伺服电机驱动高速数控转塔冲床单冲程的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国工业迅猛发展,机械产品的需求量不断增加,而且需求的种类也向多样化发展。传统的数控冲床因其固有的结构及驱动,使冲压曲线缺乏柔性,不能满足现代机械产品精密化、柔性化、高速化、多样化需求。伺服电机驱动高速数控转塔冲床与传统机械式或液压式主传动结构的数控转塔冲床相比,具有低能耗、低噪音、高效率的特点,更重要的是其冲压曲线可以任意变化,柔性程度高,能满足不同工艺加工要求。
     针对传统的数控冲床缺乏柔性的弱点,本课题对伺服电机驱动高速数控转塔冲床单冲程的机理进行深入研究,并在此基础上设计相应的驱动系统。
     本文首先在介绍伺服电机驱动高速数控转塔冲床的基础上,着重对其主传动机构(曲柄肘杆机构)的运动学和动力学进行深入分析:包括冲压过程中冲头的位移与曲柄转角的关系、冲头的速度与曲柄转角的关系、冲头的加速度与曲柄转角的关系;在理想情况下曲柄肘杆机构各杆的传动力;在曲柄转矩一定的情况下,冲压力与冲压行程的关系;在冲压过程中承受公称力时,各关节点的最大受力分析;最大瞬时功率等。基于上述分析可知,曲柄肘杆机构的传动系统因其独特的结构,使得冲头在冲压过程中的位移曲线光滑,并且冲头在接近下死点时,速度降低,冲压力增大,具有增力特性,在降低伺服电机的负载扭矩的同时,既可以避免因冲压速度过高而引起板材在冲压处附近断裂,又降低冲压过程中产生的噪音,并且曲柄旋转一周,滑块上下运动两次,这样能够达到更高的冲压频率。
     然后,通过计算伺服电机驱动高速数控转塔冲床单冲程所消耗能量,选择功率合适的伺服电机,设计伺服电机驱动的飞轮并计算其转动惯量,在此基础上校验飞轮所能承受的极限力矩及其输出的动能。该冲床冲压2mm钢板时,其冲压频率最高可达2000次/分钟。
     最后,借助于MATLAB计算软件中的Simulink动态系统仿真工具,对所设计的系统进行了空载恒速仿真和负载恒速仿真。通过仿真结果可知,所设计的系统满足要求。
     国内伺服电机驱动高速数控转塔冲床与国外相比,还处于起步阶段,该冲床的研究与开发,对提高我国锻压机床设备的档次,提升我国制造业水平均有重大的现实意义。
As the rapid industrial development in our country, the demand for mechanical products continued to increase, and the need of multiform products also increase. Since the inherent structure and drive, the traditional CNC turret punch lack of flexibility and can not meet the needs of precision, flexible, high-speed, diverse. Compared to the traditional mechanical NC turret punch and the hydraulic NC turret punch, the high-speed CNC turret punch driven by Servo motor is of the advantages of low-power, low noise, high efficiency. More important, the curve of stamping can be changed as one wishes. Then, the high-speed CNC turret punch driven by Servo motor is of a high degree of flexibility to meet the processing requirements of different processes.
     Against the weakness of traditional CNC turret punch lack of flexibility, single stroke of the high-speed CNC turret punch driven by servo motor is mainly study in this paper. On the base of those, the corresponding driven system is designed.
     In this paper, high-speed CNC turret punch driven by servo motor is introduced firstly. Then the kinematics and dynamics of the main transmission component, crank-toggle machanism, are analyzed deeply. The analysis include: the relationships between the displacement, speed, acceleration of the punch and the crank angle in the stamping process; the analysis of the each bars' force in the crank-toggle machanism under ideal circumstances; the relationship between the pressure and the press trip when the torque of crank is certain; the analysis of those key points bear maximum force under the standard load; the maximal instantaneous power. Base on those analysis, the transmission system of crank-toggle machanism, as its unique structure, is of smooth stamping curve. The punch reduce its speed and increase its press when it approach the dead point. So it is of the Characteristic of increasing force, and could reduce the load torque of servo motor. At the same time, the rupture in the plate near the stamping, due to high speed stamping, can be avoided, the noise in the process of stamping can be reduced too.
     Then, by calculating the energy consumed by the high-speed CNC turret punch driven by servo motor in single stroke, the appropriate power servo motor is selected and the flywheel driven by servo motor is designed and its moment of inertia is calculated. On the base of those, the ultimate torque born by the flywheel and output power are checked. The frequency of stamping could be 2000HPM when pressing armor plate of 2mm.
     Finally, through the use of the simulation tool of Simulink dynamic system in MATLAB computing software, the designed system has been simulated on constant speed without load and with load. According to the results of simulations, the designed system could meet requirements.
     Compared with foreign countries, the high-speed CNC turret punch driven by servo motor in our country is still in its initial stage. Its research and development are of great practical significance in improving our quality of forging machine tool equipment and upgrading the level of Chinese manufacturing industry.
引文
[1]沈再扬.全电伺服肘杆式数控冲床主传动系统的研究[D].江苏:扬州大学,2006.
    [2]何德誉.曲柄压力机[M].北京:机械工业出版社,1981.
    [3]马正元,韩啓.冲压工艺与模具设计[M].北京:机械工业出版社,1997.
    [4]孙序梁.飞轮设计[M].北京:高等教育出版社,1992.
    [5]李晓.JA21-18曲柄压力机的能力计算和运动仿真分析[D].北京:北京科技大学,2007.
    [6]飞思科技产品研发中心.MATLAB7辅助控制系统设计与仿真[M].北京:电子工业出版社,2005.
    [7]王宏斌.车牌半成品自动化生产线反光膜放卷张力控制[D].广东:广东工业大学,2007.
    [8]S.Yossifon,R.Shivpuri.Analysis and Comparison of Selected Rotary Linkage Drives for Mechanical Presses[J].International Journal of Machine Tools &Manufacture,1993,33(2):175-192.
    [9]S.Yossifon,R.Shivpuri.Design Considerations for the Electric Servo Motor Driven 30 Ton Double Knuckle Press for Precision Forming[J].International Journal of Machine Tools & Manufacture,1993,33(2):193-208.
    [10]S.Yossifon,R.Shivpuri.Optimization of a Double Knuckle Linkage Drive with Constant Mechanical Advantage for Mechanical Presses[J].International Journal of Machine Tools & Manufacture,1993,33(2):209-222.
    [11]樊红梅,孙宇,李林.伺服电机直接驱动的压力机控制系统研究[J].锻压技术,2007,32(4):113-116,138.
    [12]魏航.伺服驱动曲柄压力机机电系统动态分析及实验研究[D].广东:广东工业大学,2005.
    [13]KURT L.Handbook of metal forming[M].New York:SME Press,1985.
    [14]沈再扬,王隆太.肘杆式压力机主传动系统动态仿真及优化设计[J].机电产品开发与创新,2005,18(6):140-142.
    [15]TSO P L,LIANG K C.A nine-bar linkage for mechanical forming presses[J].International Journal of Machine Tools & Manufacture,2002,42(1):139-145.
    [16]赵升吨,何予鹏,杨辉.双曲柄串联低速急回机构及其遗传算法优化[J].西安交通大学学报,2005,39(9):913-916.
    [17]张世民.平面连杆机构设计[M].北京:高等教育出版社,1983.
    [18]华大年.连杆机构设计[M].上海:上海科学技术出版社,1995.
    [19]伏尔默J,布洛克R,德累西斯H,等.连杆机构[M].石则昌等译.北京:机械工业出版社,1989.
    [20]庞勇.混合驱动压力机机构优化设计[J].锻压装备与制造技术,2003,38(05):20-23.
    [21]何予鹏,赵升吨,王军,袁建华.具有低速锻冲特性的机械压力机工作机理[J].机械工程学报,2006,42(02):145-149.
    [22]HWANG W M.A drag-link drive of mechanical presses for precision drawing[J].International Journal of Machine Tools & Manufacture,1995,35(10):1425-1433.
    [23]赵升吨,张志远,何予鹏,王军,邹军,姚朝飞.机械压力机交流伺服电动机直接驱动方式合理性探讨[J].锻压装备与制造技术,2004,39(06):19-23.
    [24]T.J Nye and R.Shivpuri.Investigation of an electric servo-motor driven linkage press for flexible forming:design synthesis[M].Dallas,USA:ASME Winter Meeting,1990.
    [25]张力重,林红旗.交流伺服电机驱动机械式压力机的发展[J].装备制造技术,2007,(03):49-52.
    [26]孙友松,张宏超.金属板材加工设备发展新动向[J].锻压技术,2004,29(4):1-4.
    [27]W.Voelkner.Present and future developments of metal forming:selected example[J].Journal of Material Processing Technology,2000,(106):236-242.
    [28]李辉,张策,宋轶民.混合驱动精压机的优化设计和运动仿真[J].计算机辅助设计与图形学学报,2004,16(02):211-215.
    [29]李辉,张策.混合驱动压力机的可行性研究[J].机械科学与技术,2004,23(10):1254-1256.
    [30]李辉.混合驱动可控压力机的创新设计[J].机械设计,2004,21(7):31-35.
    [31]Yan Hongsen,Chen Weiren.A variable input speed approach for improving the output motion characteristics of Watt-type presses[J].International Journal of Machine Tools & Manufacture,2000,40(5):675-690.
    [32]Power transmission and flow in the hybrid machines[A].Tokuz L C,Jones J R.Proceedings of the 6th International Machine Design and Production Conference[C].Ankara,Turkey:1994,209-218.
    [33]Tokuz L C.Hybrid machine modeling and control[D].Liverpool:Liverpool Polytechnic,1992.
    [34]Ali Kirecci,Dulger L Canan.A study on a hybrid actuator[J].Mechanism and Machine Theory,2000,35(8):1141-1149.
    [35]Design of hybrid machine[A].Greenough J D,et al.Proceeding of the 9th IFToMM World Congress[C].Milan:1995,2501-2505.
    [36]周洪,邹慧君,王石刚.混合输入型五杆轨迹机构的分析与设计[J].上海交通大学学报,1999,33(7):865-869.
    [37]Conner A M.The synthesis of hybrid five-bar path generating mechanisms using genetic algorithms[D].Liverpool:Liverpool Polytechnic,1995.
    [38]张新华.实现轨迹创成的混合驱动可控机构分析与综合[D].天津:天津大学,2002.
    [39]卢宗武.可控压力机研究[D].天津:天津大学,2002.
    [40]何予鹏,邹彩虹,袁志华,赵迎芳.多连杆机械压力机遗传算法优化设计[J].河南农业大学学报,2005,39(04):453-455.
    [41]王恩福,李建平,麦志辉,黄锦坤,熊卫华.并联驱动肘杆式精压机的设计[J].锻压装备与制造技术,2005,40(02):38-39.
    [42]肖景容,姜奎华.冲压工艺学[M].北京:机械工业出版社,1999.
    [43]孙凤勤.冲压与塑压设备[M].北京:机械工业出版社,2002.
    [44]刘振堂.国外数控冲床的现状和发展趋势[J].锻压机械,2002,(1):7-10.
    [45]叶云岳,陈永校,卢琴芬.直线电机驱动的新型冲压机[J].电工技术杂志,2000,(2):35-37.
    [46]陆俞,任雅珍,王郡文.多连杆机械压力机杆系优化设计及分析[J].高师理科学刊,1998,18(1):13-14,36.
    [47]叶云岳,陈永校.应用直线电机驱动的冲压机研究[J].中小型电机,1999,26(6): 30-31.
    [48]张纪梁,王志伟.厚板冲裁力的计算与分析[J].锻压装备与制造技术,2003,38(5):39-40.
    [49]李亚军.广义肘杆机构结构参数的优化设计[J].锻压技术,1998,23(3):46-49.
    [50]余载强,张艳冬.压力机双曲柄多杆机构运动分析和优化设计[J].锻压机械,1998,33(1):3-6.
    [51]彭向阳.浅析多连杆压力机[J].锻压机械,1998,33(2):29-31.
    [52]崔艳梅,曹仁旗.探析肘杆式冷挤压力机[J].锻压机械,1997,32(5):7-1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700