地铁车站在内爆炸作用下的结构响应与破坏及地面振动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,针对地铁车站的恐怖爆炸事件频繁发生,由于地铁车站具有人群密集,环境封闭的特点,一旦发生意外爆炸事件,不仅会对爆源附近的人员和设备造成严重伤害,而且爆炸所产生的冲击波作用在结构构件上,会引起车站结构的剧烈振动并发生损伤破坏,甚至会导致某些关键构件的失效而引发结构的倒塌;此外,爆炸冲击波通过土体传到地面,会引起地面振动并对地面人员、建筑和设备的安全产生威胁。为了提高地铁车站的抗爆安全性,本论文系统研究了爆炸波在地铁车站内的传播过程与衰减规律,地铁车站结构在内爆炸作用下的动力响应与损伤破坏分析,以及地铁车站内爆炸作用下的地面振动响应等,主要研究工作和创新成果包括以下几个方面:
     (1)研究了地铁车站内爆炸波的传播过程与衰减规律。针对目前小型规则地下结构内部爆炸流场的试验与数值研究成果不适用于地铁车站等大型复杂结构,通过有限差分程序AUTODYN,建立了一种基于爆炸超压计算精度的大尺寸网格数值模型,采用Euler方法模拟了爆炸波在地铁车站内的传播过程,对作用在车站结构上的爆炸荷载特点进行了分析,得到了爆炸超压和冲量的衰减规律,给出了爆炸发生时避免人员受伤和死亡的安全距离。通过参数分析,研究了结构高度和出口距爆源距离对爆炸波传播的影响。研究表明:地铁车站内爆炸波的传播时间更长、衰减更慢,对结构的破坏作用更大;结构高度不同不仅影响爆炸波的衰减,而且会引起波形的差异;出口的泄爆作用与出口距爆源的距离有关,出口距爆源越近,其泄爆作用越明显。
     (2)研究了地铁车站结构在内爆炸作用下的动力响应与损伤破坏。基于非线性有限元技术,通过显式动力分析软件LS-DYNA,建立了地铁车站结构在内部爆炸荷载作用下结构动力响应和损伤破坏的数值模拟方法,对地铁车站在背包炸弹等中小型爆炸装置产生的内部爆炸作用下的结构动态响应进行了分析,得到了梁、板、柱等主要受力构件的位移和应变等动力响应,同时分析了炸药量、构件配筋率、材料应变率效应以及土-结构相互作用等因素对结构主要受力构件响应的影响,并对结构抗爆防护概念设计提出建议。研究表明:在内部爆炸作用下,地铁车站的站台板是结构中破坏最为严重的构件,临近柱和中板会产生开裂等轻微破坏;结构的动力响应随炸药量的增大而增大,随构件配筋率的增大而减小;土-结构相互作用对于距离爆源最近的梁、板、柱构件响应影响较小。
     (3)研究了地铁车站站台柱的抗爆性能并提出相应的优化设计方法。针对目前尚无针对地铁车站站台柱特殊爆炸环境下抗爆性能方面的研究,建立典型地铁车站站台柱抗爆性能分析模型,从截面形状选取、轴压比的选用、箍筋配筋率及其形式等方面,系统研究并提出了提高其抗爆性能的优化设计方法。研究表明:相同截面面积以及相同爆炸冲击环境下,钢筋混凝土圆柱受到的爆炸冲击能量小于方柱,且与钢筋混凝土方柱相比较,提高圆柱的箍筋配筋率会更为显著的增加其抗爆性能,因此,在地铁车站的站台柱设计时,建议采用圆柱;提高纵筋配筋率和增大箍筋直径对于提高钢筋混凝土柱的抗爆性能效果不明显,减小箍筋间距可以显著提高柱子的抗爆性能,并针对钢筋混凝土圆柱提出一种新的箍筋配筋方式,该方式可以显著提高柱子的抗爆性能;对站台柱设置安全防护距离将显著降低作用于其上的爆炸荷载,提高其抵御意外爆炸的性能,通过研究,提出了合理安全防护距离的概念,并针对典型地铁车站站台柱,给出了建议取值。
     (4)研究了地铁车站内爆炸引起的地面振动特性及其峰值预测方法。针对目前对地下结构内爆炸引起土中应力波的传播和地面振动的特性缺少相应的研究,以天津某典型地铁车站为例,建立了地下结构内爆炸作用下地面振动的数值模拟方法,对车站内发生意外爆炸后,应力波在周围土体内的传播过程,引起的周边地面振动的特性及其衰减规律进行了数值分析;同时针对国内典型地铁车站,研究了车站埋深、炸药量等参数对地铁车站周边地面振动的影响规律,进而提出了考虑车站埋深和比例距离变化的地铁车站周边地面典型位置的地面振动主要参数的计算公式;并对地面振动的安全性进行了评价。研究成果可用于评估地铁车站遭恐怖爆炸情况下地面周边建筑的振动安全性,也可为地铁车站抗爆设计中车站埋深的选取提供理论依据。
Recently, terrorist explosion in subway station happens more frequently than ever all over the world. Subway stations are of great crowd density and enclosure surrounding. Once accidental or terrorist explosion occurs inside them, not only causes casualties and damages to facilities nearby the explosive, but also induce strong vibration and damage of the structural components or even lead to the collapse of these structures due to the blast wave. Shock wave might also spread to the ground surface through the soil, causing vibration of the ground which is also a threat to the safety of persons, buildings and facilities on the ground. In order to improve the safety performance of subway station under internal explosion, in this dissertation, three main problems in research of blast wave propagation and damage mechanism of the structure under blast loading are systematically studied. They are (1) propagation progress and attenuation law of blast wave inside subway station; (2) dynamic response and damage of a subway station structure due to internal explosion; (3) ground vibration induced by internal explosion in subway station. The primary work and achievement are as follows:
     (1) Propagation law and overpressure load of blast wave inside subway station are studied. The current experiments and simulation research achievement in small regular underground structures may not be suitable for the large complicated underground structures like subway stations. Therefore, a new numerical model building method with bigger grid size based on overpressure calculating precision is established using the finite difference program AUTODYN. The propagation process of blast wave inside a subway station is numerical simulated using Euler method, the propagation and attenuation law of blast wave are investigated, safe distances to avoid human casualties are determined, and effects of height of structure and distances of exit from explosive on propagation of blast wave are analyzed. The results show that the blast wave in the subway station is of a longer propagating duration, a slower attenuation, and larger damaging effects on the structure. Different heights of structures not only affect the attenuation of blast wave, but also cause the difference of waveforms. The venting effect of the exit is related to the distance of the exit from the explosive, and the closer the exit from the explosive is, the more remarkable the venting effect is.
     (2) Dynamic response and damage of a subway station structure due to internal explosion are studied. Based on the nonlinear dynamic analysis software LS-DYNA, a method for simulating the dynamic response and damage of a subway station structure under internal explosion is established. The responses of the structure due to internal explosions from typical small explosive devices, such as suitcase bombs, are simulated. The dynamic displacement and strain of the typical columns, beams and floors are derived for estimating the safety of the structure. Parametric studies are also carried out to investigate the influences of TNT equivalent charge weight, reinforcement ratio of concrete members and soil-structure dynamic interaction on the dynamic responses of the structural members. The results show that the platform floor is the most seriously damaged member under the internal explosion, while minor damage such as small cracks might occur in the member nearby the explosion; Dynamic response of the structure will get stronger with the increase of the TNT equivalent charge weight, and weaker with the increase of reinforcement ratio; The soil-structure dynamic interaction cannot be considered since it has little effect on the dynamic response of the members near the explosion.
     (3) Blast resistance performance and optimization design of platform column for subway station are studied. Currently, there is no relative research on the blast resistance of platform column under its special explosion scenario available in the literature. In this dissertation, systematic researches are carried out, regarding to the selection of cross section, axial compression ratio, reinforcement form and ratio of stirrups, to propose optimization design methods for improving the blast resistance performance of typical subway station platform columns. The results show that, under the same explosion scenario and column section area, the circular RC column suffers less blast energy than the square one. And by increasing the stirrups ratio, blast resistance capability of circular column can be more significantly improved than the square one. Therefore, a circular cross section is suggested in blast-resistant design of subway station platform column. Reducing the stirrup spacing could significantly improve the blast resistant capability of the platform column, while increasing the diameter of the stirrups or the ratio of longitudinal reinforcement has little effect. Further, a new stirrup arrangement method for circular RC column is proposed to enhance its blast resistant capability. A safety protection distance can obviously reduce the blast pressure on the platform columns and further increase its blast resistance performance. Thus, a conception of reasonable safety protection distance for typical subway station platform columns is proposed with suggested values.
     (4) Ground vibration induced by internal explosion in subway station is studied. There is no relative research on stress propagation and ground vibration caused by internal explosion in underground structures available in the literature. A case study of typical subway station in Tianjin is carried out to analysis the responses of surrounding soil induced by internal explosion, including the propagation of shock wave in the soil, characteristics of ground vibration and its attenuation law. For typical subway station in China, parametric studies are carried out to investigate the influences of explosive weight and structure buried depth on ground vibration surrounding the subway station. Further, a series of formulas concerning scaled distance and structure buried depth are given to calculate the main parameters of ground vibration at typical positions surrounding the subway station. The results of the research can be used both to estimate the vibration safety of buildings surrounding the subway station under terrorist bombing attack, and to provide theoretical basis for the determination of structure buried depth in blast-resistant design of subway stations.
引文
[1]张庆贺,朱合华,庄荣.地铁与轻轨[M].人民交通出版社,北京,2006.
    [2]田鸿宾,孙兆荃.世界城市地铁发展综述[J].土木工程学报,1995,28(1): 73-78.
    [3]钱七虎.反爆炸恐怖安全对策[M].北京:科学出版社,2004.
    [4]李忠献,方秦.工程结构抗爆防爆的研究与发展[R].国家自然科学基金委员会材料与工程学部学科发展战略研究报告系列之《土木工程卷》,2006.
    [5] Smith P. D., Whalen G. P., Feng L. J., et al. Blast loading on buildings from explosions in city streets [J]. Structures and Buildings, 2001, 146(1):47-55.
    [6]李忠献,师燕超,周浩,等.城市复杂环境中爆炸波的传播规律与超压荷载[J].工程力学, 2009, 26(6): 178-183.
    [7] Henrych J. The dynamics of explosion and its use [M]. New York: Elsevier Scientific Pub. Co., 1979.
    [8] Mays G. C., Smith P. D.. Blast Effects on Buildings [M]. New York: Thomas Telford, 1995.
    [9] Smith P.D., Mays G.C., Rose T.A., et al. Small scale models of complex geometry for blast overpressure assessment [J]. International Journal of Impact Engineering, 1992, 12(3): 345-360.
    [10] Chan P.C., Klein H.H.. A study of blast effects inside an enclosure [J].Journal of Fluids Engineering, 1994, 116: 450-455.
    [11]杨科之,杨秀敏.坑道内化爆冲击波的传播规律[J].爆炸与冲击,2003,23(1):37-40.
    [12]庞伟宾,何翔.空气冲击波在坑道内走时规律的实验研究[J].爆炸与冲击,2003,23(6): 573-576.
    [13] Adam Zyskowski, Isabelle Sochet. Study of the explosion process in a small scale experiment—structural loading [J]. Journal of Loss Prevention in the Process Industries, 2004, 17(4): 291–299.
    [14]邓国强,周早生,杨秀敏.爆炸冲击效应数值仿真中的几项关键技术[J].系统仿真学报,2005,17(5):1059-1062.
    [15]李秀地,郑颖人,李列胜,等.长坑道中化爆冲击波压力传播规律的数值模拟[J].爆破器材,2005,34(5):4-7.
    [16]李秀地,郑颖人.坑道中冲击波冲量传播模型的试验[J].解放军理工大学学报,2007,8(5):425-428.
    [17] Bretislav Janovsky, Petr Selesovskyb, Jan Horkel, et al. Vented confined explosions in Stramberk experimental mine and AutoReaGas simulation [J]. Journal of Loss Prevention in the Process Industries, 2006, 19(2-3): 280–287.
    [18] Luccioni B., Ambrosini D., Danesi R.. Blast Load Assessment Using Hydrocodes [J]. Engineering Structure, 2006, 28(12): 1736-1744.
    [19]周晓青,郝洪,李忠献.地下建筑遭受恐怖爆炸袭击的数值模拟[C].第1届全国工程结构抗冲击爆炸作用学术会议论文集,2007,17-22.
    [20] Simplified computation of reflective overpressure in closed cuboid space due to internal explosion [J]. Transactions of Tianjin University, 2010, 16(6): 395-404.
    [21] Corti S., Colombo G., Molinaro P., et al. Evaluation of impulsive loadings due to explosions in underground structures [C]. Proceedings of the Second International Conference, Portsmouth, U.K., 1992, 589-600.
    [22] O’Daniel J. L., Krauthammer T.. Assessment of numerical simulation capabilities for medium-structure interaction systems under explosive ioads[J].Computers and Structures,1997,63(5):875-887.
    [23]田志敏,钱七虎,吴步旭.大压力爆炸动载作用下地下复合圆形结构研究[J].特种结构,1997,14(3):40-43.
    [24] ChillèF., Sala A., Casadei F.. Containment of blast phenomena in underground electrical power plants[J]. Advances in Engineering Software, 1998, 29(1), 7-12.
    [25] Provatidis C., Kanarachos A., Cvenetsanos D.. Strength analysis of buried curved pipes due to blast explosions [C]. Proceedings of International Conference on Structures and Materials-Structures under Shock and Impact VI. Southampton: WIT Pr, 2000: 3-12.
    [26]赵晓兵,方秦,张亚栋,等.爆炸荷载作用下地下复合结构的合理刚度匹配[J].爆炸与冲击,2001,21(2):117-120.
    [27] Lu Y., Wang Z., Chong K.. A comparative study of buried structure in soil subjected to blast load using 2D and 3D numerical simulations [J]. Soil Dynamics and Earthquake Engineering, 2005, 25(4): 275-288.
    [28]李忠献,刘杨,田力.单侧隧道内爆炸荷载作用下双线地铁隧道的动力响应与抗爆分析[J].北京工业大学学报,2006,32(2):173-181.
    [29]郭志昆,宋锋良,刘峰,等.扁平箱形密闭结构内爆炸的模型试验[J].解放军理工大学学报(自然科学版),2008,9(4):345-350.
    [30] Hu Q., Yu H., Yuan Y.. Numerical simulation of dynamic response of an existing subway station subjected to internal blast loading [J]. Transactions of Tianjin University, 2008, 14(Suppl): 563-568.
    [31]廖维张,杜修力.内部爆炸作用下地铁车站的动力响应分析[J].地下空间与工程学报,2010,6(5):980-985.
    [32]林大超,张奇,白春华.近地表爆炸地震的地面竖向振动速度的随机特性[J].爆炸与冲击,2000,20(3):235-240.
    [33]林大超,张奇,熊祖钊,等.爆炸地震地面振动速度的随机相似性[J].工程爆破,2001,7(4):7-10.
    [34] Hao H, Wu Y K, Ma G W, et al. Characteristics of surface ground motions induced by blasts in jointed rock mass[J]. Soil Dynamics and Earthquake Engineering, 2001, 21: 85-98.
    [35] Hao H, Ma G. W., LU Y. Damage assessment of masonry infilled RC frames subjected to blasting induced ground excitatiom[J]. Engineering Structures, 2002, 24(6): 799-809.
    [36]曹志远,曾三平.爆炸波作用下地下防护结构与围岩的非线性动力相互作用分析[J].爆炸与冲击,2003,23(5):385-390.
    [37]田力,李忠献.地下爆炸冲击波引起的基底滑移隔震建筑的动力响应[J].爆炸与冲击,2004, 24(1): 16-23.
    [38]田力,李忠献.地下爆炸波冲击下隔震连续梁桥动力响应分析[J].天津大学学报, 2005, 38(7): 602-610.
    [39]李忠献,田力.地下爆炸波作用下基底滑移隔震大跨结构的动力响应分析[J].计算力学学报, 2005, 22(4): 457-464.
    [40] Wang Z. Q., Hao H., Lu Y.. A three-phase soil model for simulating stress wave propagation due to blast loading [J]. International Journal Numerical Analysis Methods of Geomechanics, 2004, 28: 33-56.
    [41] Wu C. Q., Hao H.. Numerical study of characteristics of underground blast induced surface ground motion and their effect on above-ground structures.Part I. Ground motion characteristics[J]. Soil Dynamics and Earthquake Engineering, 2005, 25(1): 27-38.
    [42]田力.地下爆炸波冲击下地面结构动力响应及滑移隔震研究[D].天津大学博士论文, 2004.
    [43]钱七虎.反爆炸恐怖安全对策[M].北京:科学出版社, 2005.
    [44]周听清.爆炸动力学及其应用[M].合肥:中国科技大学出版社, 2001.
    [45]张国伟,韩勇,苟瑞君.爆炸作用原理[M].北京:国防工业出版社, 2006.
    [46] Technical Manual (TM5-1300). To resist the effect of accidental explosions. Washington, DC: Department of the Army, Navy and the Air force, 1990.
    [47] Henrych J.. The dynamics of explosion and its use [M]. New York: Elsevier Scientific Pub. Co., 1979.
    [48]林大超,白春华.爆炸地震效应[M].北京:地质出版社, 2007.
    [49]中华人民共和国国家质量监督检验检疫总局. GB6722-2003爆破安全规程[S].北京:中国标准出版社, 2003.
    [50]史巨元.钢的动态力学性能及其应用[M].北京:冶金工业出版社, 1993.
    [51] Chen H., Liew J. Y. R.. Explosion and fire analysis of steel frames using mixed element approach [J]. Journal of Engineering Mechanics, 2005, 131 (6): 606-616.
    [52]李国豪.工程结构抗爆动力学[M].上海:上海科学技术出版社, 1985.
    [53] Bischoff P. H., Perry S. H. Impact Behavior of Plain Concrete Loaded in Uniaxial Compression [J]. Journal of Engineering Mechanics, 1995, 121(6): 685-693.
    [54]杜成斌,苏擎柱.混凝土材料动力本构模型研究进展[J].世界地震工程, 2002, 18(2): 94-98.
    [55]过镇海.混凝土的强度和本构关系—原理与应用[M].北京:中国建筑工业出版社, 2004.
    [56]恽寿榕,涂侯杰,梁德寿,等.爆炸力学计算方法[M].北京:北京理工大学出版社, 1995.
    [57]时党勇,刘永存,徐建华.爆炸力学中的数值模拟技术[J].工程爆破, 2005, 11(2): 10-13.
    [58]王磊.结构分析的有限差分法[M].北京:人民交通出版社, 1982.
    [59]王勖成.有限单元法[M].北京:清华大学出版社, 2004.
    [60]李人宪.有限体积法基础[M].北京:国防工业出版社, 2005.
    [61] AUTODYN. Theory manual [Z]. Century Dynamics, 2005.
    [62]时党勇,李裕春,张胜民.基于ANSYS/LS-DYNA 8.1进行显式动力分析[M].北京:清华大学出版社, 2005.
    [63]白金泽. LS-DYNA3D理论基础与实例分析[M].北京:科学出版社, 2005.
    [64]庄茁,张帆,岑松. ABAQUS非线性有限元分析与实例[M].北京:科学出版社, 2005.
    [65] Li Z. X., Du H., Bao C. X.. Review of current researches on blast load effects of building structures in China [J]. Transactions of Tianjin University, 2006, 12(Suppl): 35-41.
    [66]李忠献,师燕超,周浩,等.城市复杂环境中爆炸波的传播规律与超压荷载[J].工程力学,2009, 26(6): 178-183.
    [67] Mays G.C., Smith P.D.. Blast Effects on Buildings [M]. Thomas Telford, 1995.
    [68] Smith P.D., Mays G.C.. Small scale models of complex geometry for blast overpressure assessment [J]. International Journal of Impact Engineering, 1992, 12(3): 345-360.
    [69]杨科之,杨秀敏.坑道内化爆冲击波的传播规律[J].爆炸与冲击,2003,23(1):37-40.
    [70]李德元,徐国荣,水鸿寿,等.二维非定常流体力学数值方法[M].北京,科学出版社,1998.
    [71] Chapman T.C., Rose T.A., Smith P.D.. Blast wave simulation using AUTODYN2D: a parametric study [J]. International Journal of Impact Engineering, 1995, 16(5-6): 777-787.
    [72] NATO. Manual on NATO Safety Principles for the Storage of Ammunition and Explosives [S]. 2003: AC/258-D/258.
    [73] DoD. US DoD Ammunition and Explosive Safety Standards [S]. US DoD 6055. 2004: 9-STD.
    [74] Li Z. X., Du H., Bao C. X.. Review of current researches on blast load effects of building structures in China [J]. Transactions of Tianjin University, 2006, 12(Suppl): 35-41.
    [75] Lu Y., Wang Z. Q., Chong K.. A comparative study of buried structure in soil subjected to blast load using 2D and 3D numerical simulations[J]. Soil Dynamics and Earthquake Engineering, 2005, 25(4): 275-288.
    [76]李忠献,刘杨,田力.单侧隧道内爆炸荷载作用下双线地铁隧道的动力响应与抗爆分析[J].北京工业大学学报, 2006, 32(2): 173-181.
    [77]郭志昆,宋锋良,刘峰,等.扁平箱形密闭结构内爆炸的模型试验[J].解放军理工大学学报(自然科学版), 2008, 9(4): 345-350.
    [78] Hu Q. Y., Yu H. T., Yuan Y.. Numerical simulation of dynamic response of an existing subway station subjected to internal blast loading [J]. Transactions of Tianjin University, 2008, 14(Suppl): 563-568.
    [79]廖维张,杜修力.内部爆炸作用下地铁车站的动力响应分析[J].地下空间与工程学报,2010, 6(5): 980-985.
    [80] LS-DYNA. Theory Manual [M]. Livermore, California: Livermore Software Technology Corporation, 2006.
    [81]曲树盛,李忠献.地铁车站内爆炸波的传播规律与超压荷载[J]. 2010, 27(9): 240-247.
    [82] LS-DYNA. Keyword User's Manual[M]. Livermore, California: Livermore Software Technology Corporation, 2006.
    [83] Tu Z., Lu Y. Evaluation of typical concrete material model used in hydro codes for high dynamic response simulations[J]. International Journal of Impact Engineering, 2009, 36(1): 132-146.
    [84] Malvar L. J., Ross C. A. Review of strain rate effects for concrete in tension[J]. ACI Materials Journal, 1999, 96(5): 614-16.
    [85] Du B, C E-I. CEB-FIP Model Code 1990[S]. Trowbridge, Wiltshire, UK: Redwood Books, 1993.
    [86] Malvar L. Review of static and dynamic properties of steel reinforcing bars[J]. ACI Materials Journal, 1998, 95(6): 609-16.
    [87]龚晓南.土塑性力学[M].杭州:浙江大学出版社, 1997.
    [88] Shi Y. C., Li Z. X., Hao H.. Bond slip modelling and its effect on numerical analysis of blast-induced responses of RC columns[J]. Structural Engineering and Mechanics, 2009, 32(2): 251-267.
    [89] Shi Y. C., Hao H., Li Z. X.. Numerical derivation of pressure-impulse diagrams for prediction of RC column damage to blast loads[J]. International Journal of Impact Engineering, 2008, 35(11): 1213-1227.
    [90] Morrill K. B., Malvar L. J., Crawford J. E., et al. Blast resistant design and retrofit of reinforced concrete columns and walls [C].Proceedings of the 2004 Structures Congress—Building on the Past: Securing the Future, Nashville, TN, USA: K&C Corporation, 2004: 1471-1478.
    [91]左清林.用数值方法对爆炸荷载下钢筋混凝土构件的动力性能的探索[D].上海交通大学硕士论文,2009.
    [92] LS-DYNA. Theory Manual[M]. Livermore, California: Livermore Software Technology Corporation, 2006.
    [93]李铮,金福青,蔡中民.混凝土板自振特性及动力响应[C].中国土木工程学会防护工程分会第九次学术年会论文集.长春, 2004.
    [94] Malvar L., Crawford J., Morrill K. K&C concrete material model, release III: automated generation of material model input. Report: TR-99-24, Karagozian & Case Structural Engineers.
    [95] Malvar L., Simons D. Concrete Material Modeling in Explicit Computations. In: Workshop on Recent Advances in Computational Strucrtural Dynamics and High Performance Computing. USAE Waterways Experiment Station, Vicksburg, MS, 1996. 165-94.
    [96]师燕超.爆炸荷载作用下钢筋混凝土结构的动态响应行为与损伤破坏机理[D].天津大学博士论文,2009.
    [97]中华人民共和国住房和城乡建设部. GB50010- 2010.混凝土结构设计规范[S].北京:中国建筑工业出版社出版,2010.
    [98]管品武.钢筋混凝土框架柱塑性铰区抗剪承载力试验研究及机理分析[D].湖南大学博士论文,2000.
    [99]中华人民共和国住房和城乡建设部. GB50011-2010.建筑抗震设计规范[S].北京:中国建筑工业出版社出版,2010.
    [100] Li Z. X., Du H., Bao C. X.. Review of current researches on blast load effects of building structures in China [J]. Transactions of Tianjin University, 2006, 12(Suppl): 35-41.
    [101]林大超,张奇,白春华.近地表爆炸地震的地面竖向振动速度的随机特性[J].爆炸与冲击,2000, 20(3): 235-240.
    [102]林大超,张奇,熊祖钊,白春华.爆炸地震地面振动速度的随机相似性[J].工程爆破,2001, 7(4): 7-10.
    [103] Wang Z. Q., Hao H., Lu Y.. A three-phase soil model for simulating stress wave propagation due to blast loading. International Journal Numerical Analysis Methods of Geomechanics, 2004, 28: 33-56.
    [104] Wu C. Q., Hao H.. Numerical study of characteristics of underground blast induced surface ground motion and their effect on above-ground structures.Part I. Ground motion characteristics[J]. Soil Dynamics and Earthquake Engineering, 2005, 25(1): 27-38.
    [105] Hao H., Wu Y. K., Ma G. W., et al. Characteristics of surface ground motions induced by blasts in jointed rock mass[J]. Soil Dynamics and Earthquake Engineering, 2001, 21: 85-98.
    [106]田力.地下爆炸波冲击下地面结构动力响应及滑移隔震研究[D].天津大学博士论文, 2004.
    [107]李铮,金福青,蔡中民.混凝土板自振特性及动力响应[C].中国土木工程学会防护工程分会第九次学术年会论文集.长春, 2004.
    [108] Lyemer J.,Kuhlemeyer R. L.. Finite dynamic model for infinite media [J]. Journal of Engineering Mechanics,1969,95(4):759–777.
    [109] Clayton R. W.,Engquist B.. Absorbing boundary conditions for acoustic and elastic wave equations[J]. Bulletin of the Seismological Society of America,1977,67(6):1529–1540.
    [110] Higdon R. L.. Absorbing boundary conditions for difference approximations to the multi-dimensional wave equation[J]. Math Comp, 1986, 47: 437-459.
    [111] Deeks A. J.,Randolph M. F.. Axisymmetric time-domain transmitting boundaries [J]. Journal of Engineering Mechanics,1994,120(1):25–42.
    [112] Heidari A. H., Guddati M. N.. Highly accurate absorbing boundary conditions for wide-angle wave equations [J]. Geophysics, 2006, 71(3): 85–97.
    [113]刘晶波,王振宇,杜修力,杜义欣.波动问题中的三维时域粘弹性人工边界[J].工程力学, 2005, 22(6): 46~51.
    [114]陈万祥,郭志昆,袁正如,等.地震分析中的人工边界及其在LS-DYNA中的实现[J].岩石力学与工程学报, 2009,28(S2): 3504-3515.
    [115]杜修力,赵密,王进廷.近场波动模拟的人工边界条件[J].力学学报,2006,38(1):49–56.
    [116]谷音,刘晶波,杜义欣.三维一致黏弹性人工边界及等效黏弹性边界单元[J].工程力学,2007,24(12):31–37. 111

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700