薄壁钢管轻骨料混凝土轴压短柱承载力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薄壁钢管轻骨料混凝土是随着现代建筑结构材料发展要求而出现的新的组合结构。该结构具有承载力高、塑性和韧性好、施工方便、耐火性能高、抗震性能好和经济效益好等优点,因此该结构在工程实践中具有较广阔的应用前景,尤其在多低层建筑中的应用。而薄壁钢管轻骨料混凝土的研究工作才刚刚起步,有关该方面的研究也较少,尚未形成相关的规范和规程。进行该结构体系轴压力学性能的理论研究,对该结构体系的进一步研究是十分必要的。
     本文运用统一强度理论对薄壁钢管轻骨料混凝土构件的力学性能和相应的承载力计算方法等进行理论研究,并对其进行数值模拟,主要工作和结论有:
     1、运用统一强度理论,考虑中间主应力的影响,引入参数αu、βu确定薄壁钢管在极限荷载时的环向拉应力σθ,纵向压应力σz和径向压应力σr,并考虑轻骨料混凝土与普通混凝土多轴强度准则差异的影响,推导出圆形薄壁钢管轻骨料混凝土轴压短柱的极限承载力公式;考虑薄壁钢板的冷弯效应和有效宽度,采用等效截面方法推导出方形、八边形薄壁钢管轻骨料混凝土轴压短柱的极限承载力公式。将本文计算结果与文献试验数据进行比较,结果吻合良好,表明将统一强度理论运用于薄壁钢管轻骨料混凝土轴压短柱承载力计算是可行的。同时,本文推导公式只要合理的选择α、6和k的值,选用相应的屈服准则,就能适用于普通钢管轻骨料混凝土和自应力钢管轻骨料混凝土轴压短柱的承载力计算,为钢管轻骨料混凝土的优化设计提供了一定的理论依据。
     2、分析钢管混凝土粘结强度的基本机理,从理论上推导出钢管与混凝土界面间的粘结滑移本构关系;根据试验结果,通过线性统计回归得到了考虑长细比、径厚比、套箍指标等影响因素的薄壁钢管轻骨料混凝土极限粘结强度的计算公式。基于统一强度理论,考虑钢管混凝土界面间的粘结滑移作用,推导出薄壁钢管轻骨料混凝土轴压短柱承载力计算公式。通过理论计算可知粘结滑移作用对薄壁钢管轻骨料混凝土轴压短柱极限承载力的影响不显著。
     3、采用大型有限元分析软件ANSYS对薄壁钢管轻骨料混凝土轴压短柱的应力-应变关系曲线和应力云图进行了数值模拟,分析了套箍指标ξ和核心轻骨料混凝土强度等级对薄壁钢管轻骨料混凝土轴压短柱力学性能的影响。
With the development of the modern civil engineering structure, the construction material and structure are higher required. As a new type of concrete filled steel tube, lightweight aggregate concrete filled thin-walled steel tube (LACFTST) has many advantages, such as high bearing capacity, fine plasticity and toughness, fire-resistant, seismic, excellent economic benefits and convenient construction and so on. The lightweight aggregate concrete filled thin-walled steel tube is widely used in the engineering construction, especially multi-story and low-rise buildings. However, little study has been done about its mechanical behavior. Related code or specification have not been complete, therefore, it is of great importance to investigate the mechanical performance of the short columns under axial pressure.
     In this paper, Mechanical analysis and calculation method of bearing capacity of the lightweight aggregate concrete filled thin-walled steel tube under axial load is carried out based on the unified strength theory, finite element simulation, the main contents are listed as follows:
     1. Based on the unified strength theory, considering the effects of the intermediate principal stress and the multi-axial strength criterion for the lightweight aggregate concrete, by introducing parameterαu andβu, loop tensile stressσθ, longitudinal compressive stressσz and radial compressive stressσr of ultimate bearing condition of the thin-walled steel is obtained. Thus the calculation formula of ultimate bearing capacity of short columns of the lightweight aggregate concrete filled thin-walled circular steel tube is deduced. The ultimate bearing capacities of short columns of the lightweight aggregate concrete filled thin-walled square or octagon steel tube are deduced by equivalent section method taking account of the effects of the cold curved effect and the effective width in thin-walled steel tube. Compared with the obtained solution and the test results in reference, good agreement can be found. The results indicate that the unified strength theory has the good applicability in the calculation of ultimate bearing capacity of short columns of the lightweight aggregate concrete filled thin-walled circular steel tube. Meanwhile, the various yield criteria can be obtained by varying the value ofα, b and k, so the formula can be applied to derive the ultimate bearing capacity of short columns of the lightweight aggregate concrete filled steel tube and the self-stress lightweight aggregate concrete filled steel tube. These solution can provide theoretical foundation for the design of the lightweight aggregate concrete filled steel tube.
     2. Based on the mechanism of bond between the steel tube and the concrete in the lightweight aggregate concrete filled thin-walled steel tube, the equation of stress of steel tube, bond stress, and relative slip btween steel tube and concrete are deduced through theoretical analyses. And the relationship of bond stress and slip is established. According to the test results and through statistics linear regression, the formula of ultimate bond strength of the lightweight aggregate concrete filled thin-walled steel tube is deduced by considering these factors (slenderness ratio, diameter-thickness ratio, confinement index, etc). The calculation formula of ultimate bearing capacity for short columns of the lightweight aggregate concrete filled thin-walled steel tube is deduced based on the unified strength theory. The effects of bond-slip behaviors of interface between the steel tube and the concrete is considered in the solution. The results indicate that the bond-slip behaviors has little influence on the ultimate bearing capacity of short columns of the lightweight aggregate concrete filled thin-walled steel tube.
     3. In this paper, the stress-strain curve and stress contour of the lightweight aggregate concrete filled thin-walled steel tube are obtained using the commercial finite element software ANSYS. In addition, the influences of the confinement index and the strength grade of core lightweight aggregate concrete on the mechanical performance of the short columns under axial pressure are discussed according to numerical results.
引文
[1]蔡绍怀.现代钢管混凝土结构[M].北京:人民交通出版社,2003
    [2]韩林海.钢管混凝土结构-理论与实践[M].北京:科学出版社,2004
    [3]钟善桐.钢管混凝土结构(第3版)[M].北京:清华大学出版社,2003
    [4]赵鸿铁.钢与混凝土组合结构[M].北京:科学出版社,2001
    [5]张耀春,王秋萍,毛小勇,等.薄壁钢管混凝土短柱轴压力学性能试验研究[J].建筑结构,2005,35(1):22-27
    [6]张耀春,许辉,曹宝珠.薄壁钢管混凝土长柱轴压性能试验研究[J].建筑结构,2005.35(1):28-31
    [7]高欣建,俞继前,林敏忠.冷弯型钢在轻钢建筑中的应用[J].新型建筑材料,1999,4:8-11
    [8]宋玉普.多种混凝土材料的本构关系和破坏准则[M].北京:中国水利水电出版社,2002
    [9]杨仕升,秦荣,赵小莲,等.建筑结构抗震能力评估技术的研究及应用[J].世界地震工程,2004,20(4):100-106
    [10]轻钢轻板房屋体系项目可行性研究报告(技术经济分析、项目实施方案)[R].上海现代房地产实业有限公司,2000
    [11]蒋涛.薄壁矩形钢管混凝土结构的理论和试验研究[D].上海:同济大学,2003
    [12]王秋萍.薄壁钢管混凝土轴压短柱力学性能的试验研究[D].哈尔滨:哈尔滨工业大学,2002
    [13]刘新义.薄壁方钢管轻质混凝土轴压短柱的力学性能研究[D].石河子:石河子大学,2007
    [14]陶忠,于清.新型组合结构柱.试验、理论与方法[M].北京:科学出版社,2006
    [15]JGJ51-2002,轻集料混凝土技术规程[S].北京:中国建筑工业出版社,2002
    [16]陈骥.钢结构稳定理论与设计[M].北京:科学出版社,2001
    [17]Wright.H.D. Buckling of plates in contact with a rigid medium[J]. The Structural Engineering,1993,71(12):209-215
    [18]Prion.H.G.L, Boehme. J. Beam-column behaviour of steel tubes filled with high strength concrete[J]. Canadian Journal of Civil Engineering,1994,21:207-218
    [19]Wei.S, Mau.S.T, Vipulanandan.C, etal. Performance of new sandwich tube under axial loading[J]. Journal of Structural Engineering, ASCE,1995,121(12):1806-1821
    [20]Uy.B, Bradford.M.A. Elastic local buckling of steel plates in composite steel-concrete members[J]. Engineering Structures,1996,18(3):193-200
    [21]Bridge.R.Q, Patrick.M, Webb.J. High strength materials in composite construction[C]. Conference Report of International Conference on Composite Construction-Conventional and Innovative, Innsbruck, Austria,1997,29-40
    [22]Bridge.R.Q, O'Shea.M.D. Behaviour of thin-walled steel box sections with or without internal restraint[J]. Journal of Constructionao Steel Research,1998,47(1-2):73-91
    [23]O'Shea.M.D, Bridge.R.Q. Tests on circular thin-walled steel tubes filled with medium and high strength concrete[R]. Department of Civil Engineering Research Report No.R755, the University of Sydney, Sydney, Australia,1997
    [24]O'Shea.M.D, Bridge.R.Q. Tests on circular thin-walled steel tubes filled with very high strength concrete[R]. Department of Civil Engineering Research Report No.R754, the University of Sydney, Sydney, Australia,1997
    [25]O'Shea.M.D, Bridge.R.Q. Local Buckling of thin-walled circular steel sections with or without internal restraint [R]. Department of Civil Engineering Research Report No.R740, the University of Sydney, Sydney, Australia,1997
    [26]O'Shea.M.D, Bridge.R.Q. Behaviour of thin-walled box sections with lateral restraint [R]. Department of Civil Engineering Research Report No.R739, the University of Sydney, Sydney, Australia,1997
    [27]Tsuda.K, Matsui.C. Limitation on width (diameter)-thickness ratio of steel tubes of composite tube and concrete columns with encased type section [C]. Proceeding of the Fifth Pacific Structural Steel Conference, Seoul, Korea,1998:865-870
    [28]Uy.B. Local and post-local buckling of concrete filled steel welded box columns [J]. Journal of Constructional Steel Research,1998,47(1-2):47-72
    [29]Shams.M, Saadeghvaziri.M.A. Nonlinear response of concrete-filled steel tubular columns under axial loading[J]. ACI Struct.J,1999,96(6):1009-1017
    [30]Liang.Q.Q, Uy.B. Theoretical study on the post-local buckling of steel plates in concrete-filled box columns [J]. Computers and Structures,2000,75:479-490
    [31]Uy.B. Strength of concrete filled steel box columns incorporating local buckling[J]. Journal of Structural Engineering, ASCE,2000,126(3):341-352
    [32]Pircher.M.D, O'Shea.M.D, Bridge.R.Q. The influence of the fabrication process on the bucking of thin-walled steel box sections [J]. Engjneering Structures,2002,40:109-123
    [33]Bradford.M.A, Loh.H.Y, Uy.B. Slenderness limits for filled circular steel tubes[J]. Journal of Constructional Steel Research,2002,58(2):243-252
    [34]Shanmugam.N.E, Lakshmi.B, Uy.B. An analytical model for thin-walled steel box columns with concrete in-fill[J]. Engineering Structures,2002,24(6):825-838
    [35]Mursi.M, Uy.B. Strength of concrete filled steel box columns incorporating interacting buckling [J]. Journal of Structural Engineering,2003,129(5):626-639
    [36]曹宝珠.薄壁钢-混凝土组合构件静力性能研究[D].哈尔滨:哈尔滨工业大学,2004
    [37]余红军.新型薄壁钢-混凝土组合结构节点试验研究[D].哈尔滨:哈尔滨工业大学,2005
    [38]董志君.设肋方形薄壁钢管混凝土短柱静力性能研究[D].哈尔滨:哈尔滨工业大学,2005
    [39]Han.L.H, Yao.G.H, Zhao.X.L. Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC) [J]. Journal of Constructional Steel Research,2005,61(9):1241-1269
    [40]Liang.Q.Q, Uy.B, Richard Liew.J.Y. Nonlinear analysis of concrete-filled thin-walled steel box columns with local buckling effects [J]. Journal of Constructional Steel Research.2006, (62):581-591
    [41]李艳,占美森,熊进刚.薄壁钢管混凝土柱轴心受压承载力的试验研究[J].混凝土,2008,11:47-49
    [42]Tao.Z, Uy.B, Han.L.H, etal. Analysis and Design of Concrete-Filled Stiffened Thin-Walled Steel Tubular Columns Under Axial Compression[J]. Thin-Walled Structures,2009,47(12):1544-1556
    [43]郭兰慧,张素梅.考虑局部屈曲的矩形钢管混凝土轴压承载力计算方法[J].工业建筑,2009,39(7):98-101
    [44]王志滨,陶忠.带肋薄壁方钢管混凝土偏压构件力学性能研究[J].工业建筑,2009,39(4):1-4
    [45]金伟良,张翔,陈驹.薄壁圆钢管混凝土轴压试验研究[J].混凝土,2010,1:7-9
    [46]Prion.H.G.L, Boehme.J. Beam-column behaviour of steel tubes filled with high strength concrete[J]. Canadian Journal of Civil Engineering,1994,21:207-218
    [47]Boyd.P.F, Cofer.W.F, Mclean.D.I. Seismic performance of steel-encased concrete columns under flexural loading [J]. ACI Structural Journal,1995,92(3):355-364
    [48]Fujinaga.T, Matsui.C, Tsuda.K, etal. Limiting axial compressive force and structural performance of concrete filled steel circular tubular beam-columns [C]. Proccedings of the Fifth Pacific Structural Steel Conference, Seoul, Korea,1998:979-984
    [49]Nishiyama.I, Morino.S, Sakino.K, etal. Summary of research on concrete-filled structural steel tube column system carried out under the US-Japan cooperative research program on composite and hybrid structures[R]. BRI Research Paper No.147, Building Research Institute, Japan,2002
    [50]徐超,张耀春.薄壁钢管混凝土柱的弯矩曲率滞回关系分析[J].工业建筑,2004,(增刊):931-934
    [51]曹宝珠,张耀春,余红军,等.薄壁钢管混凝土节点的试验研究与ANSYS有限元分析[J].吉林建筑工程学院学报,2007,24(2):1-4
    [52]Han.L.H, Yao.C..H, Tao.Z. Behaviors of Concrete-Filled Steel Tubular Members Subjected to Combined Loading [J]. Thin-Walled Structures,2007,45(6):600-619
    [53]徐超,张耀春,卢孝哲.方形设肋薄壁钢管混凝土柱的恢复力模型[J].哈尔滨工业大学学报,2008,40(4):514-520
    [54]Han.L.H, Qu.H, Tao.Z, etal. Experimental Behaviour of Thin-Walled Steel Tube Confined Concrete Column to RC Beam Joints Under Cyclic Loading [J]. Thin-Walled Structures,2009,47(8-9):847-857
    [55]韦灼彬.钢管陶粒混凝土的基本性能及应用研究[D].天津:天津大学,1993
    [56]Zhao.X.L, Grzebieta.R.H. Void-filled SHS beams subjected to large deformation cyclic bending [J]. Journal of Structural Engineering, ASCE,1999,125(9):1020-1027
    [57]李帼昌,刘之洋.自应力钢管轻骨料混凝土结构[M].沈阳:东北大学出版社,2001
    [58]陈甲树.钢管轻集料混凝土抗弯性能试验研究与理论分析[D].南京:河海大学,2007
    [59]周文杰.钢管轻集料混凝土中长柱稳定承载力研究[D].南京:河海大学,2007
    [60]杨明.钢管约束下核心轻集料混凝土基本力学性能研究[D].南京:河海大学,2006
    [61]王晓亮.钢管高强轻集料混凝土短柱轴压力学性能试验研究[D].南京:河海大学,2006
    [62]李帼昌,孙巍,邢忠华.钢管煤矸石混凝土梁柱加强环中节点低周反复荷载试验[J].沈阳建筑大学学报(自然科学版),2008,24(2):200-203
    [63]傅中秋,吉伯海,胡正清,等.钢管轻集料混凝土长柱轴压性能试验研究[J].东南大学学报(自然科学版),2009,39(3):546-551
    [64]傅中秋,吉伯海.长细比对钢管轻集料混凝土轴压柱受力性能的影响[J].工业建筑, 2010,40(1):112-115
    [65]吉伯海,傅中秋,胡正清.钢管轻集料混凝土短柱偏心受压性能的试验[J].交通科学与工程,2009,25(3):22-28
    [66]傅中秋,吉伯海,陈晶晶,等.钢管轻集料混凝土组合界面黏结滑移性能[J].河海大学学报(自然科学版),2009,37(3):317-322
    [67]周晓华,蒋翔.钢管混凝土轴压刚度取值比较[J].公路,2003,(8):105-107
    [68]郑史雄,周述化,丁桂保.大跨度钢管混凝土拱桥的地震反映性能[J].西南交通大学学报,1999,34(3):320-324
    [69]谢肖礼,彭文立,秦荣.圣维南原理在钢管混凝土拱桥分析中的应用[J].中国公路学报,2001,14(2):33-35
    [70]何雄君,陈巧生,周立刚.钢管混凝土拱桥主拱混凝土浇灌的纵向优化分段[J].武汉交通科技大学学报,2000,24(3):291-293
    [71]黄平明,张征文,刘国林,等.内填式钢管混凝土构件受箍机理分析[J].西安公路交通大学报,2001,21(4):43-45
    [72]甘丛石,支喜华,唐丛一.钢管混凝土弹塑性本构方程及极限承载力[J].长沙交通学院报,1998,14(3):68-73
    [73]俞茂宏.双剪理论及其应用[M].北京:科学出版社,1998
    [74]Kenji Sakino, Hiroyuki Nakahara, Shosuke Morino, etal. Behavior of Centrally Loaded Concrete-Filled Steel-Tube Short Columns [J]. Journal of Structural Engineering, ASCE, 2004,(2):180-188
    [75]AS4100, Australia Standard-Steel Structure [S]. Sydney, Australia,1998
    [76]李帼昌,刘之洋,冯国会,等.自应力钢管轻骨料砼轴压短柱的承载力计算[J].东北大学学报(自然科学版),1997,18(6):636-639
    [77]GB50018-2002,冷弯薄壁型钢结构技术规范[S].北京:中国计划出版社,2002
    [78]王振宇,丁建彤,郭玉顺.结构轻骨料混凝土的应力-应变全曲线[J].混凝土,2005,3:39-42
    [79]JCJ01-89.钢管混凝土结构设计与施工规程[M].上海:同济大学出版社,1989
    [80]辛海亮.钢管混凝土粘结滑移本构关系试验研究[D].西安:西安建筑科技大学,2008
    [81]康希良,程耀芳,张丽,等.钢管混凝土粘结-滑移本构关系理论分析[J].工程力学,2009,26(10):74-78
    [82]刘永建,池建军.钢管混凝土界面抗剪粘结强度的推出试验[J].工业建筑,2006,36(4):78-80
    [83]康希良.钢管混凝土组合力学性能及粘结滑移性能研究[D].西安:西安建筑科技大学,2008
    [84]申鑫.方钢管混凝土粘结性能试验研究[D].天津:天津大学,2007
    [85]Virdi K S, Dowling P J. Bond strength in concrete filled circular steel tubes [R]. CESLIC Report CC11, Department of Civil Engineering, Imperial College, London,1975
    [86]Virdi K S, Dowling P J. Bond strength in concrete filled steel tubes [J]. IABSE Proceedings P-33/80,1980:125-139
    [87]Morishita Y, Tomii M. Experimental studies on bond strength in concrete filled circular steel tubular columns subjected to axial loads [J]. Transactions of Japan Concrete Institute,1979(1):351-358
    [88]Morishita Y, Tomii M. Experimental studies on bond strength between square steel tube and encased concrete core under cyclic shearing force and constant axial force [J]. Transactions of Japan Concrete Institute,1982(4):363-370
    [89]徐有邻.变形钢筋-混凝土粘结锚固性能的试验研究[D].北京:清华大学,1990
    [90]王铁成,郝贵强,申鑫,等.钢管与混凝土粘结性能的试验与理论分析[J].工业建筑,2008,38(5):96-99
    [91]傅永华.有限元分析基础[M].武汉:武汉大学出版社,2003
    [92]李围,叶裕明,刘春山,等.ANSYS土木工程应用实例(第二版)[M].北京:中国水利水电出版社,2007
    [93]葛继平,宗周红.轴压钢管混凝土柱非线性有限元分析[J].福建建筑,2005,93(3):24-26
    [94]汤文锋,王毅红,史耀华.新型钢管混凝土节点的非线性有限元分析[J].长安大学学报(自然科学版),2004,24(9):60-63

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700