基于图理论的图像结构化描述与匹配方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像描述与图像匹配是图像工程中的两个基础性任务,也是计算机视觉、模式识别等领域的研究热点。图像的结构是图像中相对稳定的信息特征,由图像中的基元及其相互关系组成,反映了图像本质内容,而图作为一种描述工具可以描述图像基元之间的关系,是一个有效的结构特征信息的表示方式,因此,采用图来描述图像的结构特征并应用图匹配技术来研究图像特征之间的匹配问题受到越来越多的关注。本文采用图的方式来描述图像的结构,围绕着基于图的图像结构化描述和匹配展开研究,主要工作与创新成果如下:
     (1)提出了基于最小生成树的图像结构化描述方法。基于图像中提取的结构基元构造最小生成树,最小生成树如同图像的“骨架”支撑着整幅图像,较好地反映了图像的结构。利用最小生成树定义了三个评价指标,用来衡量一组结构基元在图像中的分布均匀性、独特性和覆盖范围。该指标可以用来分析图像的结构信息,也可以用来评价一组结构基元对图像结构的描述能力。
     (2)研究了基于特征点的图像结构化描述。针对广义特征点,提出了一种新的二进制串描述符,与传统的高维浮点数向量描述符相比,该描述符在保证匹配性能的同时,显著提高了匹配速度,并降低了存储空间需求;基于特征点构造最小生成树,利用上述三个指标来分析特征点在图像中的分布情况和图像中的重复模式情况,从而反映了图像的结构信息;利用上述三个指标作为评价准则,提出了一种基于最小生成树删减的特征点选取方法,结果表明,该方法能够选取出在上述准则下取得准最优的一组特征点来描述图像的结构。
     (3)研究了基于特征曲线的图像结构化描述。针对传统边缘算子的检测结果中含有大量干扰边缘的不足,提出了一种基于非经典感受野自适应调制的轮廓检测方法,该方法通过模拟非经典感受野的兴奋与抑制作用来处理边缘算子的梯度图像,提高有意义的轮廓边缘的边缘强度,降低干扰纹理边缘的边缘强度,从而提高了传统边缘算子的轮廓检测性能;针对传统的边缘算子在检测屋脊型边缘时给出双边缘的现象,提出了一种改进的基于USAN(Univalue Segment AssimilatingNucleus)区域的宽线检测算子—M-USAN宽线算子,该方法将屋脊型边缘当做宽线处理,能够有效检测宽线的中心线;针对USAN宽线算子和M-USAN宽线算子中存在冗余计算的不足,提出了两种加速算法——自适应步长宽线检测算子和随机宽线检测算子,在保证USAN算子检测性能的同时,有效地消除了冗余计算量,提高了算子的运算速度。
     (4)提出了基于联合图与路径相似性的图匹配方法。该方法首先通过比较图的节点属性信息提取潜在匹配节点对作为联合图的节点,然后通过比较相应节点之间的最短路径的相似性建立联合图的亲和性矩阵,最后通过求解亲和性矩阵的主特征向量获得节点之间的对应关系。针对特征点和直线段特征构造的图,分别构造相似不变量和仿射不变量来建立最短路径的描述向量,并通过仿真图像实验和实际图像实验验证了算法的有效性。
Image description and image matching are two fundamental tasks in imageengineering and hot research topics in the field of computer vision and patternrecognition. The structure of an image which consists of image elements and theirrelationships is one of the most stable features in the image and reflects the essentialcontent of the image. And graph, which is an important and effective way to representthe structural information, can describe the relationships of image elements well.Therefore, it is receiving more and more attention to represent the image structure usinggraph and to solve the image feature matching problem by graph matching. In this thesis,we use graph to represent the structural information of images and investigate theproblem of structural description and matching of images in detail. The main researchworks and achievements are outlined as follows:
     (1)A method for structural description of images based on MST(MinimumSpanning Tree) is proposed. The MST constructed from the structural elements extractfrom the image support the image like the skeleton of the image, which reflects thestructure of image. Three indexes for evaluating the distribution uniformity, thedistinctiveness and the spanning degree of a set of image structural elements are definedbased on the MST. The evaluating indexes can be used to analyze the structuralinformation of an image and can also be used to evaluate the capability of a set ofstructural elements to describe the structure of an image.
     (2)The structural description of an image using feature points as structuralelements is studied. Firstly, a new binary descriptor for feature point is proposed.Comparing to the traditional floating-point descriptors of high-dimension vector, thisdescriptor yields comparable matching performance while running very fast andrequiring comparatively smaller amounts of memory. Then, the MST is constructedusing the points extracted from the image and the evaluating indexes are computed toanalyze the distribution of the points in the image and the repetitive pattern in the image,which reflect the structural information of the image. Taking the indexes as evaluatingprinciple, a method for choosing a set of points based on the pruning of MST isproposed. Experimental results show that the method can selecting a set of points whichare optimal or suboptimal in principle to describe the structure of the image.
     (3)The structural description of an image using feature lines as structural elementsis discussed. Since the detection results of standard edge detectors contain a lot ofspurious edges, an contour edge detection algorithm based on the adaptive facilitationand suppression mechanism of NCRF(Non-Classical Receptive Field) is presented. Bysimulating the facilitation and inhibition mechanism of NCRF, the algorithm strengthenthe gradient magnitudes of contour edges and decrease the gradient magnitudes of spurious edges, which simplifies the post-processing and improves the contour detectionperformance of standard edge detectors. Aiming at the phenomenon of double edgesgiven by traditional edge detectors when processing the ridge-type edges, a modifiedwide-line detector based on USAN(Univalue Segment AssimilatingNucleus)—M-USAN detector is presented, which treat the ridge-type edges aswide-lines and can extract the center-line of the wide lines. Moreove, in order to removethe redundant computation in the implementation of USAN wide-line detector andM-USAN wide-line detector, two acceleration algorithms—ASM-USAN detector(Adaptive Step Moving USAN detector) and R-USAN detector (Randomized USANdetector) are proposed, which successfully improve the speed of the USAN detectorwhile keeping its detection performance almost unspoiled.
     (4)A graph matching method based on association graph and path similarity isproposed. Firstly, the association graph whose nodes are the potential correspondencesof the two matching graphs is constructed, then its affinity matrix is computed bycomparing the corresponding shortest path in the two matching graphs, and finally thecorrect assignments are recovered by using the principal eigenvector of the affinitymatrix. For the graph constructed from different features, such as feature points andstraight lines, different similarity transformation invariants and affine transformationinvariants are used to construct the descriptive vector of shortest path between twovertexes in the graph. Experiments results on both the simulated images and real imagesdemonstrate the effectiveness of the method.
引文
[1] Marr D. Vision [M]. W. H. Freeman and Company,1982.
    [2] Biederman I. Recognition-by-Components: A Theory of Human ImageUnderstanding [J]. Psychological Review.1987,94(2):115-147.
    [3] Hummel J E, Biederman I. Dynamic Binding in a Neural Network for ShapeRecognition [J]. Psychological Review.1992,99:480-517.
    [4] Shams L, Malsburg C v d. Acquisition of Visual Shape Primitives [J]. VisionResearch.2002,42:2105-2122.
    [5] Pasupathy A, Connor C E. Shape Representation in Area V4: Position-SpecificTuning for Boundary Conformation [J]. Journal of Neurophysiology.2001,86:2505-2519.
    [6] Pasupathy A, Connor C E. Population Coding of Shape in Area V4[J]. NatureNeuroscience.2002,5(12):1332-1338.
    [7] Larsson J, Amunts K. Perceptual Segregation of Overlapping Shapes ActivatesPosterior Extrastriate Visual Cortex in Man [J]. Experimental Brain Research.2002,143(1):1-10.
    [8] Yang L. Biologically Inspired Visual Models by Sparse and UnsupervisedLearning [D]: Oregon Health&Sciences University,2007.
    [9] Sjahputera O, Keller J M, Matsakis P. Scene Matching by Spatial Relationships[C]. Processings of the NAFIPS2003,2003:149-154.
    [10] Parekh G, Skubic M, Sjahputera O et al. Scene Matching between a Map anda Hand Drawn Sketch Using Spatial Relations [C]. Processings of the IEEEInternational Conference on Robotics and Automation,2007:4007-4012.
    [11] Matsakis P, Keller J M, Marjamaa J et al. The Use of Force Histograms forAffine Invariant Relative Position Description [J]. IEEE Trans on Pattern Analysis andMachine Intelligence.2004,26(1):1-18.
    [12] Lai S-H, Fang M. A Hybrid Image Alignment System for Fast and PrecisePattern Localization [J]. Real-Time Imaging.2002,8(1):23-33.
    [13] Mikolajczyk K, Tuytelaars T, Schmid C et al. A Comparison of AffineRegion Detectors [J]. Int J Comput Vision.2005,65(1-2):43-72.
    [14] Mikolajczyk K, Schmid C. Indexing Based on Scale Invariant Interest Points[C]. Processings of the The8th International Conference on ComputerVision,2001:524-531.
    [15] Mikolajczyk K, Schmid C. Scale&Affine Invariant Interest Point Detectors[J]. Int J Comput Vision.2004,60(1):63-86.
    [16] Lowe D G. Distinctive Image Features from Scale-Invariant Keypoints [J]. IntJ Comput Vision.2004,60(2):91-110.
    [17] Bay H, Tuytelaars T, Van Gool L. Surf: Speeded up Robust Features [C].Processings of the European Conference on Computer Vision (ECCV2006),2006:404-417.
    [18] Matas J, Chum O, Urban M et al. Robust Wide-Baseline Stereo fromMaximally Stable Extremal Regions [J]. Image and Vision Computing.2004,22(10):761-767.
    [19] Tuytelaars T, Van Gool L. Content-Based Image Retrieval Based on LocalAffinely Invariant Regions [C]. Processings of the Int. Conf. on Visual InformationSystems,1999:493-500.
    [20] Tuytelaars T, Van Gool L. Wide Baseline Stereo Matching Based on LocalAffinely Invariant Regions [C]. Processings of the The11th British Machine VisionConference,2000:412-425.
    [21] Tuytelaars T, Gool L V. Matching Widely Separated Views Based on AffineInvariant Regions [J]. Int J Comput Vision.2004,59(1):61-85.
    [22] Kadir T, Zisserman A, Brady M. An Affine Invariant Salient Region Detector[C]. Processings of the The8th European Conference on Computer Vision (ECCV2004),2004:228-241.
    [23] Mikolajczyk K, Schmid C. A Performance Evaluation of Local Descriptors[C]. Processings of the IEEE Conference on Computer Vision and Pattern Recognition(ICPR2003),2003:257-263.
    [24] Mikolajczyk K, Schmid C. A Performance Evaluation of Local Descriptors [J].IEEE Transactions on Pattern Analysis and Machine Intelligence.2005,27(10):1615-1630.
    [25] Koenderink J J, Doom A J v. Representation of Local Geometry in the VisualSystem [J]. Biol Cybern.1987,55(6):367-375.
    [26] Florack L M J, Romeny B M t H, Koenderink J J et al. Scale and theDifferential Structure of Images [J]. Image Vision Comput.1992,10(6):376-388.
    [27] Freeman W T, Adelson E H. The Design and Use of Steerable Filters [J].IEEE Trans Pattern Anal Mach Intell.1991,13(9):891-906.
    [28] Gabor D. Theory of Communication [J]. J Inst Elect Eng.1946,93:429-457.
    [29] Baudat G, Anouar F. Generalized Discriminant Analysis Using a KernelApproach [J]. Neural Computing.2000,12(10):2385-2404.
    [30] Van Gool L, Moons T, Ungureanu D. Affine/Photometric Invariants forPlanar Intensity Patterns [C]. Processings of the European Conference on ComputerVision (ECCV1996),1996:642-651.
    [31] Berg A C, Malik J. Geometric Blur for Template Matching [C]. Processings ofthe IEEE Conference on Computer Vision and Pattern Recognition (CVPR2001),2001:607-614.
    [32] Heikkil M, Pietik inen M, Schmid C. Description of Interest Regions withLocal Binary Patterns [J]. Pattern Recogn.2009,42(3):425-436.
    [33] Moreno P, Bernardino A, José et al. Improving the Sift Descriptor withSmooth Derivative Filters [J]. Pattern Recogn Lett.2009,30(1):18-26.
    [34] Tola E, Lepetit V, Fua P. A Fast Local Descriptor for Dense Matching [C].Processings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR2008),2008:1-8.
    [35] Lazebnik S, Schmid C, Ponce J. A Sparse Texture Representation Using LocalAffine Regions [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.2005,27(8):1265-1278.
    [36] Dalal N, Triggs B. Histograms of Oriented Gradients for Human Detection[C]. Processings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR2005),2005:886-893
    [37] Mortensen E N, Hongli D, Shapiro L. A Sift Descriptor with Global Context[C]. Processings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR2005),2005:184-190.
    [38] Peng S-H, Kim D-H, Lee S-L et al. A Visual Shape Descriptor Using Sectorsand Shape Context of Contour Lines [J]. Information Sciences.2010,180(16):2925-2939.
    [39] Yan K, Sukthankar R. PCA-SIFT: A More Distinctive Representation forLocal Image Descriptors [C]. Processings of the IEEE Conference on ComputerVision and Pattern Recognition (CVPR2004),2004:506-513.
    [40] Gang H, Brown M, Winder S. Discriminant Embedding for Local ImageDescriptors [C]. Processings of the IEEE11th International Conference on ComputerVision (ICCV2007),2007:1-8.
    [41] Brown M, Gang H, Winder S. Discriminative Learning of Local ImageDescriptors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.2011,33(1):43-57.
    [42] Tuytelaars T, Schmid C. Vector Quantizing Feature Space with a RegularLattice [C]. Processings of the IEEE11th International Conference on Computer Vision(ICCV2007),2007:1-8.
    [43] Winder S, Gang H, Brown M. Picking the Best Daisy [C]. Processings of theIEEE Conference on Computer Vision and Pattern Recognition (CVPR2009),2009:178-185.
    [44] Calonder M, Lepetit V, Fua P et al. Compact Signatures for High-SpeedInterest Point Description and Matching [C]. Processings of the IEEE12th InternationalConference on Computer Vision (ICCV2009),2009:357-364.
    [45] Kulis B, Darrell T. Learning to Hash with Binary Reconstructive Embeddings[R].Berkeley: EECS Department, University of California.2009.
    [46] Raginsky M, Lazebnik S. Locality-Sensitive Binary Codes fromShift-Invariant Kernels [C]. Processings of the NIPS2009,2009:1509-1517.
    [47] Torralba A, Fergus R, Freeman W T.80Million Tiny Images: A Large DataSet for Nonparametric Object and Scene Recognition [J]. IEEE Transactions on PatternAnalysis and Machine Intelligence.2008,30(11):1958-1970.
    [48] Strecha C, Bronstein A M, Bronstein M M et al. Ldahash: Improved Matchingwith Smaller Descriptors [J]. IEEE Transactions on Pattern Analysis and MachineIntelligence2012,34(1):66-78.
    [49] Calonder M, Lepetit V, Ozuysal M et al. Brief: Computing a Local BinaryDescriptor Very Fast [J]. IEEE Transactions on Pattern Analysis and MachineIntelligence.2012,34(7):1281-1298.
    [50] Shakhnarovich G, Viola P, Darrell T (2003). Fast Pose Estimation withParameter-Sensitive Hashing. In IEEE International Conference on Computer Vision(ICCV2003), pp.750-757vol.752.
    [51] Hough P (1962). Method and Means for Recognizing Complex Patterns.
    [52] Brian B J, Allen R H. Extracting Straight Lines [J]. IEEE Trans on PatternAnalysis and Machine Intelligence.1986,8(4):425-455.
    [53] Freeman H. On the Encoding of Arbitray Geometric Configurations [J]. IEEETrans on Electronic Computing.1961,22(10):260-268.
    [54] Wang S, Kubota T, Siskind J M et al. Salient Closed Boundary Extractionwith Ratio Contour [J]. IEEE Trans Pattern Anal Mach Intell.2005,27(4):546-561.
    [55] Ledgeway T, Hess R F, Geisler W S. Grouping Local Orientation andDirection Signals to Extract Spatial Contours: Empirical Tests of “Association Field”Models of Contour Integration [J]. Vision Research.2005,45(19):2511-2522.
    [56] Amir A, Lindenbaum M. A Generic Grouping Algorithm and Its QuantitativeAnalysis [J]. IEEE Trans Pattern Anal Mach Intell.1998,20(2):168-185.
    [57] Alter T D, Basri R. Extracting Salient Curves from Images: An Analysis ofthe Saliency Network [J]. International Journal of Computer Vision.1998,27(1):51-69.
    [58] Canny J. A Computational Approach to Edge Detection [J]. IEEE Trans onPattern Analysis and Machine Intelligence.1986,8(6):679-698.
    [59] Smith S M, Brady J M. Susan--a New Approach to Low Level ImageProcessing [J]. Int J Comput Vision.1997,23(1):45-78.
    [60] Tomasi C, Manduchi R. Bilateral Filtering for Gray and Color Images [C].Processings of the IEEE International Conference on Computer Vision (ICCV1998),1998:839-846.
    [61] Dorin C, Peter M. Mean Shift: A Robust Approach toward Feature SpaceAnalysis [J]. IEEE Trans on Pattern Analysis and Machine Intelligence.2002,24(5):603-619.
    [62] Buades A, Coll B, Morel J (2005). A Non-Local Algorithm for ImageDenoising. In IEEE International Conference on Computer Vision and PatternRecognition (CVPR2005), pp.60-65.
    [63] Lindeberg T. Edge Detection and Ridge Detection with Automatic ScaleSelection [J]. Int J Comput Vision.1998,30(2):117-156.
    [64] Koren R, Yitzhaky Y. Automatic Selection of Edge Detector ParametersBased on Spatial and Statistical Measures [J]. Computer Vision and ImageUnderstanding.2006,102(2):204-213.
    [65] Tremblais B, Augereau B. A Fast Multi-Scale Edge Detection Algorithm [J].Pattern Recognition Letters.2004,25(6):603-618.
    [66] Papari G, Campisi P, Petkov N et al. A Biologically MotivatedMultiresolution Approach to Contour Detection [J]. EURASIP J Appl Signal Process.2007,2007(1):119-119.
    [67] Sen D, Pal S K. Gradient Histogram: Thresholding in a Region of Interest forEdge Detection [J]. Image and Vision Computing.2010,28(4):677-695.
    [68] Medina-Carnicer R, Madrid-Cuevas F J. Unimodal Thresholding for EdgeDetection [J]. Pattern Recognition.2008,41(7):2337-2346.
    [69] Medina-Carnicer R, Madrid-Cuevas F J, Carmona-Poyato A et al. OnCandidates Selection for Hysteresis Thresholds in Edge Detection [J]. PatternRecognition.2009,42(7):1284-1296.
    [70] Medina-Carnicer R, Mu oz-Salinas R, Carmona-Poyato A et al. A NovelHistogram Transformation to Improve the Performance of Thresholding Methods inEdge Detection [J]. Pattern Recogn Lett.2011,32(5):676-693.
    [71] Medina-Carnicer R, Mu oz-Salinas R, Yeguas-Bolivar E et al. A NovelMethod to Look for the Hysteresis Thresholds for the Canny Edge Detector [J]. PatternRecognition.2011,44(6):1201-1211.
    [72] Guo K, Robertson R, Mahmoodi S et al. Centre-Surround Interactions inResponse to Natural Scene Stimulation in the Primary Visual Cortex [J]. EuropeanJournal of Neuroscience.2005,21(2):536.
    [73] Jones H E, Grieve K L, Wang W et al. Surround Suppression in Primate V1[J]. Journal of Neurophysiology.2001,86(4):2011-2028.
    [74] WALKER G A, OHZAWA I, FREEMAN R D. Suppression Outside theClassical Cortical Receptive Field [J]. Visual Neuroscience.2000,17(03):369-379.
    [75] Dakin S C, Baruch N J. Context Influences Contour Integration [J]. Journal ofVision.2009,9(2).
    [76] Grigorescu C, Petkov N, Westenberg M A. Contour Detection Based onNonclassical Receptive Field Inhibition [J]. IEEE Transactions on Image Processing.2003,12(7):729-739.
    [77] Grigorescu C, Petkov N, Westenberg M A. Contour and Boundary DetectionImproved by Surround Suppression of Texture Edges [J]. Journal of Image and VisionComputing.2004,22(8):583-679.
    [78] Zeng C, Li Y, Yang K et al. Contour Detection Based on a Non-ClassicalReceptive Field Model with Butterfly-Shaped Inhibition Subregions [J]. Neurocomput.2011,74(10):1527-1534.
    [79] Papari G, Petkov N. An Improved Model for Surround Suppression bySteerable Filters and Multilevel Inhibition with Application to Contour Detection [J].Pattern Recogn.2011,44(9):1999-2007.
    [80] Tang Q, Sang N, Zhang T. Contour Detection Based on Contextual Influences[J]. Image and Vision Computing.2007,25(8):1282-1290.
    [81] Tang Q, Sang N, Zhang T. Extraction of Salient Contours from ClutteredScenes [J]. Image and Vision Computing.2007,40:3100-3109.
    [82] Huang W, Jiao L, Jia J. Modeling Contextual Modulation in the PrimaryVisual Cortex [J]. Neural Networks.2008,21(8):1182-1196.
    [83] Huang W, Jiao L, Jia J et al. A Neural Contextual Model for DetectingPerceptually Salient Contours [J]. Pattern Recognition Letters.2009,30(11):985-993.
    [84] Koller T M, Gerig G, Szekely G et al. Multiscale Detection of CurvilinearStructures in2-D and3-D Image Data [C]. Processings of the IEEE InternationalConference on Computer Vision (ICCV1995),1995:864-869.
    [85] Jacob M, Unser M. Design of Steerable Filters for Feature Detection UsingCanny-Like Criteria [J]. IEEE Trans Pattern Anal Mach Intell.2004,26(8):1007-1019.
    [86] Eberly D, Gardner R, Morse B et al. Ridges for Image Analysis [J]. Journal ofMathematical Imaging and Vision.1994,4(4):353-373.
    [87] Aggarwal N, Karl W C. Line Detection in Images through Regularized HoughTransform [J]. IEEE Transactions on Image Processing.2006,15(3):582-591.
    [88] Li S-X, Chang H-X, Zhu C-F. Fast Curvilinear Structure Extraction andDelineation Using Density Estimation [J]. Computer Vision and Image Understanding.2009,113(6):763-775.
    [89] Liu L, Zhang D, You J. Detecting Wide Lines Using Isotropic NonlinearFiltering [J]. Image Processing, IEEE Transactions on.2007,16(6):1584-1595.
    [90]席学强,王润生.基于直线特征的图像--模型匹配算法[J].国防科技大学学报.2000,22(6):70-74.
    [91] Wang Z, Wu F, Hu Z. Msld: A Robust Descriptor for Line Matching [J].Pattern Recognition.2009,42(5):941-953.
    [92] Huttenlocher D P. Pictorial Structures for Object Recognition [J].International Journal of Computer Vision.2005,61(1):55-79.
    [93] Torsello A. Matching Hierarchical Structures for Shape Recognition [D]: TheUniversity of York,2004.
    [94] Torsello A, Albarelli A, Pelillo M. Matching Relational Structures Using theEdge-Association Graph [C]. Processings of the14th International Conference onImage Analysis and Processing (ICIAP2007),2007:775-780.
    [95] Strintzis M, Mademlis A, Kostopoulos K et al. A Novel2d Urban Map SearchFramework Based on Attributed Graph Matching [J]. IEEE Trans on Multimedia.2009,(99):1-1.
    [96] Jiang X, Broelemann K, Wachenfeld S et al. Graph-Based MarkerlessRegistration of City Maps Using Geometric Hashing [J]. Computer Vision and ImageUnderstanding.2011,115(7):1032-1043.
    [97] Roberto M. Cesar J, Bengoetxea E, Bloch I et al. Inexact Graph Matching forModel-Based Recognition: Evaluation and Comparison of Optimization Algorithms [J].Pattern Recogn.2005,38(11):2099-2113.
    [98] Wang Y. Principles and Applications of Structural Image Matching [J]. ISPRSJournal of Photogrammetry and Remote Sensing.1998,53(3):154-165.
    [99] Finch A M, Wilson R C, Hancock E R. Matching Delaunay Graphs [J].Pattern Recognition.1997,30(1):123-140.
    [100] Richard C. Wilson A D J C a E R H. Structural Matching with ActiveTriangulations [J]. Computer Vision and Image Understanding.1998,72(1):18.
    [101] Heggere S. Rananath L J C. A Graph Theoretic Approach to Scene Matching[R].Huntsville: Computer Science Department, University of Alabama.1991.
    [102] Umeyama S. An Eigendecomposition Approach to Weighted GraphMatching Problems [J]. IEEE Transactions on Pattern Analysis and MachineIntelligence1988,10(5):695-703.
    [103] Scott G, Higgins L. An Algorithm for Associating the Features of TwoPatterns [C]. Processings of the Proc. Royal Society London,1991:21-26.
    [104] Shapiro L S, Michael Brady J. Feature-Based Correspondence: AnEigenvector Approach [J]. Image and Vision Computing.1992,10(5):283-288.
    [105]鲍文霞,梁栋,王年等.基于最小生成树和tps变换模型的图像拼接[J].仪器仪表学报.2010,31(5):110-114.
    [106]汤进.基于图理论的图像描述与检索方法研究[D].合肥:安徽大学,2007.
    [107] Bin L, Wilson R C, Hancock E R (2002). Graph Spectral Approach forLearning View Structure. In International Conference on Pattern Recognition (ICPR2002), pp.785-788.
    [108] Andrew M. Finch R C W a E R H. Matching Delaunay Graphs [J]. PatternRecognition.1997,30(1):18.
    [109] Huet B, Hancock E R. Shape Recognition from Large Image Libraries byInexact Graph Matching [J]. Pattern Recognition Letters.1999,20(11–13):1259-1269.
    [110] Huet B, Hancock E R. Relational Object Recognition from Large StructuralLibraries [J]. Pattern Recognition.2002,35(9):1895-1915.
    [111] Wilson R C, Cross A D J, Hancock E R (1996). Sensitivity Analysis forStructural Matching. In Proceedings of the13th International Conference on PatternRecognition (ICPR1996), pp.62-66.
    [112] Huet B, Hancock E R. Sensitivity Analysis for Object Recognition fromLarge Structural Libraries [C]. Processings of the The Seventh IEEE InternationalConference on Computer Vision (ICCV1999)1999:1137-1143.
    [113] Redmond C, Yukich J. Asymptotics for Euclidean Functionals with PowerWeighted Edges [J]. Stochastic Processes and their Applications.1996,61(2):289-304.
    [114] Hero A, Ma B, Michel O. Applications of Entropic Spanning Graphs [J].IEEE Trans on Signal Processing.2002,19(5):85-95.
    [115] Conte D, Foggia P, Sansone C et al. Thirty Years of Graph Matching inPattern Recognition [J]. International Journal of Pattern Recognition and ArtificialIntelligence.2004,18(3):265-298.
    [116] El-Sonbaty Y, Ismail M A. A New Algorithm for Subgraph OptimalIsomorphism [J]. Pattern Recognition.1998,31(2):205-218.
    [117] Baeza-Yates R, Valiente G. An Image Similarity Measure Based on GraphMatching [C]. Processings of the The Seventh International Symposium on StringProcessing Information Retrieval (SPIRE2000),2000:28-38.
    [118] Gregory L, Kittler J. Using Graph Search Techniques for Contextual ColourRetrieval--Structural, Syntactic, and Statistical Pattern Recognition [M].2002:193-213.
    [119] Berretti S, Del Bimbo A, Vicario E. A Look-Ahead Strategy for GraphMatching in Retrieval by Spatial Arrangement [C]. Processings of the IEEEInternational Conference on Multimedia and Expo (ICME2000)2000:1721-1724
    [120] Berretti S, Del Bimbo A, Vicario E. Efficient Matching and Indexing ofGraph Models in Content-Based Retrieval [J]. IEEE Transactions on Pattern Analysisand Machine Intelligence2001,23(10):1089-1105.
    [121] Berretti S, Del Bimbo A, Vicario E. The Computational Aspect of Retrievalby Spatial Arrangement [C]. Processings of the International Conference on PatternRecognition (ICPR2000),2000:1047-1051
    [122] Kittler J, Hancock E R. Combining Evidence in Probabilistic Relaxation [J].International Journal of Pattern Recognition and Artificial Intelligence.1989,3:29-51.
    [123] Christmas W J, Kittler J, Petrou M. Structural Matching in Computer VisionUsing Probabilistic Relaxation [J]. IEEE Transactions on Pattern Analysis and MachineIntelligence.1995,17(8):749-764.
    [124] Wilson R C, Hancock E R. Structural Matching by Discrete Relaxation [J].IEEE Transactions on Pattern Analysis and Machine Intelligence.1997,19(6):634-648.
    [125] Myers R, Wison R C, Hancock E R. Bayesian Graph Edit Distance [J]. IEEETransactions on Pattern Analysis and Machine Intelligence.2000,22(6):628-635.
    [126] Bin L, Hancock E R. Structural Graph Matching Using the Em Algorithmand Singular Value Decomposition [J]. IEEE Transactions on Pattern Analysis andMachine Intelligence.2001,23(10):1120-1136.
    [127] Rangarajan A, Mjolsness E D. A Lagrangian Relaxation Network for GraphMatching [J]. IEEE Transactions on Neural Networks.1996,7(6):1365-1381.
    [128] Gold S, Rangarajan A. A Graduated Assignment Algorithm for GraphMatching [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.1996,18(4):377-388.
    [129] Aguilar W, Frauel Y, Escolano F et al. A Robust Graph TransformationMatching for Non-Rigid Registration [J]. Image and Vision Computing.2009,27(7):897-910.
    [130] Barrow H G, Burstall R M. Subgraph Isomorphism, Matching RelationalStructures and Maximal Cliques [J]. Information Processing Letters.1976,4(4):83-84.
    [131] Balas E, Yu C S. Finding a Maximum Clique in an Arbitrary Graph [J].SIAM J Comput.1986,15(4):1054-1068.
    [132] Shinano Y, Fujie T, Ikebe Y et al. Solving the Maximum Clique ProblemUsing Pubb [C]. Processings of the the12th. International Symposium on InternationalParallel Processing,1998:326-332.
    [133] Cesar R, Bengoetxea E, Bloch I. Inexact Graph Matching Using StochasticOptimization Techniques for Facial Feature Recognition [C]. Processings of the the16th International Conference on Pattern Recognition (ICPR2002),2002:465-468.
    [134] Consularo L A, Cesar R M. Quadtree-Based Inexact Graph Matching forImage Analysis [C]. Processings of the the18th Brazilian Symposium on ComputerGraphics and Image Processing (SIBGRAPI2005),2005:205-212.
    [135] Pilu M. A Direct Method for Stereo Correspondence Based on SingularValue Decomposition [C]. Processings of the IEEE Conference on Computer Visionand Pattern Recognition (ICPR1997),1997:261-266.
    [136] Delponte E, Isgo F, Odone F et al. Svd-Matching Using Sift Features [J].Graph Models.2006,68(5):415-431.
    [137] Liu X, Tian Z, Ding M. A Novel Adaptive Weights Proximity Matrix forImage Registration Based on R-Sift [J]. AEU-International Journal of Electronics andCommunications.2011,65(12):1040-1049.
    [138]赵海峰.基于图的形状描述方法研究[D].合肥:安徽大学,2006.
    [139] Horowitz E, Sahni S. Fundamentals of Computer Algorithms [M]. ComputerScience Press,1978.
    [140] Rényi A. On Measures of Entropy and Information [C]. Processings of theThe4th Berkeley Symp. Math. Stat. and Prob.,1961:547-561.
    [141] Neemuchwala H F. Entropic Graphs for Image Registration [D]: Universityof Michigan,2005.
    [142]支力佳,张少敏,赵大哲等.基于最小生成树的DoG关键点医学图像配准[J].中国图形图象学报.2011,16(4):647-653.
    [143] Hoffman R, Jain A K. A Test of Randomness Based on the MinimalSpanning Tree [J]. Pattern Recognition Letters.1983,1:175-180.
    [144] Chen A J, Xu G Y, Shi Y C. Automated3d Building Modeling Based onUrban Aerial Stereo [J]. Acta Geodaetica Cartograph.2002,31(1):54-59.
    [145] Zhu Q, Wu B, Xu Z. Seed Point Selection Method for Triangle ConstrainedImage Matching Propagation [J]. IEEE Trans on Geoscience and Remote SensingLetters.2006,3(2):207-211.
    [146] Goncalves H, Goncalves J A, Corte-Real L. Measures for an ObjectiveEvaluation of the Geometric Correction Process Quality [J]. IEEE Trans on Geoscienceand Remote Sensing Letters.2009,6(2):292-296.
    [147] Duanduan Y, Sluzek A. A Low-Dimensional Local Descriptor IncorporatingTps Warping for Image Matching [J]. Image and Vision Computing.2010,28:1184-1195.
    [148]周培德.计算几何---算法分析与设计[M].清华大学出版社,2000.
    [149] Zahn C T. Graph-Theoretical Methods for Detecting and Describing GestaltClusters [J]. IEEE Transactions on Computers.1971,20(1):68-86.
    [150] Loffler G. Perception of Contours and Shapes: Low and Intermediate StageMechanisms [J]. Vision Research.2008,48(20):2106-2127.
    [151] Zeng C, Li Y, Li C. Center–Surround Interaction with Adaptive Inhibition: AComputational Model for Contour Detection [J]. NeuroImage.2011,55(1):49-66.
    [152] Geisler W S, Perry J S, Super B J. Edge Co-Occurrence in Natural ImagesPredicts Contour Grouping Performance [J]. Vision Research.2001,41:711-724.
    [153] Li C Y, Li W. Extensive Integration Field Beyond the Classical ReceptiveField of Cat's Striate Cortical Neurons: Classification and Tuning Properties [J]. VisionResearch.1994,34:2337-2355.
    [154] Li W, Li C Y. Shape and Extent of the Integration Field of Cat's StriateCortical Neurons [J]. Acta Physiol Sin.1995,47(2):111-119.
    [155] Li C Y. Integration Field Beyond the Classical Recptive Field: Organizationand Functional Properties [J]. News Physiol Sci.1996,11:181-186.
    [156] Sillito A M. Visual Cortical Mechanisms Detecting Focal OrientationDiscontinuities [J]. Nature1995,378(6556):492-496.
    [157] Levitt J B, Lund J S. Contrast Dependence of Contextual Effects in PrimateVisual Cortex [J]. Nature.1997,387(6628):73-76.
    [158] Mallat S. A Theory for Multiresolution Signal Decomposition: The WaveletRepresentation [J]. IEEE Trans on Pattern Analysis and Machine Intelligence.1989,11(7):674-693.
    [159] Haralick R M, Shapiro L G. Computer and Robot Vision [M].Addison-Wesley,1992.
    [160] Mukundan R, Ramakrishnan K R. Moment Functions in Image AnalysisTheory and Applications [M]. World Scientific,1998.
    [161] Soille P. Morphological Image Analysis: Principles and Applications [M].Springer-Verlag,1998.
    [162] Rizvandi N B, Pizurica A, Philips W et al. Edge Linking Based Method toDetect and Separate Individual C. Elegans Worms in Culture [C]. Processings of the the2008Digital Image Computing: Techniques and Applications,2008:65-70.
    [163] Abdou I E, Pratt W K. Quantitative Design and Evaluation ofEnhancement/Thresholding Edge Detectors [J]. Proceedings of the IEEE.1979,67(5):753-763.
    [164]陈月林,王平江,朱建新.基于曲率的轮廓精确分段技术[J].华中理工大学学报.1995,23(6):20-23.
    [165] Douglas D H, Peucker T K. Algorithms for the Reduction of the Number ofPoints Required to Represent a Digitized Line or Its Caricature [J]. The CanadianCartographer.1973,10(2):112-122.
    [166] Ambler A P, Barrow H G, Brown C M et al.(1973). A VersatileComputer-Controlled Assembly System. In Proceedings of the3rd international jointconference on Artificial intelligence, pp.298-307.
    [167] Marius Leordeanu M H (2005). A Spectral Technique for CorrespondenceProblems Using Pairwise Constraints. In International Conference on Computer Vision(ICCV2005), pp.1482-1489.
    [168]汤进,江波,罗斌.基于图的直方图及路径相似性的图匹配方法[J].计算机辅助设计与图形学学报.2011,23(9):1481-1489.
    [169] Karypis G, Han E-H, Kumar V. Chameleon: A Hierarchical ClusteringAlgorithm Using Dynamic Modeling [J]. IEEE Computer1999,32(8):68-75.
    [170] Tuceryan M, Chorzempa T. Relativity Sensitivity of a Family of ClosestPoint Graphs in Computer Vision Applications [J]. Pattern Recognition.1991,25:361-373.
    [171] Noma A, Pardo A, Cesar Jr R M. Structural Matching of2d ElectrophoresisGels Using Deformed Graphs [J]. Pattern Recognition Letters.2011,32(1):3-11.
    [172] Xiang B, Latecki L J. Path Similarity Skeleton Graph Matching [J]. IEEETransactions on Pattern Analysis and Machine Intelligence2008,30(7):1282-1292.
    [173]严蔚敏,吴伟民.数据结构C语言版[M].清华大学出版社,1997.
    [174] Duchenne O, Bach F, In-So K et al. A Tensor-Based Algorithm forHigh-Order Graph Matching [J]. IEEE Transactions on Pattern Analysis and MachineIntelligence.2011,33(12):2383-2395.
    [175] M. K M I a B M. A Dyadic Wavelet Affine Invariant Function for2d ShapeRecognition [J]. IEEE Trans on Pattern Analysis and Machine Intelligence.2001,23(10):13.
    [176] Huet B, Hancock E R. Line Pattern Retrieval Using Relational Histograms[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.1999,21(12):1363-1370.
    [177] Lu W, Neumann U, You S. Wide-Baseline Image Matching Using Line
    Signatures [C]. Processings of the IEEE12th International Conference on Computer
    Vision (ICCV2009)2009:1311-1318.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700