云模型支持下的遥感图像分类粒计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
遥感图像分类就是依据遥感图像的光谱、纹理、形状等特征将图像划分为互不相交的地物类型区域的过程,是遥感图像地物提取的前提和基础,分类结果的好坏直接影响到后续处理的精度。遥感图像分类是遥感信息提取技术中的一个经典难题,也是公认的一个具有挑战性的研究领域。分析和总结遥感图像的特点及近年来遥感图像分类方法的发展趋势,可以发现,粒度问题和不确定性问题是影响遥感图像分类结果的两个关键问题。
     粒度原本是一个物理学概念,用来度量微粒的平均大小,粒计算理论借用了这一概念,用来实现对认知过程中的概念或知识在不同层次或不同角度上的度量。粒计算理论模拟人类从不同层次,不同角度观察和处理问题的策略,根据需要在不同的粒度空间内求解问题,并且对计算中数据的不确定性具有很强的适应能力。粗糙集、商空间、模糊信息粒等理论和方法都相继在粒计算理论下进行了自身的延拓和扩展。目前,粒计算发展成为信息处理的一种新概念、新方法,覆盖了所有和粒度相关的理论、方法和技术,主要用于描述和处理模糊的、随机的、不完整的和海量的信息及提供一种基于粒和粒间关系的问题求解方法。
     本文通过对粒计算的基本原理、方法和常用粒计算模型的研究和分析,将云模型纳入到粒计算的理论体系中;从粒化、粒层次构建、粒的计算三个方面构建基于云模型的粒计算方法的体系和框架,针对其中的关键问题和技术进行了研究。将其应用于遥感图像分类中,提出了基于云模型的遥感图像粒计算分类方法,分别针对中低分辨率遥感图像和高分辨率遥感图像进行分类实验,与传统的最大似然、最小距离、马式距离和支持向量机等遥感图像分类算法进行对比实验,实验结果表明该方法具有较高的分类精度,验证了方法的有效性。
     本文的主要工作和创新点如下:
     (1)将云模型纳入到粒计算的理论体系中,提出了基于云模型的粒计算方法。分别从粒化、粒层次构建和粒计算三个方面阐述了基于云模型的粒计算的体系结构和框架,并将其应用于遥感图像分类中,提出了基于云模型的遥感图像分类的粒计算方法。
     (2)提出了三种粒化方法:基于直方图分析的云变换粒化方法、基于高斯混合模型的云变换粒化方法、基于云模型的区域粒化方法。
     针对启发式云变换不能计算超熵和使用隶属曲线拟合频率分布曲线的缺陷,提出了一种基于直方图分析的云变换粒化方法;针对遥感图像的多波段特点和启发式云变换不能处理高维数据的缺陷,提出了一种基于高斯混合模型的云变换粒化方法;针对高分辨遥感图像空间信息和结构信息丰富的特点,提出了一种基于云模型的遥感图像区域粒化方法。
     (3)改进了粒层次构建的三个关键技术:云距离计算、云综合和粒层次构建的终止条件。借鉴模糊集合的距离计算方法提出了一种云距离计算方法,通过云质心距离和云贴近度实现云距离的计算,基于云模型的期望曲线提出了一种简化计算方法,实现了云距离的快速计算。针对传统积分云综合只能实现抽象概念间综合的缺陷,提出了一种幅度云综合算法应用于像素集合间的合并。使用传统积分云综合算法构建粒层次结构不会出现雾化现象,粒层次结构构建的终止条件是顶层云模型的个数为1,使用幅度云综合算法构建粒层次结构会出现雾化现象,提出了一种基于云贴近度的粒层次构建的终止条件,避免粒层次构建过程中出现雾化现象。
     (4)提出了两种基于云模型的遥感图像分类方法:基于云模型和模糊模式识别的中低分辨率遥感图像分类方法、基于云模型和模糊规则推理的高分辨率遥感图像分类方法。针对中低分辨率遥感图像,利用基于个体识别的最大隶属度判定方法实现遥感图像的非监督分类;将粒层次结构中的云模型作为激发云模型,通过训练样本生成判别云模型,利用模糊综合评判实现遥感图像的监督分类。针对高分辨率遥感图像,对图像进行区域粒化,然后提取区域特征,构建区域的特征空间,然后在特征空间内,分别针对满足正态分布的特征和不满足正态分布的特征使用模糊综合评判和基于AdaBoost算法的模糊规则推理,从而实现高分辨率遥感图像图像的分类。
Remote sensing image classification is the image classification processing based on the spectral, texture, shape and other characteristics of the remote sensing image. It is the premise and basis of remote sensing image information extraction. Classification results have a direct impact on the accuracy of subsequent processing. Remote sensing image classification is a classic problem of remote sensing information extraction, and it is recognized as a challenging area of research. It can be found that granularity and uncertainty are the two key issues which affect the remote sensing image classification results by summary of the characteristics of remote sensing and improvements of the classification method in recent years.
     Granularity used to be a physics concept which is used to measure the average size of particle. Granular computing theory borrows the concept which is used to measure the concept or knowledge at different levels and different perspectives. Theory of granular computing simulates problem solving strategies of human which deal with problems in different granularity space. It has a strong ability to quickly deal with the uncertainty of data. Rough sets, quotient space and fuzzy information granularity theory have been improved and developed under the granularity theory. At present, granular computing is a new concept and method of information processing including all relevant theories, methods and techniques of granularity theory. It is mainly used to describe and deal with fuzzy, random, incomplete, and large amounts of information. It provides a kind of problem-solving methods based on granular computing and researchs of relationship between granularities.
     Based on the research and analysis of basic principles, methods and commonly used model of granular computing, the paper introduces cloud model into the theory systems of granular computing. The framework is built from granulating, granular layer construction and granular computing. The key issues and techniques are discussed and improved. For remote sensing image classification, the method of classification based cloud model is proposed. The low resolution remote sensing images and high resolution remote sensing image classification experiments verify the effectiveness of the method.
     The main work and innovation are as follows:
     (1) The paper introduces cloud model into the theory systems of granular computing. The framework is built from granulating, granular layer construction and granular computing, and the application to remote sensing image classification is proposed.
     (2) Cloud transform algorithm is improved. Heuristic cloud transform algorithm can not calculate He and it uses the membership curve to fit the frequency distribution curve. In order to overcome drawbacks, a cloud transform algorithm based on histogram analysis is proposed. A cloud transform algorithm based on Gaussian mixture model is presented to realize granulating of the multi-dimension data. For dealing with the spatial and structure information of the high resolution remote sensing image, the region segmentation method based on cloud model is proposed to realize region granulating of the high resolution remote sensing image.
     (3) Three key technologies of granular layer construction cloud model distance calculation, cloud synthesis and termination condition of granular layer construction are improved. A new cloud model distance calculation method is proposed based on fuzzy degree of nearness, and the amplitude cloud synthesis is introduced, termination condition of granular layer construction is used to avoid cloud model atomizing utilizing cloud model distance calculation and amplitude cloud synthesis algorithm.
     (4) Classification method based on cloud model and fuzzy pattern recognition is proposed for the low resolution remote sensing images classification, and classification method based on cloud model and fuzzy rule reasoning is presented for the high resolution remote sensing images classification.
引文
[1]eCognition:http://www.definiens.com/[OL].
    [2]Atkinson P M, Tatnall A R. Introduction Neural networks in remote sensing[J]. International Journal of Remote Sensing.1997,18(4):699-709.
    [3]Baatz M, Schape A. Multiresolution Segmentation:An Optimization Approach for High Quality Multi-Scale Image Segmentation[J]. Journal of Photogrammetry and Remote Sensing, 2000,58(3-4):12-23
    [4]Benediktsson J A, Swain P H, Ersoy O K. Neural Network Approaches Versus Statistical Methods In Classification Of Multisource Remote Sensing Data[J]. IEEE Transactions on Geoscience and Remote Sensing.1990,28(4):540-552.
    [5]Bilmes J A. A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models[J]. Technical report, ICSI Technical Report TR-97-021.UC Berkeley.1998.
    [6]Blekas K, Likas A, Galatsanos N P, et al. A spatially constrained mixture model for image segmentation[J]. IEEE transactions on Neural Networks.2005,16:494-498.
    [7]Carvalhoa E A, Ushizimab D M, Medeirosa F N S, et al. SAR imagery segmentation by statistical region growing and hierarchical merging[J].Digital Signal Processing.2010,20(5): 1365-1378.
    [8]Chang Y, Li X. Fast image region growing[J]. Image and Vision Computing.1995,13(7): 559-571.
    [9]Cui W H, Guan Z Q, Qin K. A Multi-Scale Image Segmentation Algorithm Based on the Cloud Model[C]. the 8th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Shanghai:2009.
    [10]Cui Y, Zeng Z, Liu L. An Object Detection Algorithm Based on the Cloud Model [C]. Computational Sciences and Optimization 2009, Sanya, Hainan:2009.
    [11]Dempster A P, Laird N M, Rubin D B. Maximum Likelihood from Incomplete Data via the EM Algorithm[J]. Journal of the Royal Statistical Society.1977,39(1):1-38.
    [12]Dou W, Ren Y, Chen Y, et al. Histogram-based generation method of membership function for extracting features of brain tissues on MRI images[C]. FSKD 2005,2005.
    [13]Dubois D, Prade H. Unfair coins and necessity measures:towards a possibilistic interpretation of histograms[J]. Fuzzy Sets and Systems.1983,10(1-3):15-20.
    [14]Ediriwickrema J, Khorram S. Hierarchical maximum-likelihood classification for improved accuracies[J]. IEEE transactions on Geoscience and remote sensing.1997,35(4).
    [15]Freund Y, Schapire R E. A desicion-theoretic generalization of on-line learning and an application to boosting [C]. the Second European Conference on Computational Learning Theory, Barcelona,Spain:1995.
    [16]Gupta L, Sortrakul T. A gaussian-mixture-based image segmentation algorithm[J]. Pattern Recognition.1998,31(3):315-325.
    [17]Huang C, Davis L S, Townshend J R G. An assessment of support vector machines for land cover classification[J]. International Journal of Remote Sensing.2002,23(4):725-749.
    [18]Jantzen J, Ring P, Christiansen P. Image Segmentation Based on Scaled Fuzzy Membership Functions[C]. Second IEEE Internet. Conf. on Fuzzy Systems, San Francisco, California (USA): 1993.
    [19]Xu, K, Wu F F, Qin K. An image segmentation method based on Type-2 fuzzy Gaussian Mixture Models[C]. IASP2010, Xiamen,2010.
    [20]Karnik N N, Mendel J M. Introduction to type-2 fuzzy logic systems[C]. The 1998 IEEE International conference on Fuzzy Systems, Anchorage, AK:1998.
    [21]Karnik N N, Mendel J M. Operation on type-2 fuzzy sets[J]. Fuzzy Sets and Systems.2001, 122(2):327-348.
    [22]Karnik N N, Mendel J M, Liang Q L. Type-2 fuzzy logic systems [J]. IEEE Transactions on Fuzzy Systems,1999,7(6):643-658
    [23]Kobashi S, Kamiura N, Hata Y, et al. Automatic Robust Threshold Finding Aided by Fuzzy Information Granulation[C]. Proceedings of the 1997 International Conference on Image Processing, Santa Barbara, CA, USA:1997.
    [24]Li D Y, Du Y. Artificial intelligent with uncertainty[M]. Chapman & Hall/CRC,2007.
    [25]Li D Y, Liu C Y, Gan W Y. A new cognitive model:Cloud model[J]. International Journal of Intelligent Systems.2009,24(3):357-375.
    [26]Li D, Cheung D, Shi X M, et al. Uncertainty reasoning based on cloud models in controllers[J]. Computers & Mathematics with Applications.1998,35(3):99-123.
    [27]Liang Q, Mendel J M. Interval type-2 fuzzy logic systems:theory and design[J]. IEEE Transactions on Fuzzy Systems.2000,8(5):535-550.
    [28]Lin T Y. Granular computing on binary relations I:data mining and neighborhood systems, Ⅱ:rough set representations and belief functions,rough sets in knowledge discovery[M]. Rough Sets In Knowledge Discovery, PhysicaVerlag,1998,121-140.
    [29]Lin T Y. Granular Computing[M]. Announcement of the BISC Special Interest Group on Granular Computing,1997.
    [30]Martin A, laanaya H, Arnold A. Evaluation for uncertain image classification and segmentation[J]. Pattern recognition.2006,39(11):1987-1995.
    [31]Medasani S, Kim J, Krishnapuram R. An overview of membership function generation techniques for pattern recognition[J]. International Journal of Approximate Reasoning.1998, 19(391-417).
    [32]Mencar C. Theory of Fuzzy Information Granulation:Contributions to Interpretability lssues[D]. Italy:University of Bari,2005.
    [33]Mendel J M. Type-2 Fuzzy Sets and Systems:An Overview[J]. IEEE Computational Intelligence Magazine.2007,2(1):20-29.
    [34]Mendel J M. Advances in type-2 fuzzy sets and system[J]. Information Sciences.2007,177: 84-110.
    [35]Mendel J M, John R I. Type-2 fuzzy sets made simple[J]. IEEE Transaction on Fuzzy Systems.2002,10(2):117-127.
    [36]Pal S K, Shankar B U, Mitra P. Granular computing, rough entropy and object extraction[J]. Pattern Recognition Letters.2006,26(16):2509-2517.
    [37]Pawlak Z. Rough Sets[J]. International Journal of Computer and information sciences.1982, 11(5):341-356.
    [38]Pawlak Z. Granularity, multi-valued logic, Bayes'theorem and rough sets[M]. PhysicaVerlag GmbH Heidelberg, Germany,2002,487-498.
    [39]Pedrycza W, Vukovichc G. Feature analysis through information granulation and fuzzy sets[J]. Pattern Recognition.2002,35:825-834.
    [40]Permuter H, Francos J, Jermyn I. A study of Gaussian mixture models of color and texture features for image classification and segmentation[J]. Pattern Recognition.2006,39(4):695-706.
    [41]Qin K, Li D Y, Xu K, et al. On the methods of image segmentation with uncertainty[C]. Geoinformatics 2006, Wuhan,2006.
    [42]Qin K, Xu K, Du Y, et al. An Image Segmentation Approach Based on Histogram Analysis Utilizing Cloud Model[C]. FSKD2010, Yantai,2010.
    [43]Redner R A, Walker H F. Mixture Densities, Maximum Likelihood and the Em Algorithm[J]. SIAM Review.1984,26(2):195-239.
    [44]Richards J A, Jia X. Remote Sensing Digital Image Analysis:An Introduction[M]. Berlin: Springer,1999.
    [45]Saeed M, Karl W C, Nguyen T Q, et al. A new multiresolution algorithm for image segmentation[C]. the 1998 IEEE International Conference on Acoustics, Speech and Signal, Seattle, WA, USA:1998.
    [46]Shih F Y, Cheng S. Automatic seeded region growing for color image segmentation[J]. Image and Vision Computing.2005,23(10):877-886.
    [47]Sonka Milan, Hlavac Vaclav, Boyle Roger.图像处理、分析与机器视觉(第二版)[M].北京:人民邮电出版社,2003.
    [48]Stathakis D, Vasilakos A. Satellite image classification using granular neural networks[J]. International Journal of Remote Sensing.2006,27(18):3991-4003.
    [49]Tizhoosh H R. Image thresholding using type II fuzzy sets[J]. Pattern Recognition.2005,38: 2363-2372.
    [50]Tremeau A, Borel N. A region growing and merging algorithm to color segmentation[J]. Pattern Recognition.1997,30(7):1191-1203.
    [51]Vapnik V N. An Overview of Statistical Learning Theory[J]. IEEE Transactions on Neural Networks.1999,10(5):988-999.
    [52]Xiu B, Zhang W, Liu Z, et al. Complementary image compression based on the theory of fuzzy information granulation[C]. Systems, Man and Cybernetics 2005, Waikoloa, Hawaii,2005.
    [53]Xu K, Qin K, Li D. New Method of Cloud Synthesis and Application in Image Segmentation[C]. MIPPR2007, Wuhan,2007.
    [54]Yang X, Krishnan S. Image segmentation using finite mixtures and spatial information[J]. Image and Vision Computing.2004,22(9):735-745.
    [55]Yao Y Y. Granular Computing:basic issues and possible solutions[C]. Proceedings of the 5th Joint Conference on Information Sciences, USA:2000.
    [56]Yao Y Y. Perspectives of granular computing[C]. The 2005 IEEE Internation conference on Granular Computing, Beijing,2005
    [57]Zadeh L A. Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic[J]. Fuzzy Sets and Systems.1997,90(2):111-127.
    [58]Zadeh L A. Fuzzy sets and information granularity[M]. Advances in Fuzzy Systems-Applications and Theory, Gupta M M, Ragade R K, Yager R R, New York:1979:6, 3-18.
    [59]Zadeh L A. From computing with numbers to computing with words-From manipulation of measurements to manipulation of perceptions[J]. IEEE Transactions on Automatic Control.1999, 46(1):105-119.
    [60]Zadeh L A. Fuzzy Sets[J]. Information and Control.1965(8):338-353.
    [61]Zadeh L A. The concept of a linguistic variable and its application to approximate reasoning-1[J]. Information Science.,8(3):199-249.
    [62]Zadeh L A. Fuzzy logic=computing with words[J]. IEEE Transactions on Fuzzy Systems. 1996,4(2):103-111.
    [63]Zeng J, Xie L, Liu Z. Type-2 Fuzzy Gaussian Mixture[J]. Pattern Recognition.2008, 41(12):3636-3643.
    [64]柏延臣,王劲峰.遥感信息的不确定性研究[M].北京:地址出版社,2003.
    [65]陈水利,李敬功,王向公.模糊集理论及其应用[M].北京:科学出版社,2005.
    [66]陈万里.基于商空间理论和粗糙集理论的粒计算模型研究[D].安徽:安徽大学,2005.
    [67]邓蔚,王国胤,吴渝.粒计算综述[J].计算机科学.2004,31(10):178-181.
    [68]邸凯昌.空间数据发掘和知识发现的理论与方法[D].武汉:武汉大学,1999.
    [69]邸凯昌.武汉:武汉大学出版社,2000.
    [70]邸凯昌,李德毅,李德仁.云理论及其在空间数据发掘和知识发现中的应用[J].中国图象图形学报.1999,4(11):930-935.
    [71]冈萨雷斯.数字图像处理[M].北京:电子工业出版社,2007.
    [72]高惠璇.应用多元统计分析[M].北京:北京大学出版社,2005.
    [73]宫鹏.遥感科学与技术中的一些前沿问题[J].遥感学报.2009,13(1):13-22.
    [74]宫鹏,黎夏,徐冰.高分辨率图像解译理论与应用方法中的一些研究问题[J].遥感学报.2006,10(1):1-5.
    [75]关元秀,程晓阳.高分辨率卫星图像处理指南[M].北京:科学出版社,2008.
    [76]关泽群.商空间下的遥感图像分析理论和探讨[D].武汉:武汉大学,1996.
    [77]何英华.模式分类与视觉导航中的分层数据处理研究[D].北京:清华大学,2005.
    [78]纪滨.粗糙集理论及进展的研究[J].计算机技术与发展.2007,17(3):69-76.
    [79]蒋嵘,李德毅,范建华.数值型数据的泛概念树的自动生成方法[J].计算机学报.2000,23(5):470-476.
    [80]李道国,苗夺谦,杜伟林.粒度计算在人工神经网络中的应用[J].同济大学学报(自然科学版).2006,34(7):960-964.
    [81]李道国,苗夺谦,张东星等.粒度计算研究综述[J].计算机科学.2005,32(9):1-12.
    [82]李道国,苗夺谦,张红云.粒度计算的理论、模型与方法[J].复旦学报(自然科学版).2004,43(5):837-841.
    [83]李德仁.论21世纪遥感与GIS的发展[J].武汉大学学报:信息科学版.2003,28(2):127-131.
    [84]李德毅.知识表示中的不确定性[J].中国工程科学.2000,2(10):73-79.
    [85]李德毅,杜鹢著.不确定性人工智能[M].北京:国防工业出版社,2005.
    [86]李德毅,刘常昱.论正态云模型的普适性[J].中国工程科学.2004,6(8):28-34.
    [87]李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究与发展.1995,32(6):15-20.
    [88]李洪兴,汪培庄.模糊数学[M].北京:国防工业出版社,1994.
    [89]刘常昱,范春晖,冯芒等.基于逆向云模型的粒度计算[J].计算机科学.2006,33(11):116-117.
    [90]刘常昱,冯芒,戴晓军等.基于云X信息的逆向云新算法[J].系统仿真学报.2004,16(11):2417-2420.
    [91]刘常昱,李德毅,杜鹢等.正态云模型的统计分析[J].信息与控制.2005,34(2):236-239.
    [92]刘常昱,李德毅,潘莉莉.基于云模型的不确定性知识表示[J].计算机工程与引用.2004,40(2):32-35.
    [93]刘萍.粒计算及其应用研究[D].厦门:厦门大学,2006.
    [94]刘普寅,吴孟达.模糊理论及其应用[M].长沙:国防科技大学出版社,1998.
    [95]刘仁金,黄贤武.图像分割的商空间粒度原理[J].计算机学报.2005,28(10):1680-1685.
    [96]刘禹,李德毅,张光卫等.云模型雾化特性及在进化算法中的应用[J].电子学报.2009,37(8):1651-1658.
    [97]龙炜哲,秦亮曦,朱杰等.基于分解云的分类器设计[J].计算机工程与应用.2008,44(36):153-155.
    [98]吕辉军,王晔,李德毅等.逆向云在定性评价中的应用[J].计算机学报.2003,26(8):1009-1014.
    [99]骆剑承,王钦敏,马江洪等.遥感图像最大似然分类方法的EM改进算法[J].测绘学报.2002,31(3):234-239.
    [100]马媛媛.基于粒计算的贴近度理论及其应用研究[D].新乡:河南师范大学,2007.
    [101]梅安新,彭望琭,秦其明,等.遥感导论[M].北京:高等教育出版社,2001.
    [102]苗夺谦,王国胤,刘清,等.粒计算:过去、现在与展望[M].北京:科学出版社,2007.
    [103]齐民友.概率论与数理统计[M].北京:高等教育出版社,2002.
    [104]秦昆.不确定性图像分割的新方法[R].武汉:武汉大学博士后出站报告,2007.
    [105]秦昆,李德毅,许凯.基于云模型的图像分割方法研究[J].测绘信息与工程.2006,31(5):3-5.
    [106]秦昆,王佩.基于云变换的曲线拟合新方法[J].计算机工程与应用.2008,44(23):38-56.
    [107]饶雄,高振宇.多分类器联合监督分类方法研究[J].四川测绘.2006,29(1):15-16.
    [108]邵健.基于Rough Sets的信息粒度计算及其应用[D].北京:中国科学院自动化研究所,2000.
    [109]孙家抦.遥感原理及应用[M].武汉:武汉大学出版社,2009.
    [110]唐少先.MAMDANI模糊系统优化理论研究[D].长沙:中南大学,2005.
    [111]陶建斌,舒宁,沈照庆.基于高斯混合模型的遥感图像连续型朴素贝叶斯网络分类器[J].遥感信息.2010(2):18-24.
    [112]汪培庄.模糊集合论及其应用[M].上海:上海科学技术出版社,1988.
    [113]王国胤.Rough集理论与知识获取[M].西安:西安交通大学出版设,2001.
    [114]王国胤,姚一豫,于洪.粗糙集理论与应用研究综述[J].计算机学报.2009,32(7):1229-1246.
    [115]王国胤,张清华,胡军.粒计算研究综述[J].智能系统学报.,2(6):10-26.
    [116]王佐成,李永树,薛丽霞等.遥感图像中模糊对象表达[J].中国图象图形学报.2007,12(11):2081-2085.
    [117]巫兆聪.粗集理论在遥感图像分类中的应用[D].武汉:武汉大学,2004.
    [118]巫兆聪,覃茂运,张潇.一种顾及几何特征的云模型遥感图像分割方法[J].武汉大学学报(信息科学版).2008,33(9):939-942.
    [119]谢季坚,刘承平.模糊数学方法与应用[M].武汉:华中科技大学出版社,2000.
    [120]徐怡,李龙澍,李学俊.基于商空间理论的遥感图像分割[J].计算机技术与发展.2007,17(9):58-60.
    [121]许凯,秦昆,杜鹢.基于AdaBoost的高分辨率遥感图像城市绿地提取算法[J].计算机工程与应用.2008,44(20):23-25.
    [122]许凯,秦昆,裴韬.一种交互式的云模型图像分割方法[J].计算机工程与应用.2006,42(34):33-35.
    [123]杨朝晖,李德毅.二维云模型及其在预测中的应用[J].计算机学报.1998,21(11):961-969.
    [124]张钹,张铃.模糊商空间理论(模糊粒度计算方法)[J].软件学报.2003,14(4):770-775.
    [125]张铃.商空间粒度分析方法[C].太原:2007.
    [126]张铃,张钹编著.问题求解理论及应用[M].北京:清华大学出版社,1990.
    [127]张燕平,罗斌,姚一豫等.商空间与粒计算—结构化问题求解理论与方法[M].北京:科学出版社,2010.
    [128]张勇,赵东宁,李德毅.相似云及其度量分析方法[J].信息与控制.2004,33(2):129-132.
    [129]赵姝,陈洁,张燕平等.基于商空间的多粒度建模[C].北京:2008.
    [130]赵卫伟.数据场聚类及其实现[D].南京:中国人民解放军理工大学,2003.
    [131]周成虎,骆剑承.高分辨率卫星遥感图像地学计算[M].北京:科学出版社,2009.
    [132]周红英,蔺启忠,吴昀昭等.基于AdaBoost的组合分类器在遥感图像分类中的应用[J].计算机应用研究.2007,24(10):181-184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700