975
    [15] Pinnell C., DeShazo J. J., Wilshire R. L.. Areawide Traffic Control Systems[J]. TrafficEngineering & Control, 1975, 45(4): 16-21
    [16] Chang E. C. P.. How to Decide the Interconnection of Isolated Traffic Signals[C]. Proceedings of the 1985 Winter Simulation Conference, San Francisco, 1985, 445-453
    [17] TRB. Highway Capacity Manual 1987 (HCM 1987)[M]. Washington, D.C.: National Research Council, 1987
    [18]高云峰.动态交叉口群协调控制基础问题研究[D].上海:同济大学, 2007
    [19]段后利,李志恒,张毅,等.交通控制子区动态划分模型[J].吉林大学学报(工学版), 2009, 39(sup2): 13-18
    [20]马万经,李晓丹,杨晓光.基于路径的信号控制交叉口关联度计算模型[J].同济大学学报(自然科学版), 2009, 37(11): 1462-1466
    [21] Walinchus R. J.. Real-Time Network Decomposition and Subnetwork Interfacing[J]. Highway Research Record, 1971, 366: 20-28
    [22] Stockfish C. R.. Guidelines for Computer Signal System Selection in Urban Areas[J]. Traffic Engineering, 1972, 43(3): 30-63
    [23] Kell J. H., Fullerton I. J.. Manual of Traffic Signal Design[M]. Second Edition. New Jersey: Prentice Hall, 1991
    [24] Pline J. L.. Traffic Engineering Handbook[M]. Fourth Edition. New Jersey: Prentice Hall, 1992
    [25] FHWA. Manual on Uniform Traffic Control Devices for Streets and Highways[M]. Washington, D.C.: Federal Highway Administration, 1978
    [26] Graham E. F., Chenu D. C.. A Study of Unrestricted Platoon Movement of Traffic[J]. Traffic Engineering, 1962, 32(7): 11-13
    [27] Castle D. E., Bonniville J. W.. Platoon Dispersion over Long Road Link[J]. Transportation Research Record, 1985, 1021: 36-44
    [28] Baass K. G., Lefebvre S.. Analysis of Platoon Dispersion with Respect to Traffic Volume[J]. Transportation Research Record, 1988, 1194: 64-76
    [29] Chang E. C. P.. Evaluation of Interconnected Arterial Traffic Signals[J]. Transportation Planning Journal Quarterly, 1986, 15(1): 137-156
    [30] Lin L. T.. A Methodology and Computer-Aided System for Signal Grouping of Computerized Traffic Signal Design[C]. Proceedings of the 28th International Symposium on Automotive Technology and Automation, Stuttgart, 1995, 239-246
    [31] Lin L. T., Tsao S. M.. A System Approach on Signal Grouping for Areawide Control of Computerized Traffic System[C]. Transportation Research Board, Washington, D.C., 2000,485-498
    [32] Lin L. T., Huang H. J.. A Linear Model for Determining Coordination of Two Adjacent Signalized Intersections[J]. Journal of Modelling in Management, 2009, 4(2): 162-173
    [33] Husch D., Albeck J.. Synchro 5.0 User Guide[R]. California: Trafficware Inc., 2001
    [34] Tian Z., Urbanik T., Messer C., et al. A System Partition Approach to Improve Signal Timing[C]. Transportation Research Board, Washington, D.C., 2003, CD-ROM
    [35]莫汉康,彭国雄,云美萍.诱导条件下交通控制子区自动划分[J].交通运输工程学报, 2002, 2(2): 67-72
    [36]杨庆芳,陈林.交通控制子区动态划分方法[J].吉林大学学报(工学版), 2006, 36(sup2): 139-142
    [37]陈晓明.交通控制子区动态划分指标研究[D].长春:吉林大学, 2007
    [38]李瑞敏,陆化普,史其信.交通信号控制子区模糊动态划分方法研究[J].武汉理工大学学报(交通科学与工程版), 2008, 32(3): 381-384
    [39]高自友,赵小梅,黄海军.复杂网络理论与城市交通系统复杂性问题的相关研究[J].交通运输系统工程与信息, 2006, 6(3): 41-47
    [40]徐丽群.路网分区的树生长算法[J].计算机应用研究, 2009, 26(10): 3663-3665
    [41] Homburger W. S.. Transportation and Traffic Engineering Handbook[M]. Second Edition. New Jersey: Prentice Hall, 1982
    [42] Morgan J. T., Little J. D. C.. Synchronizing Traffic Signals for Maximal Bandwidth[J]. Operations Research, 1964, 12(6): 896-912
    [43] Little J. D. C.. The Synchronization of Traffic Signals by Mixed-Integer Linear Programming[J]. Operations Research, 1966, 14(4): 568-594
    [44] Little J. D. C., Kelson M. D., Gartner N. H.. MAXBAND: A Versatile Program for Setting Signals on Arteries and Triangular Networks[J]. Transportation Research Record, 1981, 795: 40-46
    [45] Messer C. J., Whitson R. H., Dudek C. L., et al. A Variable-Sequence Multiphase Progression Optimization Program[J]. Transportation Research Record, 1973, 445: 24-33
    [46] Chang E. C. P., Messer C. J.. Arterial Signal Timing Optimization Using PASSER II-90– Program User's Manual[R]. Texas: Texas A&M University System, 1991
    [47] FHWA. PASSER II-90 User's Guide[M]. Washington, D.C.: Federal Highway Administration, 1991
    [48] Chaudhary N. A., Messer C. J.. PASSER IV-96, Version 2.1, User/Reference Manual[R]. Texas: Texas A&M University System, 1996
    [49] Gartner N. H., Assmann S. F., Lasaga F., et al. MULTIBAND: A Variable Bandwidth Arterial Progression Scheme[J]. Transportation Research Record, 1990, 1287: 212-222
    [50] Gartner N. H., Assmann S. F., Lasaga F., et al. A Multi-Band Approach to Arterial Traffic Signal Optimization[J]. Transportation Research Part B, 1991, 25(1): 55-74
    [51] Stamatiadis C., Gartner N. H.. MULTIBAND-96: A Program for Variable Bandwidth Progression Optimization of Multi-Arterial Traffic Networks[J]. Transportation Research Record, 1996, 1554: 9-17
    [52] Stamatiadis C., Gartner N. H.. Progression Optimization in Large Scale Urban Traffic Networks: A Heuristic Decomposition Approach[C]. Proceedings of the 14th International Symposium on Transportation and Traffic Theory, Jerusalem, 1999, 645-662
    [53] Gartner N. H., Stamatiadis C.. Arterial-Based Control of Traffic Flow in Urban Grid Networks[J]. Mathematical and Computer Modelling, 2002, 35(5): 657-671
    [54]中国公路学会《交通工程手册》编委会.交通工程手册[M].北京:人民交通出版社, 1998
    [55]臧利林,贾磊,罗永刚.交通干线相邻交叉口动态协调控制研究[J].公路交通科技, 2007, 24(7): 103-106
    [56]沈国江,许卫明.交通干线动态双向绿波带控制技术研究[J].浙江大学学报(工学版), 2008, 42(9): 1625-1630
    [57] Lu S. F., Liu X. M., Dai S. Q.. Revised MAXBAND Model for Bandwidth Optimization of Traffic Flow Dispersion[C]. 2008 ISECS International Colloquium on Computing, Communication, Control, and Management, Guangzhou, 2008, 85-89
    [58]王殿海,李凤,宋现敏.干线协调控制中公共周期优化方法研究[J].交通信息与安全, 2009, 27(5): 10-13
    [59]陈宁宁,何兆成,余志.考虑动态红灯排队消散时间的改进MAXBAND模型[J].武汉理工大学学报(交通科学与工程版), 2009, 33(5): 843-847
    [60]全永燊.城市交通控制[M].北京:人民交通出版社, 1989
    [61] Rouphail N. M.. Progression Adjustment Factors for Signalized Intersections[J]. Transportation Research Record, 1989, 1225: 8-17
    [62] Fambro D. B., Chang E. C. P., Messer C. J.. Effects of the Quality of Traffic Signal Progression on Delay: National Cooperative Highway Research Program Report 339[R]. Washington, D.C.: Transportation Research Board, 1991
    [63] TRB. Highway Capacity Manual 1994 (HCM 1994)[M]. Washington, D.C.: National Research Council, 1994
    [64] Benekohal R. F., Zohairy Y. M. E.. A New Uniform Delay Model for Signalized Intersections[C]. Proceedings of the ASCE Conference: Traffic Congestion and Traffic Safety in the 21st Century, Chicago, 1997, 626-632
    [65] Benekohal R. F., Zohairy Y. M. E.. Multi-Regime Arrival Rate Uniform Delay Models for Signalized Intersections[J]. Transportation Research Part A, 2001, 35(7): 625-667
    [66] Hillier J. A.. Appendix to Glasgow's Experiment in Area Traffic Control[J]. Traffic Engineering and Control, 1966, 7(9): 569-571
    [67] Allsop R. E.. Choice of Offsets in Linking Traffic Signals[J]. Traffic Engineering and Control, 1968, 10: 73-75
    [68] Allsop R. E.. Selection of Offsets to Minimize Delay to Traffic in a Network Controlled by Fixed-Time Signals[J]. Transportation Science, 1968, 2(1): 1-13
    [69] Vincent R. A., Mitchell A. I., Robertson D. I.. User Guide to TRANSYT Version 8: TRRL Report 888[R]. Berkshire: Transport and Road Research Laboratory, 1980
    [70] Binning J. C., Crabtree M. R., Burtenshaw G. L.. TRANSYT 12 User Guide: TRRL Report 48[R]. Berkshire: Transport and Road Reaearch Laboratory, 2003
    [71] Wallace C. E., Courage K. G., Hadi M. A., et al. TRANSYT-7F User's Guide[M]. Florida: University of Florida, 1998
    [72] Gazis D. C.. Optimum Control of a System of Oversaturated Intersections[J]. Operations Research, 1964, 12(6): 815-831
    [73] Gazis D. C., Potts R. B.. The Oversaturated Intersection[C]. Proceedings of the 2nd International Symposium on the Theory of Road Traffic Flow, Paris, 1965, 221-237
    [74] Dans G. C., Gazis D. C.. Optimal Control of Oversaturated Store-and-Forward Transportation Networks[J]. Transportation Science, 1976, 10(1): 1-19
    [75] Michalopoulos P. G., Stephanopoulos G.. Oversaturated Signal Systems with Queue Length Constraints-II: Systems of Intersections[J]. Transportation Research, 1977, 11(6): 423-428
    [76] Chang T. H., Lin J. T.. Optimal Signal Timing for an Oversaturated Intersection[J]. Transportation Research Part B, 2000, 34(6): 471-491
    [77] Chang T. H., Sun G. Y.. Modeling and Optimization of an Oversaturated Signalized Network[J]. Transportation Research Part B, 2004, 38(8): 687-707
    [78] Daganzo C. F.. The Cell Transmission Model: A Dynamic Representation of Highway Traffic Consistent with the Hydrodynamic Theory[J] Transportation Research Part B, 1994, 28(4): 269-287
    [79] Daganzo C. F.. The Cell Transmission Model, Part II: Network Traffic[J]. TransportationResearch Part B, 1995, 29(2): 79-93
    [80] Lo H. K.. A Novel Traffic Signal Control Formulation[J]. Transportation Research Part A, 1999, 33(6): 433-448
    [81] Lo H. K., Chow H. F.. Control Strategies for Oversaturated Traffic[J]. Journal of Transportation Engineering, 2004, 130(4): 466-478
    [82]万绪军,陆化普.线控系统中相位差优化模型的研究[J].中国公路学报, 2001, 14(2): 99-102
    [83]常云涛,彭国雄.基于遗传算法的城市干道协调控制[J].交通运输工程学报, 2003, 3(2): 106-112
    [84]谷远利,于雷,邵春福.相邻交叉口相位差优化模型及仿真[J].吉林大学学报(工学版), 2008, 38(sup2): 53-58
    [85]杨兆升.新一代智能化交通控制系统关键技术及其应用[M].北京:中国铁道出版社, 2008
    [86]刘智勇,梁渭清.城市交通信号控制的进展[J].公路交通科技, 2003, 20(6): 121-125
    [87]徐建闽.交通管理与控制[M].北京:人民交通出版社, 2007
    [88]卢凯,徐建闽,郑淑鉴.相邻交叉口关联度分析及其应用[J].华南理工大学学报(自然科学版), 2009, 37(11): 37-42
    [89]王殿海,景春光,曲昭伟.交通波理论在交叉口交通流分析中的应用[J].中国公路学报, 2002, 15(1): 93-96
    [90]吴洋.干道过饱和交叉口群的实时交通控制策略研究[D].成都:西南交通大学, 2009
    [91]卢凯,徐建闽,李轶舜.基于关联度分析的协调控制子区划分方法[J].华南理工大学学报(自然科学版), 2009, 37(7): 6-9
    [92] GA/T 509?2004,中华人民共和国公共安全行业标准:城市交通信号控制系统术语[S].北京:中华人民共和国公安部, 2004
    [93]张海军,杨晓光,张珏.两种交叉口信号相位设计方法的比较[J].交通与计算机, 2005, 23(1): 3-7
    [94]陈喜群,李瑞敏.基于仿真的交通信号控制优化策略研究[J].交通与计算机, 2007, 25(5): 17-20
    [95]裴玉龙,孙明哲,董向辉.城市主干路交叉口信号协调控制系统设计研究[J].交通运输工程与信息学报, 2004, 2(2): 41-46
    [96]刘洋,史忠科.基于Synchro的多交叉口交通信号控制研究[J].交通与计算机, 2005, 23(6): 35-38
    [97]杨佩昆,吴兵.交通管理与控制[M].北京:人民交通出版社, 2003
    [98]栗红强.城市交通控制信号配时参数优化方法研究[D].长春:吉林大学, 2004
    [99]陈旭梅,李永猛,黄官中.安宁绿波带——一种改善安全和减少环境影响的新思路[J].公路交通科技, 2000, 17(2): 42-44
    [100]卢凯,徐建闽,叶瑞敏.经典干道协调控制信号配时数解算法的改进[J].公路交通科技, 2009, 26(1): 120-124
    [101]林晓辉,徐建闽,卢凯,等.各进口单独放行条件下的双向绿波设计方法研究[J].交通与计算机, 2007, 25(5): 8-12
    [102] Schrage L.. LINGO User's Guide[M]. Chicago: Lindo Publishing, 2004
    [103]谢金星,薛毅.优化建模与LINDO/LINGO软件[M].北京:清华大学出版社, 2005
    [104]袁晶矜,袁振洲.信号交叉口服务水平评价体系指标的分析及应用[J].公路交通技术, 2006, (4): 145-149
    [105] Khisty C. J., Lall B. K.. Transportation Engineering: An Introduction[M]. Second Edition. New Jersey: Prentice Hall, 1998
    [106]刘广萍,裴玉龙.信号控制下交叉口延误计算方法研究[J].中国公路学报, 2005, 18(1): 104-108
    [107]卢凯.不同交通流状况下的交叉口信号控制策略[J].公路交通科技, 2006, 23(4): 128-131
    [108] Webster F. V.. Traffic Signal Settings: Road Research Laboratory Technical Paper No.39[R]. London: Her Majesty's Stationary Office, 1958
    [109] Miller A. J.. Settings for Fixed-Cycle Traffic Signals[J]. Operations Research, 1963, 14(4): 373-386
    [110] May A. D., Keller H. E. M.. A Deterministic Queuing Model[J]. Transportation Research, 1967, 1(2): 117-128
    [111] Allsop R. E.. Delay at a Fixed Time Traffic Signal-I: Theoretical Analysis[J]. Transportation Science, 1972, 6(3): 260-285
    [112] Catling I.. A Time-Dependent Approach to Junction delays[J]. Traffic Engineering and Control, 1977, 18(11): 520-523
    [113] Branston D.. A Comparison of Observed and Estimated Queue Lengths at Oversaturated Traffic Signals[J]. Traffic Engineering and Control, 1978, 19(7): 322-327
    [114] Kimber R. M., Hollis E. M.. Traffic Queues and Delays at Road Junctions: TRRL Report 909[R]. Berkshire: Transport and Road Research Laboratory, 1979
    [115] Akcelik R.. Time-Dependent Expressions for Delay, Stop Rate and Queue Length at Traffic Signals: Australian Road Research Board Internal Report AIR 367-1[R]. Melbourne: Australian Road Research Board, 1980
    [116] Akcelik R.. The Highway Capacity Manual Delay Formula for Signalized Intersections[J]. Institute of Transportation Engineers Journal, 1988, 58(3): 23-28
    [117] Pacey G. M.. The Progress of a Bunch of Vehicles Released from a Traffic Signal: TRRL Report 2665[R]. Berkshire: Transport and Road Research Laboratory, 1956
    [118]王殿海.交通流理论[M].北京:人民交通出版社, 2002
    [119] Gartner N. H., Messer C. J., Rathi A. K.. Traffic Flow Theory[M]. Washington, D.C.: Federal Highway Administration, 1996
    [120]卢凯,徐建闽.干道协调控制相位差模型及其优化方法[J].中国公路学报, 2008, 21(1): 83-88
    [121]王媛.大范围战略交通协调控制系统关键技术研究[D].长春:吉林大学, 2009
    [122] Holland J. H.. Adaptation in Natural and Artificial System[M]. Michigan: University of Michigan Press, 1975
    [123]王小平,曹立明.遗传算法——理论、应用与软件实现[M].西安:西安交通大学出版社, 2002
    [124] MacGowan J. C.. Traffic Signal Transition in Computerized Systems[C]. Proceedings of Computing in Civil Engineering, Baltimore, 1980, 505-529
    [125] Mussa R., Selekwa M. F.. Proposed Methodology of Optimizing Transitioning Between Time-of-Day Timing Plans[J]. Journal of Transportation Engineering, 2003, 129(4): 392-398
    [126] Shelby S. G., Bullock D., Gettman D.. Transition Methods in Traffic Signal Control[C]. Transportation Research Board, Washington, D.C., 2006, 130-140
    [127]宋现敏.城市交叉口信号协调控制方法研究[D].长春:吉林大学, 2008
    [128]栗红强,陆化普,刘强.城市交通线控多时段配时方案过渡算法研究[J].武汉理工大学学报(交通科学与工程版), 2008, 32(5): 779-781

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700