基于随机过程的桥梁系统可靠性及其模糊综合评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桥梁健康监测系统可以分为在线测试、实时分析、损伤诊断、状态评估以及维修决策五个部分,桥梁系统的可靠性分析是状态评估中的关键部分。由于目前桥梁构件的可靠性研究比较成熟,相当一部分研究成果己经得到了应用。对于研究整个桥梁系统的可靠性,多是参照构件可靠性的研究方法,寻找桥梁系统的失效功能函数,由于桥梁系统是非常复杂的,失效功能函数的确定往往是相当困难的。基于目前的实际情况,本文欲在现有的比较成熟的构件可靠性研究的基础上,寻找评价桥梁结构系统可靠性的指标和方法,力求最大限度的利用构件可靠性分析的研究成果,使桥梁系统可靠性与构件的可靠性紧密的联系起来。
     本文在随机过程相关理论的基础上,提出了采用Markov过程稳态概率作为桥梁系统可靠性的评价指标;提出了桥梁系统可靠性关联矩阵R的确定方法,建立了构件的可靠性指标β和Markov过程稳态概率之间的关系;桥梁构件的可靠度降低,即发生损伤时,是否会得到及时有效的维修,对桥梁系统的可靠性有着较大的影响,通过对桥梁系统可靠性关联矩阵R的变换,建立了桥梁的维修频率与Markov过程稳态概率之间的关系;桥梁系统在工作过程中各个构件的失效往往不是同时发生的,即不易出现同时失效的现象,通常是某些构件首先失效,使得剩余构件继续承担所有的外部载荷,在桥梁系统中产生内部应力的重新分配,造成其他构件可靠度的变化,本文推导出桥梁系统首次失效平均时间(Bridge System Mean Time To Failure,简称BSMTTF)的计算方法;通过对桥梁结构状况的分析可以得到桥梁系统可靠性评估的指标,即Markov过程稳态概率,而Markov过程稳态概率的数值在何种区间范围可认为桥梁结构系统是可靠的,在何种区间范围可认为是不可靠的,可靠与不可靠间还必定存在着过渡区间,并且该过渡区间是存在着一定的模糊性的,故本文研究了桥梁系统工作状态的模糊综合评价方法,首次将Markov过程稳态概率应用到桥梁系统的模糊综合评价上,降低了模糊综合评价方法的主观性和经验性。
     本文各章的主要内容如下:
     第1章是对现有的可靠性分析方法的综述和总结。重点总结了系统可靠性的理论及其在桥梁工程中的应用,并对可靠度的分析方法和结构系统可靠性分析方法进行了论述。
     第2章研究了随机过程的相关理论,重点包括Markov过程及其特性,Markov过程状态方程及Markov过程稳态概率。在对桥梁系统进行工作状态划分的基础上,提出了采用Markov过程稳态概率作为桥梁系统可靠性的评价指标,并对Markov过程稳态概率计算方程中的Markov过程转换率矩阵进行了深入研究,提出了桥梁系统可靠性关联矩阵R的确定方法,建立了构件的可靠性指标β和Markov过程稳态概率之间的关系。借助算例分析了该方法的适用性和有效性,并通过系统可靠度的限界估计方法对该方法的正确性进行了验证。
     第3章考虑了维修频率对桥梁系统可靠性的影响。通过对桥梁系统可靠性关联矩阵R的变换,建立了桥梁的维修频率与Markov过程稳态概率之间的关系,即进行了桥梁系统可靠性与维修性的分析,通过算例求出不同维修频率条件下的桥梁系统可靠性指标,得出了典型桥梁结构中可靠性指标和Markov过程稳态概率之间的关系。
     第4章考虑桥梁结构系统中当出现首个失效构件后会发生荷载的转移,使应力重新分配,通过对Markov过程稳态概率计算方程及可靠度函数进行Laplace变换,求解变换后的系统状态方程,推导出桥梁系统首次失效平均时间(BSMTTF)的计算方法,并以此作为载荷共享条件下的桥梁系统可靠性评价指标。同时给出了采用桥梁系统首次失效平均时间(BSMTTF)进行桥梁系统时变可靠性分析的方法。
     第5章针对目前桥梁系统状态评价的具体情况,在采用Markov过程稳态概率作为评价桥梁系统可靠性指标的基础上,根据行业标准及工程实际对桥梁系统进行部件及构件组成划分,选取了桥梁结构的模糊评价集,给出了典型桥梁的工作状态空间,研究了桥梁系统工作状态的模糊综合评价方法,首次将Markov过程稳态概率应用到桥梁系统的模糊综合评价上,得出桥梁系统处于可靠状态、过渡状态及不可靠状态的模糊概率数值。该评价体系未采用桥梁技术状况评价过程中的人为打分方法,避免了打分过程中可能产生的不确定性和随机性。
     第6章通过全桥模型对顺次失效概率进行了模拟,计算了桥梁结构的Markov过程稳态概率、对桥梁系统首次失效平均时间(BSMTTF)进行了分析,并采用模糊综合评价的方法对桥梁部件及桥梁系统进行了模糊综合评价。结果表明,上述方法在全桥模型上的应用效果是可行并且有效的。
     第7章总结了本文的主要研究成果,主要创新点,得出了如下结论:
     1、提出了采用Markov过程稳态概率作为桥梁系统可靠性的评价指标。通过对Markov过程及其特性、Markov过程状态方程及Markov过程稳态概率的分析,结合桥梁可靠度的理论,提出了采用Markov过程稳态概率作为桥梁系统可靠性的评价指标,并通过界限估计法对该指标的正确性进行了验证。
     2、提出了桥梁系统可靠性关联矩阵R的确定方法,建立了构件的可靠性指标β和Markov过程稳态概率之间的关系。结合桥梁中构件的可靠性指标β,通过修改桥梁系统工作状态的Markov过程转换率矩阵,建立了构件的可靠性指标β和Markov过程稳态概率之间的关系。
     3、建立了桥梁的维修频率与Markov过程稳态概率之间的关系。通过对桥梁系统可靠性关联矩阵R的变换,考虑桥梁系统的维修频率对Markov过程稳态概率的影响,该方法可用来选定桥梁的检测维修频率。
     4、推导出桥梁系统首次失效平均时间(BSMTTF)的计算方法,给出了实现桥梁系统时变可靠性分析的指标和方法。桥梁结构中由于部分构件失效,会产生内部应力的重分布,通过对桥梁系统状态方程进行Laplace变换,推导出桥梁系统首次失效平均时间(BSMTTF)的计算方法,并在算例上进行了应用。
     5、首次将Markov过程稳态概率应用到桥梁系统的模糊综合评价上,降低了模糊综合评价方法的主观性和经验性。由于桥梁系统可靠性评估的结果是一个概率数值,而满足哪些概率数值时桥梁系统是可靠的,满足哪些概率数值时桥梁系统是不可靠的,可靠与不可靠间还必定存在着过渡区间。结合模糊综合评价的方法,将Markov过程稳态概率应用到了桥梁系统的模糊综合评价上
     本文采用随机过程的方法对桥梁系统可靠性进行了深入的分析研究,提出了桥梁系统可靠性分析的评价指标;提出了桥梁系统可靠性关联矩阵R的确定方法;建立了构件的可靠性指标β和Markov过程稳态概率之间的关系;推导出桥梁系统首次失效平均时间的计算方法;结合Markov过程稳态概率对桥梁部件及桥梁系统进行了模糊综合评价,首次将Markov过程稳态概率应用到桥梁系统的模糊综合评价上。上述理论和方法为桥梁系统的可靠性评估提供了理论依据和方法,具有重要的理论价值和工程应用价值。
     本文在研究和撰写过程中得到了教育部高等学校博士学科点专项科研基金项目(课题名称:多种失效模式下在役混凝土桥梁结构的时变可靠度分析;课题编号:20100061110051)的资助,在此表示感谢。
Bridge Health Monitoring System can be divided into five parts which contain onlinetesting, timely analysis, damage diagnosis, condition assessment and maintenance strategydecision. The bridge system reliability analysis is a key part in condition assessment.Because the bridge components reliability analysis is more mature now, even quite anumber of research results have been applied. The entire bridge system reliability mostlyrefer to component reliability research methods then look for the failure function of thebridge system. Since bridge system is very complex, the determination of the failurefunctions often is very difficult. Based on the above situation, this article will look forindexs and methods of bridge structural system reliability assesment on the basis of theexisting mature component reliability, study to make most use of the component reliabilityanalysis research, and to make the bridge system reliability closely linked with thecomponent reliability index, to find the relationship between them.
     Based on random process related theory this article proposed the Markov processsteady-state probability as assessment index of bridge structural system reliability at thesame time proposed the confirming method of bridge system reliability relational matrixR. Establish the relationship between Markov process steady-state probabilities and thebridge components reliability index. Bridge components reliability is reduced, the damageoccurs. Whether it will be timely and effectively maintained, has a larger impact on thebridge system reliability. Through the transformation of reliability relational matrix R ofthe bridge system established the relationship between the bridge maintenance frequencyand Markov process steady-state probabilities. The failure of the respective members ofthe bridge system in the work process is often not occur simultaneously namely cannotappear the phenomenon of simultaneous failure. Some components are often fail firstly, sothat the remaining members continue to bear all the external load, and generatingre-distribution of internal stress in the bridge system to cause the changes of the othercomponent reliability. In this paper, the assessment methods ofBridge System Mean Tim e T o Failure BSMTTF in the bridge system have beenstudied Bridge system reliability assessment indicators, namely the Markov processstationary probability can be obtained through the analysis of the structural condition of the bridge. However, the value of the Markov process stationary probability is in what intervalrange we can consider that it is reliable and in what interval range it is unreliable.Transition interval must exist also between reliable and unreliable, and the transitioninterval must be vague, so this paper studies a fuzzy comprehensive evaluation methodabout the working condition of the bridge system, and for the first time the steady-stateprobability process is applied to fuzzy comprehensive evaluation of bridge system reducedthe subjective and experiential of fuzzy comprehensive evaluation. In this paper, the maincontent of the chapters are as follows.
     Chapter1is a review and summary of existing reliability analysis methods. Focuson the summary of the system reliability theory and its application in bridge engineering,and the dissertation of reliability analysis method and structural system reliability analysis.
     Chapter2study the random process related theory, mainly including the Markovprocess and its characteristics, equation of state of the Markov process and the Markovprocess steady-state probabilities. On the basis of division of the working condition in thebridge system, it put forward a way which using the Markov process steady-state probabilityas a bridge system reliability evaluation indicators additionally study the state transitionmatrix of Markov process steady-state probability calculation equation put forward themethod of determining the bridge system reliability relational matrix and derive therelationship between the reliability index of the bridge components with thesteady-state probability of the bridge system. With the applicability and effectiveness of theexample and the estimation methods of the reliability, verifyed the validity of the method.
     Chapter3consider the effects on the bridge structure system reliability thatmaintenance rate generate. Through the transformation of the corresponding parameter inthe bridge system reliability relational matrix(R), establish the relationship betweenmaintenance rate and steady-state probability of the bridge system, namely analyze thebridge system reliability and maintainability, obtain the bridge system reliability indicesunder different maintenance rate conditions, draw the relationship between maintenancerate and matrix(R) steady-state probability of the bridge system in a typical bridgestructure.
     Chapter4consider the transfer of load and stress re-distribution after appearingfirst fail component in the bridge structure system. Through the Laplace transform aboutthe process of steady-state probability calculation equation and reliability function, solving the system state equation after conversion, Bridge System Mean Tim e T o Failure
     BSMTTF can be obtained then act it as the evaluation of bridge system reliabilityunder the condition of load sharing. At the same time, the method have been given thatusing the Bridge System Mean Tim e T o Failure BSMTTF to analyze the time-varyingreliability of bridge system.
     In Chapter5, for the specific circumstances of the current state of the bridge systemevaluation, on the basis of using Markov process of steady-state probability as theevaluation of bridge system reliability index, divide bridge system parts and componentsaccording to standards and engineering practice, then select the set of fuzzy evaluation ofthe bridge structure, show the working state space of typical bridges and research fuzzycomprehensive evaluation of the state of the bridge system, for the first time the processsteady-state probability is applied to fuzzy comprehensive evaluation of the bridge system.The evaluation system does not adopt the human scoring method during bridge technicalcondition evaluation process to avoid generating uncertainty and randomness during thescoring process.
     In Chapter6, sequential failure probability have been simulated through full-bridgemodel, the Markov process steady-state probability of bridge structure have beencalculated, Bridge System Mean Tim e T o Failure BSMTTF have been analyzed, andcarry on fuzzy comprehensive evaluation to the part of the bridge and bridge system byusing fuzzy comprehensive evaluation method. The results show that, the effect that theabove methods are applied in full-bridge model is feasible and effective.
     Chapter7summarizees the main findings, the main innovations of this paper andreach the following conclusions:
     1Propose a method of using steady-state probability as the evaluation index ofbridge system reliability. Through the analysis of the Markov process and itscharacteristics, the Markov process equation of state and the process of steady-stateprobability combining with the theory of bridge reliability analysis, put forward theevaluation of the bridge system reliability indicators by using the Markov process ofsteady-state probability and examine the correctness and validity of this evaluation throughboundary estimation method.
     2Put forward a method of determining bridge system reliability relational matrixand establish the relationship between the reliability indicators of bridge component and the Markov process of steady-state probability. Combining reliability index of the bridgemembers, modify the transfer matrix of the bridge system working state, establish therelationship between the reliability indicators of bridge component and the Markovprocess of steady-state probability.
     3Establish the relationship between maintenance rate and the Markov processsteady-state probability.Through the tranformation of the reliability relational matrix ofthe bridge system R, consider the effect to Markov process of steady-state probabilitywhich caused by the bridge system maintenance rate, this method can be used to select thefrequency of inspection and maintenance about a bridge.
     4Deduce the calculation method of Bridge System Mean Tim e T o Failure
     BSMTTF and put forward the indicators and methods of achieving reliability analysisof the bridge system.Because of the component failure in the bridge structure,there-distribution of the internal stress will occur, through the Laplace transform about thestate equation of the bridge system, deduce the calculation about calculatingBridge System Mean Tim e T o Failure BSMTTF and apply on the exmaples.
     5Firstly apply this index on fuzzy comprehensive evaluation of the bridge system,reduce the subjectivity and the experience of human scoring process in the fuzzycomprehensive evaluation method. Since the results of bridge system reliabilityassessmentis a probability value, what bridge probabilities are satisfied when the bridgesystem is reliable and what bridge probabilities are satisfied when the bridge system isunreliable, meet what the probability of the bridge system is difficult to judge. Accordingto this problem, combine the fuzzy comprehensive evaluation method, on the basis ofusing Markov process of steady-state probability as bridge system reliability evaluation.
     In this paper, the bridge system reliability has been analyzed deeply by using themethod of random process. Put forward the evaluation of bridge system reliabilityanalysis, Put forward a method of determining bridge system reliability relational matrixand establish the relationship between the reliability indicators of bridge component andthe Markov process of steady-state probability, derive the calculation method of theBridge System Mean Tim e T o Failure BSMTTF. Combining with Markov process ofsteady-state probability, the fuzzy comprehensive evaluation of bridge components andbridge system have been conducted, Markov process steady-state probability is firstlyused on fuzzy comprehensive evaluation of bridge system. The theory and methods that have been mentioned provide theoretical basis and method for the evaluation of bridgesystem reliability and have important theoretical value in the engineering applications.
     This research has been supported by grants from Specialized Research Fund for theDoctoral Program of Higher Education (project name: Time-varying reliability analysis ofexisting concrete bridge structures under a variety of failure modes project number:20100061110051) during the process of research and writing, thanks very much.
引文
[1]中华人民共和国交通运输部.JTG H510--2009公路养护技术规范[S].北京:人民交通出版社,2009.
    [2]AASHTO. LRFD bridge design specification.Washington,D.C.:American Association of State Highway and Transportation Officials[S].2004.
    [3]李宏男,高东伟,伊廷华.土木工程结构健康监测系统的研究状况与进展[J].力学进展.2008,38(2):151-166.
    [4]Robelin, Charles-Antoine, Madanat, Samer M. Reliability-Based System-Level Optimization of Bridge Maintenance and Replacement Decisions.[J]. TRANSPORTATION SCIENCE.2008,42:508-513.
    [5]Wang, Naiyu,0' Malley, Curtis, Ellingwood, Bruce R., Zureick, Abdul-Hamid. Bridge Rating Using System Reliability Assessment. Ⅰ:Assessment and Verification by Load Testing.[J]. JOURNAL OF BRIDGE ENGINEERING.2011,16:854-862.
    [6]中华人民共和国交通运输部.JTG/T H21-2011公路桥梁技术状况评定标准[S].北京:人民交通出版社,2011.09.01.
    [7]Wang, Naiyu, Ellingwood, Bruce R., Zureick, Abdul-Hamid. Bridge Rating Using System Reliability Assessment. Ⅱ:Improvements to Bridge Rating Practices.[J]. JOURNAL OF BRIDGE ENGINEERING.2011,16:863-871.
    [8]Moore, John C, Glenncross-Grant, Rex, Mahini, Seyed Saeed, Patterson, Robert. Regional Timber Bridge Girder Reliability:Structural Health Monitoring and Reliability Strategies.[J]. ADVANCES IN STRUCTURAL ENGINEERING.2012,15:793-806.
    [9]Farrar CR, Jauregui DA. Comparative study of damage identification algorithms applied to a Bridge. Ⅱ:numerical study [J]. Smart Materials and Structures,1998:7(5):720-731.
    [10]张连振,黄侨,郑一峰,王宗林.桥梁结构损伤识别理论的研究进展[J].哈尔滨工业大学学报.2005,37(10):1415-1418.
    [11]Guo Xue-dong, Zhang Li-ye, Jiang Hao, Dong Li-juan, Study of cable stayed bridge damage diagnosis based on Modal Strain Energy[J].2012World Automation Congress.2012:01-04.
    [12]姜浩,郭学东,张立业.基于模态应变能理论的混凝土结构损伤诊断[J].吉林大学学报:工学版,2010,40(增刊):209-213.
    [13]Jong Jae Lee, Chung Bang Yun. Damage diagnosis of steel girder bridges using ambient vibration data.[J]. Engineering Structures,2006,(28):912-925.
    [14]Van-Son Nguyen, Jeong, Min Chul, Han, Tong Seok, Kong, Jung Sik. Reliability-based optimisation design of post-tensioned concrete box girder bridges considering pitting corrosion attack.[J]. STRUCTURE AND INFRASTRUCTURE ENGINEERING.2013,9:78-96.
    [15]Firouzi, A, Rahai, A. An integrated ANN-GA for reliability based inspection of concrete bridge decks considering extent of corrosion-induced cracks and life cycle costs.[J]. SCIENTIA IRANICA.2012,19:974-981.
    [16]李健.桥梁退化预测模型与最优维护管理决策研究[D].湖南大学,2009.
    [17]邵旭东,彭建新,晏班夫.基于结构可靠度的劣化桥梁维护方案成本优化研究[J].工程力学.2008(09).
    [18]李爱群,缪长青.桥梁结构健康检测(M).人民交通出版社.2009.
    [19]李万恒.桥梁养护的形式与任务[J].中国公路,2011,23.
    [20]刘泽欣.基于系统可靠度理论的梁式桥结构承载力评估研究[D].长安大学,2005.
    [21]李海涛.桥梁结构可靠性研究内容及分析方法[J].山西建筑,2011,3725:178-179.
    [22]佘玮杰.桥梁结构可靠性研究综述[J].交通世界(建养.机械),2008,12:168-169.
    [23]刘屹,张亚南.桥梁结构可靠性研究综述[J].黑龙江科技信息,2009,03:92.
    [24]牛丽红.桥梁结构可靠性研究[J].交通世界(建养.机械),2010,06:163-164.
    [25]何康.基于可靠度理论的桥梁检测评估方法[D].大连海事大学,2012.
    [26]Hua, X. G, Ni, Y. Q, Chen, Z. Q, Ko, J. M. Structural reliability as a measure for assessing the quality of stochastically updated finite element model[J]. STRUCTURAL CONDITION ASSESSMENT, MONITORING AND IMPROVEMENT.2007,1-2:65-72.
    [27]耿波,王君杰,张谢东.桥梁技术状况预测的灰色马尔可夫链模型研究[J].武汉理工大学学报(交通科学与工程版).2007(02),31:107-110.
    [28]Fu, Gongkang, Devaraj, Dinesh. NONHOMOGENEOUS MARKOV CHAIN AND PONTIS BRIDGE MANAGEMENT SYSTEM [J]. PROCEEDINGS OF THE12TH INTERNATIONAL CONFERENCE ON INSPECTION APPRAISAL REPAIRS AND MAINTENANCE OF STRUCTURES.2010,01:21-36.
    [29]Robert, WE, Marshall, AR, Lin, SS, Shepard, RW, Aldayuz, J. Integration of agency rules with the preservation optimization model in the Pontis Bridge Management System [J]. MAINTENANCE OF PAVEMENTS AND STRUCTURES: MAINTENANCE.2002,01:74-81.
    [30]Bocchini, Paolo, Saydam, Duygu, Frangopol, Dan M. Efficient, accurate, and simple Markov chain model for the life-cycle analysis of bridge groups[J]. STRUCTURAL SAFETY.2013,40:51-64.
    [31]Morcous, G. Performance prediction of bridge deck systems using Markov chains [J]. JOURNAL OF PERFORMANCE OF CONSTRUCTED FACILITIES.2006,20:146-155.
    [32]Robelin, Charles-Antoine, Madanat, Samer M.. History-Dependent Bridge Deck Maintenance and Replacement Optimization with Markov Decision Processes [J]. JOURNAL OF INFRASTRUCTURE SYSTEMS.2007,13:195-201.
    [33]Corotis, Ross B, Ellis, J. Hugh, Jiang, Mingxiang. Modeling of risk-based inspection, maintenance and life-cycle cost with partially observable Markov decision processes [J]. STRUCTURE AND INFRASTRUCTURE ENGINEERING.2005,01:75-84.
    [34]吕颖钊,贺拴海.在役桥梁承载力模糊可靠性的马尔科夫预测[J].长安大学学 报(自然科学版).2005(04).
    [35]齐立群.桥梁结构健康监测的无线传感技术研究[D].哈尔滨工业大学,2007.
    [36]毕元波.桥梁结构健康监测无线传感器网络的设计与实验研究[D].哈尔滨工业大学,2008.
    [37]谭国金,刘寒冰,程永春,王龙林,刘斌.基于车-桥耦合振动的简支梁桥冲击效应[J].吉林大学学报(工学版),2011,01:62-67.
    [38]Liu, Han Bing, Nguyen, Huu Hung. Damage detection of simply supported beam under effect of moving load by Hilbert-Huang transform[J]Applied Mechanics and Materials.2012:984-993.
    [39]谭国金,宫亚峰,程永春,刘寒冰,王龙林.基于有载频率的简支梁桥自振频率计算方法[J].振动工程学报,2011,01:31-35.
    [40]程永春,谭国金,刘寒冰,等.车辆作用下的公路简支梁桥测试频率[J].吉林大学学报,工学版,2009,39(6):1492-1496.
    [41]胡顺仁,陈伟民,章鹏.桥梁结构状态健康监测系统差错控制研究[J].公路,2007,09:1-4.
    [42]刘寒冰,焦峪波,程永春,宫亚峰.基于模态曲率理论及神经网络的简支梁桥损伤识别[J].吉林大学学报(工学版),2011,04:963-967.
    [43]程永春,谭国金,刘寒冰,付聪.基于特征解统计特性的桥梁损伤识别[J].吉林大学学报(工学版),2008,04:812-816.
    [44]常军.曲率模态识别桁架结构的损伤位置方法研究[J].昆明理工大学学报(理工版).2005,30(6):85-87.
    [45]Okasha, Nader M., Frangopol, Dan M, Orcesi, Andre D. Automated finite element updating using strain data for the lifetime reliability assessment of bridges.[J]. RELIABILITY ENGINEERING&SYSTEM SAFETY.2012,99:139-150.
    [46]Zong Z F, Wang T L, Huang D Z, Zheng Z F. State-of-the-art report of Bridge Health Monitoring[J]. Journal of Fuzhou University (Natural Science).2002,30(2):127—152.
    [47]Darryll Pines, A Emin Aktan. Status of structural health monitoring of long-span bridges in the United States [J]. Prog. Struct. Engng Mater.2002,4:372-380.
    [48]卢明银,徐人平.系统可靠性[M].北京:机械工业出版社,2008.1.
    [49]贡金鑫,魏巍巍.工程结构可靠性设计原理[M].北京:机械工业出版社,2007.
    [50]赵国藩.工程结构可靠性理论与应用[M].大连:大连理工大学出版社,1996.
    [51]赵国藩,金伟良,贡金鑫.结构可靠度理论[M].北京:中国建筑工业出版社,2000.
    [52]赵国藩,贡金鑫,赵尚传.工程结构生命全过程可靠度[M].北京:中国铁道出版社,2004.
    [53]贡金鑫.工程结构可靠度计算方法[M].北京:大连理工大学出版社,2003.
    [54]王振邦.复杂系统可靠度置信下限的统计模拟求解方法[J].质量与可靠性,1997,02:29-31.
    [55]李超,王金诺.复杂系统可靠度置信区间估计[J].机械设计与研究,2004,02:13-16+6.
    [56]冯元生,董聪.枚举结构主要失效模式的一种方法[J].航空学报,1991,09:537-541.
    [57]吴建辉.既有桥梁可靠度评估关键问题研究[D].天津大学,2012.
    [58]余晓燕.预应力混凝土梁桥失效树研究[D].武汉理工大学,2007.
    [59]何雄君,李季.预应力混凝土梁桥系统失效树分析[J].工程力学,2009,v.2601:74-78+91.
    [60]张艳,黄敏,赵宇,于丹.基于置信分布的系统可靠度评估蒙特卡罗方法[J].北京航空航天大学学报,2006,09:1023-1025+1082.
    [61]赵彦,张新锋,施浒立.模糊随机混合不确定性结构系统可靠度计算[J].机械强度,2008,No.13501:72-77.
    [62]贺勇军,谢红卫.复杂系统可靠度的CLTM建模与递归综合算法[J].国防科技大学学报,2003,04:102-106.
    [63]罗吉庭.评估系统可靠度置信下限的随机模拟方法[J].应用概率统计,1994,03:327-332.
    [64]冯健,蒋友宝,孟少平,许玮.小样本下结构系统可靠度分析方法的研究[J].工程力学,2007,09:37-42.
    [65]张道兵,杨小礼,朱川曲.多失效模式相关下的结构系统可靠度计算研究[J].采矿与安全工程学报,2013,v.30:No.10601:100-106.
    [66]沈其明,赵泽逵.公路桥梁结构系统的可靠度分析[J].重庆交通学院学报,1986,03:57-67.
    [67]刘晓銮.大跨度斜拉桥结构系统可靠度评估[J].江苏大学学报(自然科学版),2011,v.32:No.16106:732-735.
    [68]姜增国,邢尚青.连续梁桥的系统可靠度分析[J].交通科技,2004,02:1-3.
    [69]Song, Y, Feng, HL, Liu, SY. Reliability models of a bridge system structure under incomplete information.[J]. IEEE TRANSACTIONS ON RELIABILITY.2006,55:162-168.
    [70]Saydam, Duygu. Frangopol, Dan M. Applicability of simple expressions for bridge system reliability assessment.[J] COMPUTERS&STRUCTURES.2013,114:59-71.
    [71]张伟.复杂系统可靠度U统计量估计及性质[D].哈尔滨理工大学,2011.
    [72]Zhu, Jinsong, Wu, Jianhui. Study on System Reliability Updating through Inspection Information for Existing Cable-stayed Bridges.[J]. Advanced Materials Research.2011,250-253:2011-2015.
    [73]Cho, Taejun, Song, Myung-Kwan, Lee, Do Hyung. Reliability analysis for the uncertainties in vehicle and high-speed railway bridge system based on an improved response surface method for nonlinear limit states.[J]. NONLINEAR DYNAMICS.2010,59:1-17.
    [74]Xia, H. W, Ni, Y. Q, Wong, K. Y, Ko, J. M. Reliability-based condition assessment of in-service bridges using mixture distribution models [J]. COMPUTERS&STRUCTURES.2012,106:204-213.
    [75]Karunananda, P. A. K, Ohga, M, Dissanayake, P. B. R. Interval Reliability Based Condition Assessment of Bridges.[J]. ADVANCES IN STRUCTURAL ENGINEERING.2011,14:519-532.
    [76]蒲黔辉,何广汉,王小平.论连续梁桥系统可靠度计算方法[J].西南交通大学学报,1994,04:348-354.
    [77]李继祥,谢桂华,耿树勇,刘建军.计算结构可靠度的JC法改进方法[J].武汉工业学院学报,2004,01:48-50.
    [78]李典庆,张圣坤,周建方.计算结构可靠度改进的JC法[J].机械设计,2002,03:48-50.
    [79]Zhang Li-ye, Guo Xue-dong, Dong Li-juan. Bridge structure random reliability analysis[J]. Applied Mechanics and Materials.2012:1338-1341.
    [80]符蓉,叶昆,宗昕,张子翔,程志远.基于蒙特卡罗数值模拟的桥梁可靠度分析[J].土木工程与管理学报,2012,v.2904:75-78.
    [81]马静,张波,辛波.马尔可夫链在冗余系统可靠度求解中的应用[J].中国惯性技术学报,2007,No.7402:248-251.
    [82]中华人民共和国交通部.公路工程结构可靠度设计统一标准GB/T50283-1999[S].北京:中国计划出版社,1999.
    [83]秦权,林道锦,梅刚.结构可靠度随机有限元——理论及工程应用[M].北京:清华大学出版社,2006.
    [84]Helton, J. C, Johnson, J. D, Sallaberry, C. J, Storlie, C. B. Survey of sampling-based methods for uncertainty and sensitivity analysis.[J]. RELIABILITY ENGINEERING&SYSTEM SAFETY.2006,91(10-11):1175-1209.
    [85]吕震宙,宋述芳,李洪双,袁修开.结构机构可靠性及可靠性灵敏度分析[M].北京:科学出版社,2009.
    [86]张明.结构可靠度分析—方法与程序[M].北京:科学出版社,2009.
    [87]宋彦君,刘寒冰,谭国金,王龙林.基于应变计的梁式桥位移响应测试方法[J].吉林大学学报(工学版),2012,S1:198-201.
    [88]刘寒冰,王龙林,谭国金,程永春,吴昌霞.预应力对体外预应力简支钢梁自振频率的影响[J].吉林大学学报(工学版),2013,01:81-85.
    [89]曹慧.基于检算系数和裂缝指标的RC梁桥承载能力评定[D].长安大学,2011.
    [90]周正伐.可靠性工程基础[M].北京:中国宇航出版社,2009.
    [91]Imai, K, Frangopol, DM. System reliability of suspension bridges.[J]. STRUCTURAL SAFETY.2002,24:219-259.
    [92]Casas, Joan R. Reliability-based assessment of masonry arch bridges.[J]. CONSTRUCTION AND BUILDING MATERIALS.2011,25:1621-1631.
    [93]Turan, K. Hakan, Yanmaz, A. Melih. Reliability-based optimization of river bridges using artificial intelligence techniques.[J]. CANADIAN JOURNAL OF CIVIL ENGINEERING.2011,38:1103-1111.
    [94]Nguyen, Van Son, Park, Heung Min, Jeong, Min Chul, Kong, Jung Sik. Simple Approaches for Efficiently Reliability-based Design Optimization of Bridges.[J]. ADVANCES IN STRUCTURAL ENGINEERING.2011,14:857-870.
    [95]Akiyama, Mitsuyoshi, Matsuzaki, Hiroshi, Dang, Hai T, Suzuki, Motoyuki. Reliability-based capacity design for reinforced concrete bridge structures.[J]. STRUCTURE AND INFRASTRUCTURE ENGINEERING.2012,8:1096-1107.
    [96]Wu, Jun, Chen, Suren, van de Lindt, John W. Fatigue Assessment of Slender Long-Span Bridges:Reliability Approach.[J]. JOURNAL OF BRIDGE ENGINEERING.2012,17:47-57.
    [97]Chen, Z. W, Xu, Y. L., Wang, X. M. SHMS-Based Fatigue Reliability Analysis of Multiloading Suspension Bridges.[J]. JOURNAL OF STRUCTURAL ENGINEERING-ASCE.2012,138:299-307.
    [98]Duenas-Osorio, Leonardo, Padgett, Jamie E. Seismic Reliability Assessment of Bridges with User-Defined System Failure Events.[J]. JOURNAL OF ENGINEERING MECHANICS-ASCE.2011,137:680-690.
    [99]张银龙,王春明,从友良.用响应面法分析装配式公路钢桥的平面结构系统可靠度[J].公路交通科技,2005,01:85-88.
    [100]郭洋洋,宋月,李刚平.多状态不可修复如新的n-1/n(G)系统的可靠性分析[J].电子科技,2013,v.26:No.28001:131-134+137.
    [101]王钧利.在役桥梁检测、可靠性分析与寿命预测.[M]北京.中国水利水电出版社.
    [102]刘扬,张建仁.钢筋混凝土桥梁服役期间的可靠性评价[J].中国公路学报,2001,2(4):61-65.
    [103]孟广伟,蔡斌,李锋,等.曲线拟合与蒙特卡洛法结合的结构可靠度分析方法 [J].吉林大学学报:工学版,2010,40(增刊):293-296.
    [104]杜进生,秦权,刘西拉.系统可靠度及其在桥梁工程中的应用前景[J].公路交通科技,1999,16(4):21-24.
    [105]Czarnecki, Artur A, Nowak, Andrzej S. System reliability assessment of steel girder bridges [J]. Advances in Engineering Structures, Mechanics&Construction, Proceedings,2006,140:699-710.
    [106]Frangopol D M, Strauss A, Kim S Y. Bridge reliability assessment based on monitoring[J]. Journal of Bridge Engineering,2008,13(3):258-270.
    [107]Catbas F N, Susoy M, Frangopol D M. Structural health monitoring and reliability estimation:long span truss bridge application with environmental monitoring data[J]. Engineering Structures,2008,30(9):2348-2359.
    [108]Estes, AC, Frangopol, DM. Load rating versus reliability analysis [J]. JOURNAL OF STRUCTURAL ENGINEERING-ASCE,2005,131:843-847.
    [109]Moore, John C, Glenncross-Grant, Rex, Mahini, Seyed Saeed, Patterson, Robert. Regional Timber Bridge Girder Reliability:Structural Health Monitoring and Reliability Strategies [J]. ADVANCES IN STRUCTURAL ENGINEERING,2012,15:793-806.
    [110]Sobhani, Jafar, Ramezanianpour, Ali Akbar. Service life of the reinforced concrete bridge deck in corrosive environments:A soft computing system [J]. APPLIED SOFT COMPUTING.2011,11:3333-3346.
    [111]Catbas, F. Necati, Susoy, Melih, Frangopol, Dan M. Structural health monitoring and reliability estimation:Long span truss bridge application with environmental monitoring data[J]. ENGINEERING STRUCTURES.2008,30:2347-2359.
    [112]郭学东,张立业,董丽娟,等.桥梁系统可靠性评估方法[J].吉林大学学报:工学版,2012,42(3):634-637.
    [113]宋宝维.系统可靠性设计与分析.[M]西安.西北工业大学出版社.
    [114]曹晋华,程侃.可靠性数学引论.[M]北京.高等教育出版社.
    [115]Marvin Rausand. System Reliability Theory:Models, Statistical Methods, and Applications,2th Edition(Second Edition)[M]. San Francisco, CA: John Wiley&Sons,2004.
    [116]李扬海,鲍卫刚.公路桥梁结构可靠度与概率极限状态设计[M].北京:人民交通出版社,1997.
    [117]隋思莲,王岩.MATLAB语言与工程数据分析[M].北京:清华大学出版社,2009.
    [118]吕颖钊.在役混凝土桥梁可靠性评估与寿命预测研究[D].长安大学,2006.
    [119]朱建华.服役桥梁耐久性评估方法及维修加固方案决策研究[D].长沙理工大学,2005.
    [120]Neves, LC, Frangopol, DM, Hogg, V. Condition-reliability-cost interaction in bridge maintenance [J]. APPLICATIONS OF STATISTICS AND PROBABILITY IN CIVIL ENGINEERING.2003,(1-2):1117-1122.
    [121]李东方.混凝土桥梁构件的可靠性修正与检测维修决策[D].哈尔滨工业大学,2008.
    [122]Robelin, Charles-Antoine, Madanat, Samer M.. Reliability-Based System-Level Optimization of Bridge Maintenance and Replacement Decisions [J]. TRANSPORTATION SCIENCE.2008,(42):508-513.
    [123]Kong, JS, Frangopol, DM. Prediction of reliability and cost profiles of deteriorating bridges under time-and performance-controlled maintenance [J]. JOURNAL OF STRUCTURAL ENGINEERING-ASCE,2004,(130):1865-1874.
    [124]Kong, JS, Frangopol, DM. Life-cycle reliability-based maintenance cost optimization of deteriorating structures with emphasis on bridges [J]. JOURNAL OF STRUCTURAL ENGINEERING-ASCE,2003,(129):818-828.
    [125]Imai, K, Frangopol, DM. System reliability of suspension bridges[J]STRUCTURAL SAFETY.2002:219-259.
    [126]Zhang Li-ye, Guo Xue-dong, Dong Li-juan. Bridge structure random reliability analysis[J]. Applied Mechanics and Materials.2012:1338-1341.
    [127]周奎,王琦,刘卫东,张简.土木工程结构健康检测的研究进展综述[J].工业建筑,2009,39(3):96-102.
    [128]李伟,颜全胜,王颁.斜拉桥体系可靠度分析[J].沈阳工业大学学报,2010,32(2)235-240.
    [129]姚继涛,解耀魁.既有结构可靠性评定中变异系数统计推断[J].建筑结构学报,2010,31(8):101-105.
    [130]Necati Catbas, Melih Susoy, Dan M Frangopol. Structural Health Monitoring and Reliability Estimation:long span truss bridge application with environmental monitoring data[J]. Engineering Structures,2008,1(13):2348-2359.
    [131]帅长斌,张银龙,常大民,俞文生.基于响应面法的桥面结构可靠度近似计算[J].中国公路学报,2003,16(3):52-57.
    [132]潘洪科,边亚东,杨林德.钢筋混凝土结构基于耐久性劣化度的可靠性分析[J].建筑结构学报,2011,32(1):105-109.
    [133]Won-Hee Kang, Junho Song, Paolo Gardoni. Matrix-based system reliability method and applications to bridge networks[J]. Reliability Engineering and System Safety,2008,3:1584-1593.
    [134]魏嬿.基于可靠度理论的既有桥梁承载力评估[D].西南交通大学,2012.
    [135]Frangopol DM, Imai K. Reliability of long span bridges based on design experience with the Honshu-Shikoku bridges.[J]. Journal of Constructional Steel Research2004;60(3-5):373-92.
    [136]Sasmal, Saptarshi, Ramanjaneyulu, K. Condition evaluation of existing reinforced concrete bridges using fuzzy based analytic hierarchy approach.[J]. EXPERT SYSTEMS WITH APPLICATIONS.2008,35:1430-1443.
    [137]Kawamura, K, Miyamoto, A. Condition state evaluation of existing reinforced concrete bridges using neuro-fuzzy hybrid system.[J]. COMPUTERS&STRUCTURES.2003,81:1931-1940.
    [138]元成方,牛荻涛.基于AHP法和模糊综合评价的钢筋混凝土桥梁耐久性评估[J].西安建筑科技大学学报(自然科学版),2010,06:829-834.
    [139]高宏伟.桥梁生命周期环境影响模糊综合评价研究[D].武汉理工大学,2008.
    [140]谭健.桥梁建筑美观方案优选及模糊综合评价体系的研究与应用[D].吉林大学,2012.
    [141]陈雅琴,曾彩勤.桥梁结构耐久性多级模糊综合评价[J].公路交通科技,2006,12:97-101.
    [142]李华.混凝土桥梁工作状态模糊综合评估研究[D].长安大学,2009.
    [143]范剑锋,袁海庆,刘文龙,曾东山.基于不确定型层次分析法的桥梁模糊综合评估[J].武汉理工大学学报,2005,04:54-57.
    [144]徐家云,刘敦朝,张俊,鲍政慧.桥梁模糊评估与超安全度综合评估方法[J].武汉理工大学学报,2004,08:62-64.
    [145]张旭.模糊综合评价法在桥梁工程评判中的应用[J].重庆建筑,2011,v.10;No.9610:12-15.
    [146]刘洪瑞,查品才.桥梁结构现有技术状况的模糊综合评判[J].城市道桥与防洪,2009,No.11603:65-68+131-132.
    [147]刘沐宇,林驰,高宏伟.桥梁生命周期环境影响的多级模糊综合评价[J].土木工程学报,2009,v.4201:55-59.
    [148]苟建军,谢兆行,张斌.多级模糊综合评判在桥梁安全性评价中的应用[J].公路交通科技(应用技术版),2012,v.8:No.9410:1-3+11.
    [149]禹智涛.既有钢筋混凝土桥梁可靠性评估的若干问题研究[D].华南理工大学,2003.
    [150]禹智涛,韩大建.既有桥梁可靠性的综合评估方法[J].中南公路工程,2003,03:8-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700