船体结构声波动特性及阻波技术应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着现代探测设备和武器向高精度、远距离发展,舰船的暴露和被命中率大幅提高,生存力和战斗力受到严重威胁。舰船声隐身技术是通过系统地应用多种技术来控制舰船声场,改变舰船声目标特性,同时也提高本舰对目标的发现、跟踪和打击力。因此,声隐身技术是提高现代舰船的生存力和战斗力的有效手段。
     舰船主机、辅机等众多机械设备的气阀、活塞连杆等在摩擦、冲击等交变应力作用下产生的结构噪声,通过基座—艇体—流场的结构振动噪声主传递途径以弹性波的方式向外传递。然而,机械动载荷作用产生的振动不是立刻影响到艇体的,振动的传播需要一定的时间,并必须通过一定的通道。因此,结构动力响应分析从本质上讲是一个波动问题。
     舰船结构声传递机理与阻抑特性研究,是一个涉及结构振动声辐射和弹性波控制的交叉领域的研究课题。本文从典型船体板梁结构入手,以敷设声学覆盖层的加筋双壳为研究对象,旨在探索典型舰船结构中的波动特性。在频散特性、聚能效应、功率流传播和声辐射分析基础上,开展了典型艇体动力舱段的振动波控制技术研究。
     首先,基于波型转换及阻抗失配原理,系统分析了有限尺度的多种典型船舶连接结构的波动特性,讨论了流体负载对其波动特性的影响规律,对比了各种连接结构的阻波性能,给出了具有高传递损失特性的舰船连接结构形式。
     当前舰船结构噪声控制中仅仅着重于弯曲波一种波形的分析,具有一定的局限性。突破薄板理论的局限,本文将船体板、梁的运动用波动方程描述成行波,结构振动被描述成向不同方向传播的波,给出计及剪切变形的船体梁的多模式频散特性,在此基础上探索了宽频激励下船体结构中的“能量聚集”效应。
     加肋双壳结构一般是由梁、平板、柱壳等构件组成,研究其结构频散及动力机械输入功率流特性对于控制设备—基座—壳体—流场的结构声主传递途径具有重要的理论及工程应用价值。以流场中敷设声学覆盖层的有限长加筋双层圆柱壳为研究对象,开展敷设覆盖层的双壳结构频散及输入功率流特性研究,分析静水压力、声学覆盖层、不同边界条件对双壳结构频散特性的影响规律,探索艇体结构在螺旋桨及推进电机联合激励下的能量聚集现象。
     随着安静型机电设备技术和减振隔振技术的发展和运用,机械噪声得到了有效控制,使得对空气声激励壳体振动和声辐射的研究更加重要。依据动力舱室的多源激励特性,分析了激励力和内部声源联合作用下双层圆柱壳声辐射特性,研究了舰船舱室结构透射、辐射噪声复合特性及噪声主导分量。在此基础上,初步给出了风机系统、泵等设备直接辐射空气噪声引起的艇体水下噪声的工程估算方法,并给出了空气噪声工程控制建议。
     船体本身的结构突变对结构噪声的传播的阻碍作用有限,因此要想达到对结构噪声的较大的隔声量,必须采取行之有效且装配工艺合理的措施。基于波动理论的分析处理方法,讨论阻振质量偏心布置、阻振质量固定方式对其隔振特性的影响,分析船体结构中弹性复合材料夹层对声振动传递的阻抑特性,初步给出基座结构隔振度与阻振质量参数的经验公式。提出了在船体结构刚性隔振的基础上联合应用弹性夹层的新型复合阻波技术。
     基于敷设声学覆盖层的加肋双层圆柱壳的频散、聚能效应、功率流及声辐射特性分析,将具有高传递损失特性的结构形式和新型阻波技术引入典型动力舱段空间体系声学设计,给出了具有高传递损失特性的舱壁、基座、舷间托板结构形式。
     在上述理论分析及数值试验基础上,通过大尺度舱段模型水下振动及声辐射模型试验验证了结构声学设计的有效性,初步形成典型动力舱段空间体系声学设计方法。
In recent years, the naval vessels’ exposure and offence rates are substantially increased.With the modern detection equipments and the development of high-precision, long-rangeweapons, the survivability and tactical efficiency of naval vessels are under serious threat.The characteristics of vessel sound field and target properties can be controlled by systematicapplication of a variety of acoustic stealth techniques, and the ship-to-target discovery,tracking and hitting power are also improved. Therefore, the sound stealth technology is aneffective method to improve naval vessels’ survivability and tactical efficiency.
     The structure-borne sound is generated by the valves and plunger connecting rods ofmain and auxiliary machineries’ friction,impacting and alternating stress. The structure-bornesound is transferred through the main pathway of base--hull--field in the form of elastic wavepropagation. However, the structure vibrations generated by dynamic loading are notimmediately affected the hull structure, the vibration transmission requires some time and acertain pathway. Therefore, the structural dynamic analysis essentially reflects wavefluctuation.
     The characteristics of vessel structure-borne sound transmission and inhibition is across-field research about structure vibration, sound radiation and elastic wave control.Beginning with the typical hull plate girder structures, the stiffened double hull with acousticcovering layers is considered to be the main investigated subject in order to explore thefluctuation characteristics in hull structures. Based on dispersion characteristics, cumulativeeffect, power flow and sound radiation analysis, the wave propagation control technology oftypical power cabin is researched.
     Firstly, the characteristics of wave propagation from a variety of limited-scale typicalhull structure are analyzed according to wave conversion and impedance mismatch principle.The influence of liquid load on the fluctuation characteristics is discussed, and the waveimpending performance of different hull link structures are compared. The high transmission loss hull link structures are summed up.
     The currently vessel noise control only focuses on the analysis of flexural wave.Breaking through the limitations of thin plate theory, the movements of hull plate and beamare described as traveling waves, and the structure vibration is described as propagatingwaves in different directions. The multi-mode dispersion characteristics of hull plate girderwith shear deformation are analyzed, and the cumulative effect of hull structure under broadband motivation is explored.
     Stiffened double hull structure is generally composed of beam, plate, cylindrical shell,and it is of great importance to analyze its structure dispersion and power flow characteristicsin order to control the structure-borne main pathway of equipment--base--hull--fluid. Thestiffened double hull with acoustic covering layers is considered to be the main investigatedsubject in order to explore its structure dispersion and power flow characteristics. Theinfluences of hydrostatic pressure, acoustic covering layer and boundary condition on itsdispersion characteristics are discussed. Furthermore, the hull structure’s cumulative effectunder the combined motivation of propeller and impelling electric machine is explored.
     With development and application of quiet type equipments and vibration isolationtechnology, the mechanical noise has been effectively controlled. Therefore, the shellvibration and sound radiation motivated by air source is becoming more important. Based onmulti-source excitation characteristics of power cabin, sound radiation of double cylindricalshell under driving force and internal sound source is researched. The composite effect ofsound radiation and sound transmission is analyzed as well as the dominant noise component.On this basis, the engineering estimating method of hull structure’s under water soundradiation is preliminarily summed up, which is resulted by the airborne noise of fan systemand pumping machinery. Furthermore, the engineering control measures of airborne noise aresuggested.
     The mutations of hull structure have little effect on impeding wave propagation, so theeffective assembly process is developed in order to enhance the vibration isolation performance. Based on wave theory, the influence of blocking mass eccentric arrangementand fixation properties on its vibration isolation performance is discussed. The characteristicsof elastic interlayer impeding vibration wave propagation from typical hull structure areanalyzed, and the preliminary empirical equation of base isolation performance and blockingmass properties is developed. Combination elastic interlayer with rigid vibration isolation, acomposite wave impending techniqu is summed up.
     The high transmission loss link structures and composite wave impending technology areintroduced into the power cabin’s structure-borne sound three-dimensional design accordingto the analysis of stiffened double cylindrical shell dispersion characteristics, cumulativeeffect,power flow and sound radiation analysis. The high transmission loss structure styles ofbulkhead, base and brace are summed up,
     Based on theory analysis and numerical experiment, the effectiveness of structure-bornesound design is verified through large scale cabin model underwater vibration and soundradiation experiment. The preliminary methods of structure-borne sound three-dimensionaldesign of power cabin are developed.
引文
[1] H.W. Lord, Y. Shulman, The generalized dynamical theory of thermo-elasticity, J.Mech. Phys. Solids15(1967)299–309.
    [2] D.S. Chandrasekharaiah, Thermoelasticity with second sound–a review, Appl. Mech.Rev.39(1986)355–376.
    [3] A.H. Nayfeh, S.N. Nasser, Thermoelastic waves in solids and thermal relaxation, ActaMech.12(1971)53–69.
    [4] N. Noda, T. Furukawa, F. Ashida, Generalized thermoelasticity in an infinite solid withhole, J. Therm. Stresses12(1989)385–402.[6] H.S. Saxena, R.S. Dhaliwal,Eigenvalue approach of coupled thermo-elasticity, J. Therm. Stresses20(1990)161–175.
    [5] J.N. Sharma, D. Singh, R. Kumar, Generalized thermoelastic waves in homogeneousisotropic plates, J. Acoust. Soc. Am.108(2000)848–851.
    [6] J.N. Sharma, D. Singh, R. Kumar, Circular crested thermoelastic waves inhomogeneous isotropic plates, J. Therm. Stresses25(2002)1179–1193.
    [7] D.P. Acharya, A. Mondal, Propagation of Rayleigh surface waves with smallwave-lengths in non-local viscoelastic solids, Sadhana27(2002)605–612.[10] W.Voigt, Theortische student uberdie Elasticitats Verhalinisse Krystalle Abhandlungen derGesellschaft der Wissenschaften zu Gottingen34(1887).[11] A.M. Freudenthal, Effectof rheological behavior on thermal stresses, J. Appl. Phys.25(1954)1–10.
    [8] S. Mukhopadhyay, Effects of thermal relaxations on thermo-viscoelastic interactionsin an unbounded body with a spherical cavity subjected to a periodic loading on theboundary, J. Therm. Stresses23(2000)675–684.
    [9] J.N. Sharma, R. Chand, Transient thermoviscoelastic waves in a half-space due tothermal loads, J. Therm. Stresses28(2005)233–252.
    [10] M.I.A.Othman, M.A.Ezzat, S.A. Zaki,A.S. El-Karamany, Generalizedthermo-viscoelasticity plane waves with two relaxation times, Int. J. Eng. Sci.40(2002)1329–1347.
    [11] M.I.A. Othman, The uniqueness and reciprocity theorem for generalizedthermo-viscoelasticity with thermal relaxation times, Mech. Mech. Eng.7(2)
    [12](2004)77–87.
    [13] M.A. Ezzat, M.I.A. Othman, A.S. El-Karamany, State space approach to generalizedthermoviscoelasticity with two relaxation times, Int. J. Eng. Sci.40(2002)283–302.
    [14] M.A. Ezzat, M.I.A. Othman, A.S. El-Karamany, State space approach totwo-dimensional generalized thermoviscoelasticity with two relaxation times, Int. J.Eng. Sci.40(2002)251–1274.
    [15] M.I.A. Othman, Generalized electromagneto-thermoviscoelastic in case of2-Dthermal shock problem in a finite conducting medium with one relaxation time, ActaMech.169(2004)37–51.
    [16] M.I.A. Othman, Effect of rotation and relaxation time on a thermal shock problem fora half-space in generalized thermoviscoelasticity, Acta Mech.174(2005)129–143.
    [17] J.N. Sharma, Some considerations on the Rayleigh–Lamb wave propagation invisco-thermoelastic plate, J. Vib. Control11(2005)1311–1335.
    [18] J.N. Sharma, D. Singh, R. Kumar, Propagation of generalized visco-thermoelasticRayleigh–Lamb waves in homogeneous isotropic plates, J. Therm.Stresses27(2004)645–669.
    [19] V.A. Schoch, Der Schalldurchgang Durch Platten (sound transmission in plates),Acoustica2(1952)1–17.
    [20] J. Wu, Z. Zhu, The propagation of Lamb waves in a plate bordered with layers of aliquid, J. Acoust. Soc. Am.91(1992)861–867.
    [21] J.N. Sharma, V. Pathania, Thermoviscoelastic waves in plate bordered with layers ofinviscid liquid, J. Therm. Stresses26(2003)149–166.
    [22]姚熊亮,计方等.典型船舶结构中振动波传递特性研究.振动与冲击,2009,8:20-24.
    [23] J.N. Sharma, V. Pathania, Generalized thermoviscoelastic Lamb waves in a platebordered with layers of inviscid liquid, J. Sound Vib.268(2003)897–916.
    [24] J.N. Sharma, V. Pathania, Crested waves in thermoelastic plates immersed in liquid, J.Vib. Control11(2005)347–370.
    [25] J.N. Sharma, V. Pathania, Propagation of leaky surface waves in thermoelastic solidsdue to inviscid fluid loadings, J. Therm. Stresses28(2005)485–519.
    [26] J.N. Sharma, S. Kumar, Y.D. Sharma, Propagation of Rayleigh waves in micro-stretchthermoelastic continua under inviscid fluid loadings, J. Therm.Stresses31(2008)18–39.
    [27] M. Ewing, W.S. Jardetzky, F. Press, Elastic Waves in Layered Media, McGraw, NewYork,1959, pp.272–280.[30] W. Flugg, Viscoelasticity, Blausdell, London,1967.
    [28] C. Hunter, Ian, Sneddon, R. Hill, Viscoelastic Waves: Progress in Solid Mechanics,North Interscience, Amsterdam, New York,1972.[32] J.C. Andle, J.F. Vetelino,Acoustic wave biosensors, Sensor. Actuator. A44(1994)167–176.
    [29] H. Lamb, On waves in an elastic plate, Proc. Roy. Soc. Lond. Ser. A93(1917)114–120.
    [30]陈美霞.有限长加筋双层圆柱壳声辐射性能分析[D].华中科技大学博士学位论文,2003.
    [31] S. Kaliski, Absorption of magneto viscoelastic surface waves in a real conductor inmagnetic field, Proc. Vib. Probl.4(1963)319–329.
    [32] C. R.Fuller. The input mobility of an infinite circular elastic shell with fluid[J]. J Soundand Vibration,1983,87(3):409–427.
    [33] L. Gavric, Pavic G. A finite element method for computation of structure intensity bythe normal mode approach[J]. J Sound and Vibration,1993,164:29–43.
    [34] W. Gersch.Average power and power exchange in oscillators[J]. J Acoust. Soc. Am.,1969,46:1180–1185.
    [35] B. M. Gibbs, C. L. S. Giltord. The use of power flow methods for the assessment ofsound transmission in building structures[J]. J Sound and Vibration,1976,49(2):267–286.
    [36] B. M. Gibbs, J. D. Tattersall. Vibrational transmission and mode conversion at thecomer junction of square section rods[J]. J Vib. Acoust. Stress and Reliability in Design,1987,109(4):348–355.
    [37] C. Gulizia, A. J. Price Power flow between strongly coupled oscillators]J]. J Acoust.Soc. Am.,1977,6l(6):1511–1515.
    [38] N. G. Hemingway. Modeling vibration transmission through coupled vehicle sub systemusing mobility matrix[J]. J Meeh. Engng,1986,200:125–135.
    [39] J. L. Homer, R. G. White Prediction of vibration power transmission through beams andjoints in beam–like structures[J]. J Sound and Vibration,1991,147(1):87–103.
    [40]陈正翔,金咸定,张维衡.充液圆柱管壳中振动波的频散特性.船舶力学:2000,10:785-791.
    [41] Y. K. Koh, R. G. White. Analysis and control of vibrational power transmission tomachinery supporting structures subjected to a multi–excitation system, Part1: Drivingpoint mobility matrix of beams and rectangular plates]J]. J Sound and Vibration,1996,196(4):469–493.
    [42] A. Le Bot, L. Ricol. Integral equation instead of heat conduction equation for mediumand high frequencies[J]. Inter–noise,1995.579–582.
    [43] A. Le Bot. A vibroacoustic model for high frequency analysis[J]. J Sound and Vibration,1998,211(4):537–554.
    [44]刘志忠.静压条件下圆柱壳—流场耦合系统振动功率流和声辐射特性研究.华中科技大学博士论文,2009.
    [45] T. Y. Li, X. M. Zhang. Structural power flow analysis for a floating raft isolation systemconsisting of constrained damped beams[J]. J Sound and Vibration,1997,202(1):47–54,
    [46] W. L. Lavrich P. Prediction of power flows through machine vibration isolators[J]. JSound and Vibration,1999,224(4):757–774.
    [47] M.Hu, A.J. Keane Modeling liquid–structure interaction within the framework ofstatistical energy analysis[J]. J Sound and Vibration,2000,238(4):547–574.
    [48] R. Lotz, S. H. Crandall. Prediction and measurement of the proportionality constant instatistical energy analysis of structures[J]. J Acoust. Soc. Am.,1973,54(2):516–524.
    [49] D.W. Miller, A.V. Flotnw, A traveling wave approach to power flow in structuralnetworks[J]. J Sound and Vibration,1989,128(1):145–162.
    [50]彭旭,关珊珊,骆东平,陈美霞.内部声激励下加筋圆柱壳的声辐射特性分析.固体力学学报:2007,12:5-11.
    [51] D. J. Nefske, S. H. Sung. Power flow finite element analysis of dynamic system: Basictheory and application to beams[J]. Transactions of the ASME,1989,111(1):94–100.
    [52] D. E. Newland. Calculation of power flow between coupled oscillators[J] J Sound andVibration,1966(3):262–276.
    [53] D. E. Newland. Power flow between a class of coupled oscillators[J]. J Acoust. Soc.Am.,1968,43(3):553–559.
    [54]金宝燕.空气噪声激励加筋双层圆柱壳的水下声辐射特性研究.华中科技大学硕士论文,2008.
    [55] J. C. Niu, K. J. Song. On active vibration isolation of floating raft system[J]. J Soundand Vibration,2005,285:391–406.
    [56] G. Orefice, C. Cacciolati, J. L. Guyader. The energy mobility[J]. J Sound and Vibration,2002,254:269–295.
    [57] D. H. Park, S. Y. Hong. Power flow models and analysis of in–plane waves in finitecoupled thin plates[J]. J Sound and Vibration,2001,244(4):651–668
    [58] G. Pavic Measurement of structure borne wave intensity, Part1: Formulation of themethods[J]. J Sound and Vibration, l976,49(2):221–230.
    [59] G. Pavic. Structural surface intensity: An alternative approach in vibration analysis anddiagnosis[J]. J Sound and Vibration,1987,1l5(3):405–422.
    [60] T. D. Scharton, R. H. Lyon. Power flow and energy sharing in random vibration[J]. JAcoust. Soc. Am.,1968,43(6):1332–l343.
    [61]车驰东,动力设备结构声传递的理论分析及阻波技术的研究.上海交通大学博士论文,2008.
    [62] K. Shanhar, A. J. Keane. Vibrational energy flow analysis using a substructureapproach: The application of receptance theory to FEA and SEA[J]. J Sound andVibration,1997,201(4):491–513.
    [63] K. Shankar, A. J. Keane. Energy flow predictions in a structure of rigidly joinedbeams using receptance theory[J]. J Sound and Vibration,1995,185(3):867–890.
    [64] J. C. Sun,et al. Power flow and energy balance of non–conservatively coupled structures,h theory[J]. J Sound and Vibration,1987,1l2(2):321–330.
    [65]钱德进,姚熊亮,计方.多级阻振质量阻隔振动波传递特性研究.应用声学.2009,9:321-329.
    [66] A.Wang, N. Vlahopoulos. Development of an energy boundary element formulation forcomputing high–frequency sound radiation from incoherent intensity boundaryconditions[J]. J Sound and Vibration,2004,278:413–436.
    [67] X. U. Wang, L. L. Koss. Frequency response functions for structural intensity, Part1:Theory[J]. J Sound and Vibration.1995,185(2):229–334.
    [68] X. U. Wang, L. L. Koss. Frequency response functions for power transfer ratio andcoherence[J]. J Sound and Vibration,1992,155(1):55–73.
    [69] J. C. Wohlever, R. J. Bernhard. Mechanical energy flow models of rods and beams[J]. JSound and Vibration.1992,153(1):1–19.
    [70] J. C. Wohlever. Vibration power flow analysis of rods and beams[D]. Master of ScienceThesis, Purdue University,1988.
    [71] W. G. Zhang, et al. High–frequency vibration analysis of thin elastic plates under heavyfluid loading by an energy finite element formulation[J]. J Sound and Vibration,2003,263(1):21–46.
    [72]姚熊亮,计方.偏心阻振质量阻抑振动波传递特性研究.振动与冲击.2010,1:48-52.
    [73] W. G. Zhang, et al. An energy finite element form ulation for high–frequency vibrationanalysis of external fluid–loaded cylindrical shell with periodic circumferential stifenerssubjected to axi–symmetric excitation[J]. J Sound and Vibration2005,282:679–700.
    [74] F. Zhao, X. Zeng. Energy based macro–element method via a coupled finite elementand boundary integral formulation[J]. Computers and Structures,1995,56:813–824.
    [75] X. Zhao. Vlahopoulos N. Basic development of a hybrid finite element method formid–frequency computations of structural vibrations[J]. J Acoust. Soc. Am.,1999,106:2118.
    [76]姚熊亮,计方,王祖华,周海波.基座含阻振质量的动力舱段全频段声振特性数值研究.船舶2010.10:13-17.
    [77]王祖华,周海波,计方.典型舰船舱壁结构隔振优化设计.船舶.2011,2:4-8.
    [78] X. Zhao, N. Vlahopoulos. A basic hybrid finite element form ulation for mid–frequencyanalysis of beams connected at all arbitrary angle[J]. J Sound and Vibration,2004,269:135.
    [79] J. Dong, et a1. Parametric design sensitivity of high–frequency structural–acousticproblems using energy finite element method[J]. Int. J for Num. Methods in Engng.,2005,62:83–121.
    [80]孙进才.统计能量分析(SEA)研究的新进展.自然科学进展,1998,8(2):129–136.
    [81] L. Cremer, M. Heckl, E. E. Ungar. Structure-borne Sound. Second edition. Berlin:Springer-Verlag,1988:316-334P
    [82]李天匀,张小铭.有不连续材料层的组合板结构振动功率流研究.声学学报,1997,22(3):274-281页
    [83] X. Pan, C. H. Hansen Active control of vibratory power transmission along asemi-infinite plate. J. Sound. Vib.1995,184(4):585-610P
    [84]诺顿.工程噪声和振动分析基础.北京:航空工业出版社,1993:48-56页
    [85]舒歌群,郝志勇.结构振动控制中的弹性波主动控制技术.振动与冲击.2000,19(2):28-31页
    [86] M. Heckl. Wave propagation on beam-plate systems. J. Acoust. Soc. Am.1961,33(5):640-651P
    [87] E. E. Ungar. Transmission of Plate Flexural Waves through Reinforcing Beams;Dynamic Stress Concentrations. J. Acoust. Soc. Am.1961,33:632-639P
    [88] N. J. Kessissoglou, J Pan. An Analytical Investigation of the Active Attenuation of thePlate Flexural Wave Transmission through a Reinforcing Beam. J. Acoust. Soc. Am.1997,102:3530-3541P
    [89] N. J. Kessissoglou. Active control of the plate energy transmission in a semi-infiniteribbed plate. J. Acoust. Soc. Am.2000,107(1):324-331P
    [90]俞孟萨,吴有生.舰船声弹性及声辐射理论研究概述.船舶力学,2008,12(4):669-676页
    [91] J.L. Sewall, R. R. Clary, S. A. Leadbetter An Experimental and Analytical VibrationStudy of Ring-Stiffened Cylindrical Shell Structure with Various Support Conditions.NASA TN D-2398.1964,6(2):52-53P
    [92] J. L. Sewall, E. C. Naumann. An Experimental and Analytical Vibration Study ofRing-Stiffened Cylindrical Shell Structure with Various Support Conditions. NASA TND-4075.1968,32(6):54-55P
    [93]李天匀,刘士光,李哲,施其.振动功率流方法诊断梁的损伤.振动工程学报.2000,13(4):638-643页
    [94]阿.斯.尼基福罗夫.船体结构声学设计.谢信,王轲译.北京:国防工业出版社,1998.
    [95] A. Harari. Wave propagation in cylindrical shells with finite regions of structuraldiscontinuity. JASA.1977,62:1196-1205P
    [96] A.Harari. Wave propagation in a cylindrical shell with joint discontinuity. Shock andVib. Bulletin,1978,48:52-61P
    [97]计方,姚熊亮.舰船高传递损失基座振动波传递特性研究.工程力学.2011,3:240-245.
    [98] Лялуноь В Т, НLкLфоров А С. ВиброизоляциЯ в судовых конструкциЯх. Л:Судостроение,1975.
    [99]刘见华,金咸定.阻振质量阻抑结构声的传递.上海交通大学学报.2003,37(8):1201-1204页
    [100]车驰东,陈端石.成任意角度连接的两块平板转角处阻振质量对平面弯曲波传递的影响分析.声学学报.2007,32(3):282-288页
    [101]石勇,朱锡,刘润泉.方钢隔振结构对结构噪声隔离作用的理论分析与试验.中国造船.2004,45(2):36-42页
    [102]姚熊亮,计方等.双层壳舷间复合托板隔振特性研究.振动测试与诊断.2010,30:123-127
    [103]刘洪林,王德禹.阻振质量块对板结构振动与声辐射的影响.振动与冲击.2003,22(4):76-80页
    [104]刘见华,金咸定.多个阻振质量阻抑结构声的传递.上海交通大学学报.2003,37(8):1205-1208页
    [105]杨波,浦伯良,季培德.内河小型工作艇噪声控制研究与实践.江苏船舶.2001,18(1):10-15页
    [106]刘见华.舰船结构声传递的阻抑机理及应用研究.上海交通大学博士学位论文.2003:16-17页
    [107]郭凤骏,杨德庆.考虑振级落差要求的齿轮箱基座优化设计.船舶工程,2008,30(4):1-4页
    [108] Adnan Akay. Scattering of sound from concentric cylindrical shells. J. Acoust. Soc.Am.,1991,89(4):1572~1578.
    [109] Adnan Akay, Sedat Sener, Guillermo C Gaunaurd. Acoustic scattering fromfluid-filled, concentric, submerged cylindrical elastic shells. J. Acoust. Soc. Am.,1992,94(6):3277~3294
    [110]谢官模.环肋圆柱壳在流场中的动力响应和声辐射[D].武汉:华中理工大学,1994.
    [111] H. Choi S, T.Igusa,J.D. Achenbach. Acoustic radiation from a finite-length shell withsubstructures subjected to an impulsive load. Wave Motion,1995,22(3):259~277
    [112]陈越澎.加筋柱壳的声学设计方法研究.[D].华中科技大学博士学位论文,1999
    [113] J.H. Lee, J.Kim. Analysis and measurement of sound transmission through adouble-walled cylindrical shell. J. Sound.Vib.,2002,251(4):631~649
    [114] A.D. Belegundu, T.R. Chandrupatla Optimization concepts and application inengineering. Upper Saddle River, New Jersey: Prentice-Hall, Inc,1999.
    [115] J. S. Lamancusa. Numerical optimization techniques for structural acoustican helicoptersociety. Computers and Structures.1993,48(4):661-675P
    [116]杨德庆,柳拥军等.薄板减振降噪的拓扑优化设计方法.船舶力学,2003,7(4):91-96页
    [117]董永芳,黄海.桁架拓扑优化的多点逼近遗传算法.计算力学学报,2004,21(6):746-751页
    [118]黎胜,赵德有.用有限元边界元方法进行结构声辐射的模态分析.声学学报,2001,22(2):47-50页
    [119]黎胜,赵德有.结构声辐射的振动模态分析和声辐射模态分析研究.声学学报,2004,29(3):200-208页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700