三种中药化学成分抗糖尿病心肌病变的作用初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病心肌病(Diabetic Cardiomyopathy,DC)是糖尿病心脏病(Diabetic heart disease,DHD)的一种特异性病变,是由代谢紊乱触发,引起心肌超微结构改变,最终引起左心室肥厚、舒张期和(或)收缩期功能障碍的一种疾病状态,是独立于冠脉病变、微血管病变和心脏神经病变之外的心肌功能失调,为一类独立的病理生理状态。随着糖尿病(Diabetes Mellitus,DM)的发病率逐年增高,病程的延长,继发于DM的糖尿病心肌病已成为糖尿病晚期患者死亡的主要原因。因此,探明糖尿病心肌病的发生机制,寻求防治糖尿病心肌病的药物,是糖尿病心血管领域研究的重要课题。
     近年,中医药对糖尿病及糖尿病心血管并发症的积极治疗作用受到广泛关注。临床常用方剂有葛根芩连汤、大柴胡汤、黄连解毒汤、三黄汤等,其中黄连、黄芩、苦参是临床运用较多的中药。现代药理研究显示,这三种中药及其主要化学成分在治疗糖尿病及心血管病方面具有一定的疗效。
     小檗碱(Berberine,Ber)是黄连、黄柏、三棵针等植物中所含的主要生物碱,有大量研究证实其具有抗心律失常、降压、强心等心血管药理活性,同时还具有降血糖、调血脂、改善胰岛素抵抗、抑制蛋白糖基化等方面作用。但小檗碱是否改善糖尿病心肌病变尚未见研究报道。
     黄芩苷(Baicalin,Bai)是植物黄芩中的一种主要黄酮类化合物。近年来研究发现,黄芩苷除了具有降压、镇静、消炎等药理作用外,还有抗脂质过氧化、拮抗儿茶酚胺和钙离子通道阻滞,抑制醛糖还原酶(AR)、抑制蛋白非酶糖基化作用、抑制蛋白激酶C的激活,调节脂代谢和细胞因子,保护内皮细胞,抑制血管平滑肌细胞增殖,保护心肌缺血/再灌注损伤作用,可防治糖尿病心血管并发症。
     苦参碱(Matrine,Mat)是豆科植物苦参、苦豆子、广豆根等中草药的活性成分,是苦参碱类生物碱的代表。苦参碱具有较为广泛的心血管药理作用,其中抗心律失常、降血脂、正性肌力作用的研究较为深入。体外研究发现苦参碱能抑制醛固酮、血管紧张素Ⅱ诱导的离体心肌成纤维细胞的增殖,因此,苦参碱可能有一定的抗心室重构作用。
     本课题采用高糖及高糖加高胰岛素制备DC细胞模型,通过体外细胞实验研究小檗碱、黄芩苷、苦参碱对DC细胞模型心肌细胞和心肌成纤维细胞形态结构、细胞增殖以及分泌病理活性产物的影响,评价其对于糖尿病心肌病变的防治作用,探讨小檗碱抗糖尿病心肌病变的机制,为阐明糖尿病心肌病的发病机制、药物治疗的作用环节以及小檗碱对糖尿病心肌病的防治作用提供科学依据。
     1乳鼠心肌细胞(MC)和心肌成纤维细胞(CFB)的分离培养与鉴定
     目的:分离培养符合实验要求的心肌细胞以及心肌成纤维细胞,确立细胞实验的最佳期。
     方法:采用机械消化和酶消化相结合的方法将心肌组织消化为单细胞悬液,利用差速贴壁法和化学试剂抑制法分别获得纯度高、活力强的心肌细胞和心肌成纤维细胞。对细胞进行形态学和免疫化学鉴定,台盼蓝染色法和MTT比色法检测细胞活力,并绘制细胞增殖曲线。
     结果:①心肌细胞呈梭形或不规则形,细胞核凸出明显,可见节律性搏动。细胞活力≥90%,α-Sarcomeric actin抗体染色阳性(阳性率≥90%),Fibronectin抗体染色染色阴性,分离后144h内生长状态良好。②心肌成纤维细胞呈梭形或不规则三角形,胞体较大通常有2-3个细胞核,胞质稀薄。细胞活力≥95%,Fibronectin抗体染色阳性(阳性率≥95%),α-Sarcomeric actin抗体染色阴性,分离后120h内呈指数增长。
     结论:心肌细胞以及心肌成纤维细胞的纯度和活力符合实验要求,细胞实验的最佳时间段在分离后48-120h。
     2小檗碱、黄芩苷、苦参碱对正常MC及CFB的影响
     目的:观察不同浓度小檗碱、黄芩苷、苦参碱对正常MC及CFB的影响。
     方法:用MTT比色法测定细胞活力,考马斯亮兰法测定细胞内蛋白含量,分别观察小檗碱(0.47μmol/L~60μmol/L)、黄芩苷(0.47μmol/L~120μmol/L)、苦参碱(62.5μmol/L~2000μmol/L)对正常MC及CFB作用48h的影响。
     结果:①小檗碱(0.47μmol/L~30μmol/L),黄芩苷(0.47μmol/L~30μmol/L),苦参碱(62.5μmol/L~500μmol/L)、罗格列酮(1.6μmol/L~2μmol/L)、格列齐特(96μmol/L~120μmol/L)、卡托普利(32μmol/L~40μmol/L)对MC活力、细胞内蛋白含量无抑制作用。②小檗碱(7.5μmol/L~60μmol/L)、黄芩苷(0.94μmol/L~120μmol/L)、苦参碱(125μmol/L~2000μmol/L)、罗格列酮(1.6μmol/L~2μmol/L)、格列齐特96μmol/L以及卡托普利(32μmol/L~40μmol/L)对正常CFB活力、细胞内蛋白含量有一定的抑制作用。
     结论:小檗碱(7.5μmol/L~30μmol/L),黄芩苷(0.94μmol/L~30μmol/L),苦参碱(125μmol/L~500μmol/L),罗格列酮(1.6μmol/L~2μmol/L),格列齐特96μmol/L,卡托普利(32μmol/L~40μmol/L)对正常MC增殖无抑制作用,而对CFB的增殖具有一定的抑制作用。
     3小檗碱、黄芩苷、苦参碱对高糖致MC及CFB病变的影响
     目的:建立高糖MC及高糖CFB模型,分别观察小檗碱、黄芩苷、苦参碱对高糖致MC病变及CFB病变的影响。
     方法:采用葡萄糖25mmol/L建立高糖MC及CFB模型,通过测定细胞活力、面积(图像分析法)、蛋白含量以及CFB分泌的胶原蛋白含量(羟脯氨酸-碱水解法),分别观察小檗碱、黄芩苷、苦参碱、罗格列酮、格列齐特及卡托普利对高糖诱导的MC病变及CFB病变的影响。
     结果:①葡萄糖25mmol/L可明显增加MC和CFB的细胞内蛋白含量,促进CFB增殖和胶原蛋白的分泌。②小檗碱(3.75μmol/L~30μmol/L)可明显抑制高糖所致的MC及CFB面积、蛋白含量的增加,抑制CFB增殖及胶原蛋白分泌的增加,而对MC增殖无明显影响。③黄芩苷(3.75μmol/L~30μmot/L)对高糖所致的MC和CFB的蛋白、面积的增加均有明显的抑制作用,30μmol/L组可明显抑制高糖所致的CFB增殖、胶原蛋白含量的增加,对MC增殖无抑制作用。④苦参碱62.5μmol/L可促进MC增殖,500μmol/L对高糖所致的MC蛋白、面积以及CFB的增殖、蛋白的增加有一定的抑制作用,苦参碱各浓度组对高糖所致的CFB增加面积均有明显的抑制作用,而对高糖所致的胶原蛋白含量增加无明显的抑制作用。⑤阳性药各组对MC以及CFB的活力、蛋白、面积以及胶原蛋白含量亦有一定的抑制作用。
     结论:小檗碱、黄芩苷、苦参碱可抑制高糖诱导的MC和CFB面积和蛋白含量的增加,此外,小檗碱和黄芩苷还可抑制CFB增殖和胶原蛋白的分泌,而苦参碱对CFB分泌胶原蛋白含量无明显影响。
     4小檗碱、黄芩苷、苦参碱对高糖加高胰岛素致MC/RCFB病变的影响
     目的:分别观察小檗碱、黄芩苷、苦参碱对高糖加高胰岛素致MC及CFB病变的影响。
     方法:采用葡萄糖25mmol/L加胰岛素10~(-4)mmol/L建立高糖高胰岛素MC及CFB病变模型,通过测定细胞活力、面积、蛋白含量以及胶原蛋白含量,分别观察小檗碱、黄芩苷、苦参碱、罗格列酮、格列齐特及卡托普利对高糖加高胰岛素诱导的MC病变及CFB病变的影响。
     结果:①高糖加高胰岛素使MC及CFB活力、蛋白、面积和胶原蛋白明显增加。②小檗碱(15μmol/L~30μmol/L)对高糖加高胰岛素所致MC和CFB蛋白、面积增加均有明显抑制作用,30μmol/L对MC的活力有一定的抑制作用。③黄芩苷(15μmol/L~30μmol/L)对高糖加高胰岛素所致MC及CFB面积增加均有显著的抑制作用,30μmol/L对MC及CFB活力、蛋白含量、胶原蛋白增加有一定的抑制作用。④苦参碱(250μmol/L~500μmol/L)对高糖加高胰岛素模型MC活力和CFB活力有一定的抑制作用,500μmol/L对高糖加高胰岛素所致的MC蛋白含量、面积以及CFB蛋白含量增加有一定的抑制作用,苦参碱各浓度组对CFB面积均有明显的抑制作用,而对胶原蛋白含量无明显影响。⑤阳性药组对高糖加高胰岛素所致的MC活力、面积以及CFB活力、面积蛋白、胶原蛋白含量增加有明显的抑制作用,而对高糖加高胰岛素所致的MC蛋白含量增加无明显影响。
     结论:小檗碱、黄芩苷、苦参碱可抑制高糖加高胰岛素诱导的MC和CFB增殖、面积和蛋白含量的增加,此外,小檗碱和黄芩苷还可抑制CFB分泌胶原蛋白,而苦参碱对此无明显抑制作用。
     5小檗碱抗糖尿病心肌病的作用机制初探
     目的:观察小檗碱对高糖加高胰岛素致MC分泌TNF-α及CFB分泌NO和TGF-β1的影响。
     方法:采用葡萄糖25mmol/L加胰岛素10~(-4)mmol/L建立MC及CFB病变模型,通过测定MC培养液中TNF-α含量(ELISA法),CFB培养液中NO含量(硝酸还原法)以及TGF-β1含量(ELISA法),分别观察小檗碱、罗格列酮、格列齐特及卡托普利对高糖加高胰岛素诱导的MC及CFB病变的影响。
     结果:小檗碱各浓度组对高糖加高胰岛素所致MC的TNF-α含量增加、CFB的TGF-β1含量增加以及CFB的NO含量减少均有明显的抑制作用。阳性药各组亦具有一定的抑制作用。
     结论:小檗碱保护心肌细胞,抗心肌间质纤维化,改善心室重构的作用可能与降低TNF-α、TGF-β1含量,提高NO含量有关。
     综上所述,高糖高胰岛素可诱导心肌细胞及心肌成纤维细胞活力、细胞面积、蛋白含量以及成纤维细胞分泌胶原蛋白含量增加,是引起糖尿病患者出现心脏结构和功能改变的重要致病因素。小檗碱、黄芩苷、苦参碱可通过抑制心肌细胞活力、细胞面积和蛋白含量的增加,抑制心肌成纤维细胞增殖和胶原蛋白含量的增加,进而抑制心肌细胞肥大和心肌间质纤维化,改善心脏结构和心肌细胞功能。其中小檗碱改善心室重构的作用可能与抑制高糖高胰岛素诱导的心肌细胞及心肌成纤维细胞分泌TNF-α、TGF-β_1含量的增高,提高NO含量有关,有关机制还有待进一步深入研究。
Diabetic Cardiomyopathy(DC),which triggered by metabolic disturbance,is a specific kind of diabetic heart disease,and it can cause the change of myocardial ultra structure,finally leads to left ventricular hypertrophy,dysfunction during diastolic and/or systolic.It is a kind of cardiac dysfunction that different from coronary artery disease,microvascular disease and cardiac neuropathy.With the incidence of Diabetes Mellitus(DM) increased and the course extended year by year,DC along with DM has become a leading cause of death.Therefore,the main research area in the field of diabetic angiocardiopathy is proving up the pathogenesis of DC and seeking for the prophylactic agent of DC.
     Recently,Traditional Chinese Medicine has attracted more and more attention in the treatment of DM and diabetic angiocardiopathy.Commonly used clinical prescriptions are Gegenqinlian decoction,Dachaihu decoction Huanglianjiedu decoction,Sanhuang decoction, etc,and Berberine,baicalin,matrine is a commonly used clinical prescriptions.Modern pharmacological studies have shown that these three kinds of Chinese medicine and its main chemical constituents in the treatment of diabetes and cardiovascular disease have a certain effect.
     Berberine(Ber) is the primary alkaloid inside Coptis chinensis Franch,cortex phellodendri\ Radix Berberidis.Large quantity,of studies have proved that Ber has the cardiovascular pharmacological activity of anti-arrhythmic,lowering blood pressure and cardiac,it also have the ability to lowering blood sugar,regulate blood fat,reform IR and restrain glycosylated protein.But there's no research report about whether Ber has the ability to cure DC.
     Baicalin(Bai) is a chief flavanoid in the Plant of Baicalin,it can generate baicalein and glucuronic acid after hydrolyze.According to the recent research,Bai not only has the pharmacological action of lowering blood pressure,and anti-inflammatory,but also has the ability to anti-lipid peroxidation,calcium antagonists and Catecholamine channel blockers, inhibit aldose reduction enzyme(AR),inhibitory protein non-enzymatic glycation,inhibition of protein kinase C activation,regulation of lipid metabolism and cytokines,the protection of endothelial cells,inhibition of vascular smooth muscle cell proliferation,protect myocardial ischemia / reperfusion injury.
     Matrine(Mat) is the active constituent of Chinese herbal medicine like Sophora alopecuroides L\Matrine and Subprostrate Sophora Root,and it is the primary matrine alkaloid. Mat has wide cardiovascular pharmacological action,and deeply research has been made in the field of antiarrhythmic,hypolipidemic,positive inotropic effect.In vitro study showed that Mat can inhibit aldosterone and the hyperplasia of cardiac fibroblasts caused by angiotensin-Ⅱ. Therefore,Mat may have the pharmacological action of anti ventricular remodeling.
     The topic established DC cell model by high sugar and high glucose plus high insulin. Through the in vitro experimental study of Ber,Bai,Mat on myocardial cells and cardiac fibroblasts in DC morphology,cell proliferation and the impact of pathology,this paper would evaluate their preventive and therapeutic effect on DC and discuss the metabolic mechanism of Ber during curing DC.Finally clarify the pathogenesis of DC,the role of drug therapy,as well as aspects of berberine on the prevention and treatment of diabetic cardiomyopathy.
     1 Cultured and identified of cardiomyocyte cell(MC) and cardiac fibroblast(CFB) in neonatal rat ventricular
     Objective:Isolation culture cardiomyocyte cell and cardiac fibroblast that-meet the experimental requirements and establish the best period of the experimental.
     Methods:Cardiac tissue was digested to single cell suspension by mechanical and enzyme.Cardiomyocyte cell and cardiac fibroblast was separated according to different adherence time and inhibition of chemical reagents in order to get high purity,and strong activity of myocardial cells and cardiac fibroblasts.Cell was identified by morphology and immunochemistry.Cytoactive was detected by trypan blue.Detected the cytoactive by MTT colorimetric,and mapped the cell proliferation curves.
     Results:①Cardiomyocyte was looked like fusiform or irregularity,cell nucleus was obviously bulged,and rhythmic mpulse was seen.Cytoactive>90%;α-Sarcomeric actin antibody dyeing was positive(rate≥90%),90%,Fibronectin antibody dyeing was negative.After separation it grew in good condition within 144 hours.②Cardiac fibroblasts was looked like fusiform or irregularity triangle,Cell body was larger and kytoplasm was tenuity.Fibronectin antibody dyeing was positive,(rate≥95%),α-Sarcomeric actin antibody dyeing was negative. After the separation it reached a exponentially growth within 120 hours.
     Conclusion:Myocardial cells and cardiac fibroblasts purity and activity in line with the experimental requirements,the best experimental time period is 48 hours to 120 hours after separation.
     2 Effect of Bet,Bai and Mat on normal MC and CFB
     Objective:Observing how the Ber,Bai,Mat impact ordinary MC and CFB with different density.
     Methods:Measure the cell activity via MTT colormetric and Measure intracellular protein content through Coomassie brilliant blue method.Observe Ber with density 0.47μmol/L~60μmol/L,Bai with the density 0.47μmol/L~120μmol/L and Mat with the density 62.5μmol/L~2000μmol/L,find the effectiveness on ordinary MC and CFB after 48 hours.
     Results:①Ber with the density 7.5μmol/L~30μmol/L,Bai with the density 0.47μmol/L~30μmol/L,Mat with the density 125μmol/L~500μmol/L,Rosiglitazone with the density 1.6μmol/L~2μmol/L,gliclazide with the density 96μmol/L~120μmol/L and captopril with the density 32μmol/L~40μmol/L have no effect on MC cytoactive and protein.②Ber with the density 7.5μmol/L~60μmol/L,Bai with the density 0.94μmol/L~120μmol/L,Mat with the density 125μmol/L~500μmol/L,Rosiglitazone with the density 1.6μmol/L~2μmol/L,gliclazide with the density 96μmol/L and captopril with the density 32μmol/L~40μmol/L can inhibit ordinary CFB cytoactive and protein.
     Conclusion:Ber with the density 7.5μmol/L~30μmol/L,Bai with the density 0.94μmol/L~30μmol/L,Mat with the density 125μmol/L~500μmol/L,Rosiglitazone with the density 1.6μmol/L,2μmol/L,gliclazide with the density 96μmol/L and captopril with the density 32μmol/L~40μmol/L have no effect on ordinary MC cytoactive,but they can inhibit CFB proliferate.
     3 Effect of Bet,Bai and Mat on MC and CFB models induced by high glucose
     Objective:Construct a model of MC and CFB induced by high glucose,then observe the effectiveness of Ber,Bai and Mat on MC induced by high glucose and CFB.
     Methods:Construct a model of MC and CFB induced by high glucose model with glucose with density 25mmol/L.Observe the effectiveness of Ber,Bai,Mat,rosiglitazone, gliclazide and captopril on MC and CFB induced by high glucose through testing cytoactive, area(image analysis method),protein content and collagen protein content that secreted by CFB(hydroxyproline-alkaline hydrolysis method)
     Results:①Glucose with density 25mmol/L can significantly increase the intracellular protein content of MC and CFB and stimulate CFB proliferation and collagen protein content that secreted by CFB.②Bet with density 3.75μmol/L~30μmol/L can effectively inhibit collagen protein content,area of MC induced by high glucose.It also inhibit cytoactive,area and collagen protein content of CFB,but has no effect on cytoactive of MC.③Bai with density 3.75μmot/L~30μmol/L can significantly inhibit collagen protein content,area of MC and CFB induced by high glucose.Bai with density 30μmol/L can effectively inhibit proliferation,collagen protein content Of CFB induced by high glucose.④Mat with density 62.5μmol/L can stimulate MC proliferation.Mat with density 500~μmol/L can inhibit protein content,area of MC induced by high glucose,it also inhibit proliferation and protein content of CFB.All Mat testing group can inhibit the area of CFB induced by high glucose,but they have no effect on collagen protein content increasing that induced by high glucose.⑤All testing group can inhibit the cytoactive,protein content,area,collagen protein content of MC and CFB.
     Conclusion:Ber,Bai,Mat can inhibit the area,protein content of MC and CFB induced by high-glucose.Ber and Bai can also inhibit cytoactive,area,protein content and collagen protein content of CFB,but Mat have no effect on it.
     4 Effect of Bet,Bai and Mat on MC and CFB models induced by high glucose and high Insulin
     Objective:Observe separately the effectiveness of Ber,Bai,Mat on MC and CFB induced by high glucose plus high insulin.
     Methods:Use glucose with density 25mmol/L plus insulin with density 10-7mol/L to construct a model of MC and CFB induced by high glucose plus high insulin,and then observe the effectiveness of Ber,Bai and Mat on MC and CFB induced by high glucose plus high insulin.
     Results:①High glucose plus high insulin can significantly increase the cytoactive, protein content,area and collagen protein content of MC and CFB.②Ber with density 1.5μmol/L~30μmol/L can inhibit protein,area of MC and CFB induced by high glucose plus high insulin.Ber with density 30μmol/L can inhibit cytoactive of MC.③Bai with density 15μmol/L~30μmol/L can significantly inhibit,the area of MC and CFB induced by high glucose plus high insulin.Bai with density 30μmol/L can inhibit cytoactive,protein content and collagen protein content of MC and CFB.④Mat with density 250μmol/L~500μmol/L can inhibit cytoactive of MC and CFB induced by high glucose plus high insulin.Mat with density 500μmol/L can inhibit protein content,area of MC induced by high glucose plus high insulin,it also can inhibit protein content of CFB induced by high glucose plus high insulin. All testing group of Mat can inhibit the area of CFB,but they have no significant effect on collagen protein content.⑤All testing group can inhibit the cytoactive,area of MC induced by high glucose plus high insulin,they can also inhibit cytoactive,area,protein content and collagen protein content of CFB induced by high glucose plus high insulin.But they all have no significant effect on protein content of MC induced by high glucose plus high insulin.
     Conclusion:Ber,Bai and Mat can inhibit MC and CFB cell proliferation and hyperplasia induced by high glucose plus high insulin.Ber and Bai can also inhibit collagen protein content of CFB,but Mat have no effect on it.
     5 The mechanism of Berberine anti-diabetic cardiomyopathy
     Objective:Observe the effectiveness of Ber on MC induced by high glucose plus high insulin secreting TNF-αand CFB secreting TGF-β1.
     Methods:Using Glucose with density 25mmol/L plus insulin with density 10~(-4)mmol/L to construct MC and CFB model.Observe the effectiveness of Ber,Bai and Mat on MC and CFB induced by high glucose plus high insulin through testing the content of TNF-αinside MC culture solution(ELISA-method),testing the content of NO inside CFB culture solution (Nitrate reduction method) and testing the content of TGF-β1(Nitrate reduction method).
     Results:All testing group of Ber can inhibit the content of TNF-αinside MC induced by high glucose plus high insulin and inhibit the content of TGF-β1 inside CFB,they can also inhibit the NO.content decreasing inside CFB.The positive drug also have the inhibition.
     Conclusion:The effectiveness of Ber on protecting myocardial cell,anti myocardial fibrosis and assisting cardiac ventricular remodeling may have relative with decreasing the content of TNF-α,TGF-β1,and increasing the content of NO.
     As a consequence of the above,High glucose and high insulin can active myocardial cell and cardiac fibroblasts,area,protein content and CFB secretion collagen.Ber,Bai and Mat can inhibit hyperplasia and myocardial fibrosis through inhibiting myocardial cell cytoactive, area,protein content and inhibiting CFB proliferation,area,protein,content and collagen protein content.The effectiveness of Ber on protecting myocardial cell,anti myocardial fibrosis and assisting cardiac ventricular remodeling may have relative with decreasing the content of TNF-α,TGF-β1,and increasing the content of NO,but need to do a future study on it.
引文
[1]Hamby RI,Zoneraich S,Sherman Let al.Diabetic cardiomyopathy[J].JAMA,1974,229(13):1749-1754.
    [2]曾定尹.糖尿病性心肌病的研究现状[J].中国医学研究与临床,2005,3(4):40-44.
    [3]Searls YM,Smirnova IV,Fegley BR,et al.Exercise attenuates diabetes-induced ultrastructural changes in rat cardiac tissue[J].Med Sci Sports Exerc,2004,36(11):1863-1870.
    [4]解辉.糖尿病心肌病心肌纤维化病理变化的研究[J].中国实用医药,2008,3(9):73-74.
    [5]Takano H,Hasegawa H,Nagai T,et al.Implication of cardiac remodeling in heart failure[J].Intern Med,2003,42(6):465-469.
    [6]Searls YM,Smimova IV,Fegley BR,et al.Exercise attenuates diabetes-induced ultrastructural changes in rat cardiac tissue[J].Med Sci Sports Exerc,2004,36(11):1863-1870.
    [7]Mizushige K,Yao L,Noma T,et al.Alteration in left ventricular diastolic filling and accumulation of myocardial collagen at insulin-resistant prediabetic stage of a type Ⅱdiabetic rat model[J].Circulation,2000,101(8):899-907.
    [8]Fredersdorh S,Thumann C,Ulucan C,et al.Myocardial hypertrophy and enhanced left ventricular contractility in Zucker diabetic fatty rats[J].Cardiovasc Pathol.,2004,13(1):11-19.
    [9]Monkemann H,De Vriese AS,Blom HJ,et al.Early molecular events in the development of the diabetic cardiomyopathy[J].Amino Acids,2002,23(1-3):331-336.
    [10]Welt K,Fitzl G;Schepper A.Experimental hypoxia of STZ-diabetic rat myocardium and protective effects of Ginkgo biloba extract.Ⅱ.Ultrastructural investigation of microvascular endothelium[J].Exp Toxicot Pathot,2001,52(6):503-512.
    [11]Zarich SW,NestoRW.Diabetic cardiomyopathy[J].Am Heart J,1989,118(5Pt1):1000-1012.
    [12]Joffe II,Travers KE,Perreault-Micale CL,et al.Abnormal cardiac function in the streptozotocin-induced non-insulin-dependent diabetic rat:noninvasive assessment with doppler echocardiography and contribution of the nitric oxide pathway[J].J Am Coll Cardiol,1999,34(7):2111-2119.
    [13]Giles TD,Ouyang J,Kerut EK,et al.Changes in protein kinase C in early cardiomyopathy and in gravilis muscle in the BB/Wor diabetic rat[J].Am J Physiol,1998,274(1Pt2):H295-307.
    [14]Wakasaki H,Koya D,Schoen FJ,et al.Targeted overexpression of protein kinase C β2isoform in myocardium causes □ cardiomyopathy[J].Proc Natl Acad Sci USA,1997,94(17):9320-9325.
    [15]Scognamiglio R,Avogaro A,Casara D,et al.Myocardial dysfunction and adrenergic cardiac innervation in patients with insulin-dependent diabetes mellitus[J]:J Am Coll Cardiol,1998,31(2):404-412.
    [16]章红,方朝晖.糖尿病心肌病发病机制的研究[J].医学综述,2008,14(3):419-421.
    [17]Baud L,Fouqueray B,Bellocq A,et al.Growth hormone and somatostation in glomerular injury[J].J Nephrol,1999,12(1):18-23.
    [18]Kolb H,Kolb Bachofen V.Nitric oxide:a pathogenetic factor in autoimmunity [J].Immunol Today,1992,13(5):157-160.
    [19]Giles TD,Ouyang J,Kerut EK,et al.Changes in protein in kinase C in early cardiomyopathy and in gracilis muscle in the BB/Wor diabetic rat[J].Am J Physiol,1998,274:H295-307.
    [20]南国柱.糖尿病慢性并发症的生物化学基础.见:张惠芬,迟家敏,王瑞萍,主编.实用糖尿病学.第2版[M].北京:人民出版社,2001:295-304.
    [21]Kennedy AL,Lyons TJ.Glyeation,oxidation,and lipoxidation in the development of diabetic complications[J].Metabolism 1997,46(12suppl 1):14-21.
    [22]Halse R,Pearson SL,McCormack J G,et al.Effects of tumor necrosis factor-alpha on insulin action in cultured human muscle cells[J].Diabetes,2001,50(5):1102-1109.
    [23]Zhang DX,Fryer RM,Hsu A K,et al.Production and metabolism of ceramide in normal and ischemic-reperfused myocardium of rats[J].Basic Res Cardiol,2001,96(3):267-274.
    [24]金朝晖,邹大进.游离脂肪酸致胰岛素抵抗的机制[J].中华内分泌代谢杂志,1999,15(4):247-249.
    [25]Ilercil A,Devereux RB,Roman MJ,et al.Associations of insulin levels with left ventricular structure and function in American Indians:the strong heart study[J].Diabetes,2002,51(5):1543-1547.
    [26]Iacobellis G,Ribaudo MC,Zappaterreno A,et al.Relationship of insulin sensitivity and left ventricular mass in uncomplicated obesity[J].Obes Res,2003,11(4):518-524.
    [27]McNulty PH.Insulin resistance and cardiac mass:the end of the beginning?[J].Obes Res,2003,11(4):507-508.
    [28]Khamzina L,Veitleux A,Bergeron S,et al.Increased Activation of the Mammalian Target of Rapamycin Pathway in Liver and Skeletal Muscle of Obese Rats:Possible Involvement in Obesity-Linked Insulin Resistance[J].Endocrinology,2005,146(3):1473-1481.
    [29]Manning BD.Balancing Akt with S6K:implications for both metabolic diseases and tumorigenesis[J].J Cell Biol,2004,167(3):399-403.
    [30]Shah OJ,Wang Z,Hunter T.Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2depletion,insulin resistance,and cell survival deficiencies[J].Curr Biol,2004,14(18):1650-1656.
    [31]Morisco C,Condorelli G,Trimarco V,et al.Akt mediates the cross-talk between beta-adrenergic and insulin recoptors in neonatal cardiomyocytes[J].Circ Res,2005,96(2):180-188.
    [32]Golfman LS,Wilson CR,Sharma S,et al.Activation of PPARgamma enhances myocardial glucose oxidation and improves contractile function in isolated woking hearts of ZDF rats[J].Am J Physiol Endocrinol Metab,2005,289(2):E328-E336.
    [33]Fiordaliso F,Li B,Latini R,et al.Myocyte death in streptozotocinoInduced diabetes in rats is angiotensin Ⅱ-dependent[J].Lab Inves,2000,80(4):513-527.
    [34]陈兰英.心脏肾素-血管紧张素系统与心肌肥厚[J].心血管病学进展,1996,17(6):336-339.
    [35]Sowers JR,Epstein M,Frohlich ED.Diabetes,hypertension,and cardiovascular disease:an update[J].Hypertension,2001,37(4):1053-1059.
    [36]Gray MO,Long CS,Kalinyak JE,et al.Angiotensin Ⅱ stimulates cardiac myocyte hypertrophy via paracrine release of TGF-β1 and endothetin-1 from fibroblasts [J].cardiovasc Res,1998,40(2):352-363.
    [37]oP den Buijs J;Miklos Z,van Riel NA,et al.beta-adrenergic activation reveals impaired cardiac calcium handling at early stage of diabetes[J].Life Sci,2005,76(10):1083-1098.
    [38]Bellke D,Swanson EA,Dillmann WH.Decreased sarcoplasmic reticulum activiity and contractility in diabetic db/db mouse heart[J].Diabetes,2004,53(12);3201-3208.
    [39]蒋彬,周希平,蒋文平,等.钠-钙交换与慢性心力衰竭[J].心血管病学进展,2002,23(6):371-374.
    [40]Hiranandani N,Bupha-Intra T,Janssen PM,et al.SERCA overexpression reduces hydroxyl radical injury in murine myocardium[J].Am J Physiol Heart Circ Physiol,2006,291(6):H3130-H3135.
    [41]Qin D,Huang B,Deng L,et al.Downregulation of K~+ channel genes expression in typel diabetic cardiomyopath[J].Biochem Biophys Res Commun,2001,283(3):549-553.
    [42]Rozanski GJ,Xu Z.A metabolic mechanism for cardiac K~+ channel remodeling[J].Clin Exp Pharmacol Physiol,2002,29(1-2):132-137.
    [43]Qin D,Huang B,Deng L,et al.Downregulation of K~+ channel genes expression in type I diabetic cardiomyopathy[J].Biochem Biophys Res Commun,2001,283(3):549-553.
    [44]Vecchini A,Del-Rosso F,Binaglia L,et al.Molecular defects in arcolemmal glycerophospholipid subclasses in diabetic cardiomyopathy[J].J Mol Cell Cardiol,2000,32:1061-1074.
    [45]Cai L,Li W,Wang G,et al.Hyperglycemia-induced apoptosis in mouse myocardium:mitochondrial cytochrome C-mediated caspase-3 activation pathway[J].Diabetes,2002,51(6):1938-1948.
    [46]Singal PK,Bello Klein A,Farahmand F;et al.Oxidative stress and functional deficit in diabetic cardiomyopathy[J].Adv Exp Med Biol,2001,498:213-220.
    [47]Montanari D,Yin H,Dobrzynski E,et al.Kallikrein gene delivery improves serum glucose and lipid profiles and cardiac function in streptozotocin-induced diabetic rats [J].Diabetes,2005,54(5):1573-1580.
    [48]Malhotra A,Begley R,Kang BP,et al.PKC-{epsilon}-dependent survival signals in diabetic hearts.[J].Am J Physiol Heart Circ Physiol,2005,289(4):H1343-H1350.
    [49]Grunenfelder J,Miniati DN,Murata S,et al.Up-regulation of Bcl-2 through hyperbaric pressure transfection of TGF-β_1 ameliorates ischemiare-perfusion injury in rat cardiac allografts[J].J Heart Lung Transplant,2004,21(2):244-250.
    [50]Song W,Lu X,Feng Q.Tumour necrosis factor-alpha induces apoptosis via inducible nitric oxide synthase in neonatal mouse cardiomyocytes[J].Cardiovas Res,2004,45(3):595-602.
    [51]张风雷,玄军华,崔良民.肿瘤坏死因子-α与糖尿病心肌病关系的研究[J].济宁医学院学报,2003,26(3):13-15.
    [52]Golfman L,Doxin IM,Takeda N,et al.Cardiac sarcolemmal Na~+-Ca~(2+) exchange and Na~+-K~+ATPase activitise and gene expression in alloxan-induced diabetes in rats[J].Mol Cell Biochem,1998,188(1-2):91-101.
    [53]Mann DL,Young JB.Basic mechanisms in.congestive heart failure.Recoginaing the role of proinflammatory cytokines[J].Chest,1994,105(3):897-904.
    [54]谢勇.2型糖尿病人血浆肿瘤坏死因子-α测定及意义[J].医学文选,2003,22(5):626-628.
    [55]Mingrone G,Rosa G,Di Rocco P,et al.Skeletal muscle triglycerides lowering is associated with net improvement of insulin sensitivity,TNF-alpha reduction and GLUT4 expression enhancement[J].Int J Obes Relat Metab Disord,2002,26(9):1165-1172.
    [56]Teruel T,Hernandez R,Lorenzo M.Ceramide mediates insulin resistance by tumor necrosis factor-alpha in brown adipocytes by maintaining Akt in an inactive dephosphorylated state.[J].Diabetes,2001,50(11):2563-2571.
    [57]Mei J,Wang CN,O'Brien L,et al.Cell-permeable ceramides increase basal glucose incorporation into triacylglycerols but decrease the stimulation by insulin in 3T3-L1adipocytes[J].Int J Obes Relat Metab Disord,2003,27(1):31-39.
    [58]Sun Y,Zhang J,Zhang JQ,et al.Local angitotensin Ⅱ and transforming growth factor-β_1 in renal fibrosis of rats[J].Hypertension,2000,35(5):1078-1084.
    [59]李才.器官纤维化[M].北京:人民卫生出版社,2003.
    [60]董波,黄定九,李慧丽,等.血管紧张素 Ⅱ 对单核细胞趋化因子及黏附分子表达的影响[J].上海免疫学杂志,2002,22(2):104-106.
    [61]温晨东,李兴.细胞因子与糖尿病心肌病变[J].医学综述,2006,12(1):34-36.
    [62]李洁,刘乃丰.糖尿病心肌病发病机制的研究进展[J].现代医学,2006,34(4):292-295.
    [63]敖翔,孙明.CTGF 在心血管疾病中的研究进展[J].国外医学生理病理科学与临床分册,2003,23(5):466-468.
    [64]Combos A,McTiernan C,Brooks SS,et al.UV light synergistically enhances the cardiotoxic effects of interleukin 1β through peroxynitrite formation[J].J Card Fail,2001,7(2):165-175.
    [65]Mitchell MD,Laird RE,Brown RD,et al.IL-1 beta stimulates rat cardiac fibroblast migration via MAP kinase pathways[J].Am J Physiol Heart Circ Physiol,2007,292(2):H1139-1147.
    [66]丁宏,胡燕燕.血清白介素-2与糖尿病心肌病的关系[J].中国误诊学杂志,2007,7(28):6752-6753.
    [67]曹春梅,夏强,傅琛,等.白细胞介素-2对大鼠心肌Ca~(2+).ATPase和Na~+-K~+-ATPase 的影响[J].生理学报,2003,55(1):83-90.
    [68]任晓军,冯凭.炎症因子与胰岛素抵抗[J].中国实用医刊,2008,35(11):82-84.
    [69]蒋兴亮,周京国,等.高敏 C 反应蛋白和白细胞介素-6与2型糖尿病微血管病变的关系[J].华西医学,2005,20(2):255-256.
    [70]Chandnasekar B,Colston J T,de la Rosa SD,et al.TNF-alpha and H_2O_2induce IL-18and IL-18R beta expression in.cardiomyocytes via NF-kappa B activation[J].Biochem Biophys Res Commur,2003,303(4):1152-1158.
    [71]Netea MG,Kullberg B J,Verschueren I,et al.Iiterleukin-18 induces prodcution of proinflammatory cytokines in mice:no intermediate role for the cytokines of the tumor necrosis factor family and interleukin-lbeta[J].EUR J Immunol,2000,30(10):3057-3060.
    [72]汪玲,郑绍同,陈敏.2型糖尿病患者血清白介素-18肿瘤坏死因-α与胰岛素抵抗的相关性研究[J].黑龙江医学,2006,30(10):735-737.
    [73]Unger RH.Lipotoxic diseases[J].Annu Rev Med,2002,53:319-336.
    [74]韩大良,刘克清,彭姝彬.脂肪细胞因子及其在2型糖尿病中的作用与机制[J].岳阳职业技术学院,2008,(1):63-65.
    [75]李秀钧,邬云红.糖尿病是一种炎症性疾病[J].中华内分泌代谢杂志,2003,19(4):251-253,
    [76]Festa A,D'Agostino R J r,Howard G,et al.Chronic subclinical inflamation as part of the insulin resistance syndrome:the Insulin Resistance Atherosclerosis Study(IRAS)[J].Circulation,2000,102(1):42-47.
    [77]Pradhan AD,Manson JE,Rifai N,et al.C-reactive protein,interleukin 6,and risk of developing type 2 diabetes mellitus[J].JAMA,2001,286(18):2233.
    [78]Hashimoto H Kitagawa K,Hougaku et al.C-reactive protein is an independent predictor of the rate of increase in early carotid atherosclerosis[J].Circulation,2001,104(1):63-67.
    [79]郭沫化,肖平喜.糖尿病性心肌病的发病机制及超声检查进展[J].现代诊断与治疗,2005,16(1):31-34.
    [80]Janicki JS,Brower GL,Gardner JD,et al.The dynamic interaction between matrix metalloproteinase activity and adverse myocardial remodeling[J].Heart Fail Rev,2004,9(1):33-42.
    [81]Nishikawa N,Yamamoto K,Sakata Y,et al.Differential activation of matrix metalloproteinases in heart failure with and without ventricular dilatation[J].Cell Physiol Biochem,2003,57(3):766-774.
    [82]Koka V,Wang W,Huang XR,et al.Advanced glycation end products activate a chymase-dependent angiotensin Ⅱ-generating pathway in diabetic complications.[J].Circulation,2006,113(10):1353-1360.
    [83]Tyagi SC.Hayden MR.Role of nitric oxide in matrix remodeling in diabetes and heart failure[J].Heart Fail Rev,2003,8(1):23-28.
    [84]Martin DA,Siegel.RM,Zheng L,et al.Membrane oligomerization and cleavage activates the easpase-8(FLICE/MACHal)death,signal[J].J Biol Chem,1998,273(8):4345-4349.
    [85]何琼,张瑞莲.Caspase-3与糖尿病心肌病变的研究[J].数理医药学杂志,2007,20(1):13-15.
    [86]柯浩亮,张莹雯.糖尿病心肌病研究现状及回顾[J].医学新知杂志,2007,17(5):287-290.
    [87]Hafizi S,Wharton J,Chester AH,et al.Profibrotic effects of endothelin-1 via the ETA receptor in cultured human cardiac fibroblasts[J].Cell Physiol Biochem,2004,14(4-6):285-292.
    [88]Tyagi SC,Rodriguez W,Pates AM.Hyperhomocysteinemic diabetic cardiomyopathy:oxidative stress,remodeling.and endothelial-myocyte uncouplinng[J].J Cardiovasc Pharmacol Ther,2005,10(1):1-10.
    [89]Rodrigues B,McNeill JH.The diabetic heart:metabolic causes for the development of a cardiomyopathy[J].Cardiovasc Res,1992,26(10):913-922.
    [90]Garcia-Unzueta MT,Montalban C,Pesquera C,et al.Plasma adrenomedullin levels in type 1 diabetes.relationship with clinical parameter[J].Diabetes Care,1998,21(6):999-1003.
    [91]赵双林,廖玉华,王敏,等.糖尿病心肌病与抗心肌 β1和 M2受体自身抗体的关系[J].中华糖尿病杂志,2005,13(2):111-113.
    [92]Ghosh S,Pulinikunnil T,Yuen G,et al.Cardiomyocyte apoptosis induced by short-term diabetes requires mitochondrial GSH depletion[J].Am J Physiol Heart Circ Physiol,2005,289(2):H768-H776.
    [93]Nishio Y,Kanazawa A,Nagai Y,et al.Regulation and role of the mitochondrial transcription factor in the diabetic rat heart[J].Ann N Y Acad Sci,2004,1011:78-85.
    [94]Gurusamy N,Watanabe K,Ma M,et al.Dominant negative 14-3-3 promotes cardiomyocyte apoptosis in early stage of type 1 diabetes mellitus through activation of JNK[J].Biochem Biophys Res Commun,2004,320:773-780.
    [95]Haddad GE.Gene therapy for diabetic cardiomyopathy:a new approach for a difficult problem[J].Mol Ther,2006,13(5):835-838.
    [96]Asbun J,Villarreal FJ.The pathogenesis of myocardial fibrosis in he setting of diabetic cardiomyopathy[J].J Am Coll Cardiol,2006,47(4):693-700.
    [1]王远征,赵晓明,穆长征.二甲双胍对糖尿病大鼠的心肌保护作用[J].解放军医学杂志,2006,31(4):333-335.
    [2]董小英,张如意.二甲双胍对糖尿病大鼠心肌病变的抗氧化保护作用[J].宁夏医学院学报2008,30(2):167-170.
    [3]陈艳,吴艳娜,刘艳霞.ACEI 药理性预适应对糖尿病心脏的保护作用[J].中国心血管病研究杂志,2007,5(1):64-66.
    [4]宋陈芳,熊世熙,尹学恩.几种 ACEI 对实验性糖尿病大鼠心肌细胞凋亡和Caspase-3及 Fas、FasL 基因表达影响的类效应[J].武汉大学学报(医学版),2008,29(1):24-27.
    [5]董志恒,李才,曲萌.CTGF mRNA 在糖尿病大鼠心肌中的表达及贝那普利的干预[J].北华大学学报(自然科学版),2004,5(2):115-118.
    [6]吴永贵,林辉,林善锬 ACE 抑制剂对糖尿病大鼠心肌组织 GluT4 基因与蛋白表达的影响[J].中国药理学通报,2003,19(12):1366-1369.
    [7]李文峰,吕泽峰,李桂平.卡维地洛对糖尿病伴急性心肌梗死患者心功能不全的疗效观察[J].医学文选,2006,25(4):581-583.
    [8]杨晓红,崔炜,王雅依,等.阿托伐他汀对2型糖尿病大鼠心肌炎症的影响[J].临床心血管杂志,2008,24(1):58-61.
    [9]刘茂东,迟彦青,李英,等.氟伐他汀对糖尿病大鼠早期心肌病变的作用[J].中国心血管杂志2004,9(5):319-320.
    [10]赖鹏斌,杨立勇,林旭.氟伐他汀对糖尿病大鼠心肌结缔组织生长因子表达的影响[J].中国糖尿病杂志2006,14(3):224-226.
    [11]吴绮楠,肖谦,吴平,等.曲美他嗪对2型糖尿病大鼠心肌细胞凋亡的影响[J].第三军医大学学报,2007,29(19):1866-1868.
    [12]战术,刘伟,钟国赣,等.尼群地平对实验性糖尿病大鼠心肌收缩性的影响[J].中国应用生理学杂志,1994,10(2):152-154.
    [13]李才,刘橙岩,王丽娟,等.尼群地平对糖尿病大鼠心肌收缩功能和呼吸酶活性的影响[J].中国药理学通报,1994,10(3):190-193.
    [14]邵雅娣,王鸣和.糖尿病性心肌病的研究进展[J].世界临床药物,2006,27(10):594-596.
    [15]康艳萍,王国秋,齐志敏,等.锰对糖尿病大鼠心肌组织 SOD 的影响[J].辽宁医学院学报,2007,28(1):32-34.
    [16]Sheng XQ,Huang KX,Xu HB.New experimental observation on the relationship Of selenium and diabetes melitus[J].Biol Trace Elem Res,2004,99(1-3):241-253.
    [17]陈鸿武,马礼坤,余华,等.纳米硒对实验性糖尿病小鼠心肌的保护作用及其可能的机制[J].中国病理生理杂志,2008,24(5):878-882.
    [18]Ganz M B,Sefiel A.Glucose-induced Changes in protein kinase C and nitric oxide are prevented by vitamin E[J].AM J Physiol Endocrinol Metab.2000,278(t):E146-E152.
    [19]Kowhru RA,Engerman RL,Kern TS.Diabetes-induced metabolic abnormalities in myoeardium:efect of antioxidant therapy[J].Free Radie Res,2000,32(1):67-74.
    [20]史扬,范利,石怀银.同型半胱氨酸对 KKAy 小鼠心肌病变的影响[J].中华老年脑血管病杂志,2004,6(5):332-334.
    [21]李青菊,姚蔚,李凤良,等.褪黑素对早期糖尿病大鼠心肌非酶糖基化及氧化应激反应的影响[J].郑州大学学报(医学版),2005,40(3):489-490.
    [22]张慧,叶福林,张立斌,等.褪黑素对糖尿病大鼠心肌转化生长因子-β_1表达的影响[J].中国糖尿病杂志,2003,11(5):381-382.
    [23]Gutterman D D.Vascular dysfunction in hyperglycemia:Is protein kinase C the culprit?[J].Cireul Res,2002,90(1):5-7.
    [24]Giles TD,Ouyang J,Kerut EK,et al.Changes in protein kinase C in early cardiomyopathy and in gracilis muscle in the BB/Wor diabetic rat[J].Am J Physiol,1998,274(1Pt2):H295-307.
    [25]刘美琴,李兴.瘦素和肝细胞生长因子在糖尿病性心肌病变中的作用[J].医学综 述,2005,11(1):37-38.
    [26]Riedel BJ,Gal J,Ellis G,et al.Myocardial protection using fructose-1,6-diphosphate during coronary artery bypass.graft surgery:a randomized,placebo-controlled clinical trial[J].AneSth Analg,2004,98(1):20-29.
    [27]李长运,曹林生,白智峰,等.1,6二磷酸果糖下调血管紧张素 Ⅱ 受体2表达保护糖尿病大鼠心肌[J].华中科技大学学报(医学版)2005,34(2):206-209,213.
    [28]Khaidar A,Marx M,Lubec B,et al.L-arginine reduces heart collagen accumulation in the diabetic db,db mouse[J].Circula.tion,1994,90(1):479-483.
    [29]陈秀芳,雷康福,董敏,等.L-精氨酸对糖尿病大鼠心肌损伤的保护作用[J].中国老年学杂志,2005,25(2):184-186.
    [30]Poucheret P,Verma S,Grynpas MD et al,Vanadium and diabetes[J].Mol Biochem,1998,188(1-2):73-80.
    [31]张平,梁自文,王海慧,等.钒酸钠对 STZ-糖尿病大鼠心肌细胞膜 GLUT4易位的影响[J].第三军医大学学报,2004,26(12):1094-1097.
    [321 梁自文,张忠辉,罗南渝,等.钒酸盐纠正了糖尿病大鼠心肌组织内活化的DAG—PKC 信息传导[J].中国糖尿病杂志,1999,7(4):211-213.
    [33]唐玲,张英,申竹芳,等.钒类化合物的抗糖尿病作用[J].中国临床药理学杂志,2001,17(4):298-302.
    [34]符丽娟,王洪新,庞东渤,等.氨基胍对实验性糖尿病大鼠心肌的保护作用[J].中国药理学通报,2004,20(8)1956-956.
    [35]符丽娟,王洪新,庞东渤,等.非酶糖化抑制剂对糖尿病大鼠心肌细胞凋亡作用的研究(J).中国临床药理学与治疗学,2004,9(12):1374-1376.
    [36]Hammes HP,Martin S,Federlin K,et al.Aminoguanidine treatment inhibits the development of experimental diabetic retinopathy[J].Proc Ntal Acad Sci USA,1991,88(24):11555-11558.
    [37]刘朝巍,石如玲,齐锦生,等.氨基胍对糖尿病大鼠心肌损伤的拮抗作用[J].中国病理生理杂,2007,23(3):505-508.
    [38]姜强,赵家军,李伯勤,等.氨基胍对糖尿病大鼠心肌保护作用的超微结构研究[J].中国糖尿病杂志2006,14(1):67-69.
    [39]黄昶荃,肖谦.脑钠素与糖尿病心肌病变[J].国外医学内分泌学分册,2005,25(2):116-118.
    [40]叶红英,俞茂华,游利,等.牛初乳短链 IGF-1治疗对链脲佐菌素糖尿病大鼠心肌血管紧张素Ⅱ含量的影响[J].上海医科大学学报,2000,27(4):267-269.
    [41]段文澜,俞茂华,沈隽,等.牛初乳短链 IGF-I 对 STZ 糖尿病大鼠心肌细胞 Ca~(2+)的影响[J].上海医科大学学报.1997,24(6):403-406.
    [42]叶红英,俞茂华,孙侃,等.牛初乳短链胰岛素样生长因子-1对糖尿病大鼠心肌超微结构的影响[J].上海医科大学学报,1998;25(2):108-110.
    [43]李卫红,肖强,李善英,等.叶酸对2型糖尿病大鼠心肌细胞凋亡的影响[J].中国临床 康复,2006,10(44):47-50.
    [44]廖淋,徐德风,王绍田.糖尿病下肢血管病变的彩色多普勒检查及治疗[J].中华内分泌代谢杂志,1996,12(3):186-187.
    [45]马朝军,龙平,刘卓敏,等.体外前列腺素 E1增强尿激酶溶栓作用的研究[J].中华心血管病杂志,1992,20(6):355-356.
    [46]徐春荣,陈刚,王峰.前列腺素 E1和洛汀新对糖尿病心肌病患者的左心结构与功能的影响[J].江苏医药杂志,2001,9(27):686-687.
    [47]李丽疆,李雅江,杨玉红,等.胰激肽原酶对大鼠糖尿病性心肌病的影响[J].2006,29(1):8-10.
    [48]周吉银,周世文.小檗碱对糖尿病大鼠心肌 PPARs 表达的影响[J].中国现代医学杂志,2008,18(10)1318-1323,1327.
    [49]赵洪涛,梁忆非,冯芹喜,等.黄连素对实验性2型糖尿病大鼠心肌 SOD 活性、MDA 含量水平的影响[J].牡丹江医学院学报,2007,28(3):9-11.
    [50]Zhou Jiyin,Zhou Shiwen,Tang Jianlin,et al.Effect of berberine on Cdk9 and cyclin T1expressions in myocardium of diabetic,rats[J].Journal of Medical Colleges of PLA (CHINA),2008,23(1):45-51.
    [51]董志恒,曲萌,李才.粉防己碱对糖尿病大鼠心肌保护作用及机制的研究[J].中国老年学杂志,2006,26(12):1646-1649.
    [52]周乐全,李丽,闫福曼,等.川芎嗪对糖尿病大鼠心肌细胞内钙浓度的影响[J].中国现代药物应用,2008,2(1):27-29.
    [53]杨昭玲,王守利,孙文菊.黄杨宁对糖尿病性心肌病左室功能的影响[J].临沂医专科学校学报,1998,20(1):80-81.
    [54]谷利,邢德刚,杨利敏,等.刺五加叶皂甙对实验性Ⅱ型糖尿病大鼠心肌 LPO 的影响[J].黑龙江医药,2002,25(4):3-3.
    [55]盂德欣,邢德刚,张义栋.刺五加叶皂甙对实验性非胰岛素依赖型大鼠心肌酶的影响[J].黑龙江医药科学,2001,24(5):10-11.
    [56]奚树刚,张学新,张文杰,等.龙芽葱木总皂苷对大鼠早期糖尿病心肌病的保护作用及机制[J].吉林大学学报(医学版),2008,34(2):209-213.
    [57]葛敏,刘彤,关宿东,等.绞股蓝总苷对糖尿病心肌病大鼠心脏功能的影响[J].沈阳药科大学学报,2007,24(6):355-359.
    [58]俞浩,刘海鹏,刘德义,等.丹皮多糖-2b 对糖尿病大鼠心肌病变的保护作用[J].中国中医基础医学杂志,2006,12(5):389-391.
    [59]陈三妹,毛孙忠,李剑敏,等.香菇多糖对糖尿病大鼠心肌损伤影响的实验研究[J].中国病理生理杂志,2003,19(8):1097-1099.
    [60]吴勇,欧阳静萍,潦淑珍,等.黄芪多糖对糖尿病大鼠微血管病变的作用及机制的研究[J].湖北中医学院学报,2001,3(3):16-17.
    [61]毛先睛,欧阳静萍,吴勇.中药黄芪多糖对糖尿病大鼠心肌 GLUT4表达的影响[J].武汉大学学报(医学版),2005,26(4):457-459.
    [62]陈蔚,俞茂华,叶红英.黄芪多糖保护糖尿病心肌的初步研究[J].复旦学报(医学版),2007,34(4):541-544,548.
    [63]陈蔚,叶红英,俞茂华.黄芪多糖对糖尿病心肌胶原代谢的影响[J].上海交通大学学报(医学版),2007,27(10):1206-1209.
    [64]马善峰,关宿东,汪思应.大豆异黄酮对糖尿病大鼠心肌损伤保护的实验研究[J].实用医学杂志,2005,21(7):673-675.
    [65]马善峰,贾强,关宿东,等.大豆异黄酮对糖尿病大鼠心肌组织 NO 含量和 NOS 活性的影响[J].中药新药与临床药理,2006,17(2):89-92.
    [66]宋洁,胡金兰,柯道平,等.银杏叶总黄酮对糖尿病大鼠心肌损伤的保护作用[J].安徽医科大学学报,2006,41(2):153-156.
    [67]赵伟,孙国志,李荣侠,等.沙棘总黄酮对糖尿病心脏病大鼠心肌细胞 Bax、Bcl-2蛋白表达的影响[J].中国比较医学杂志2007,17(8):62-62.
    [68]陈小萍,徐丽,陈海英.木犀草素对早期糖尿病大鼠心肌组织中醛糖还原酶、NOS 系统及 Na+-K+-ATPase 的影响[J].山西医科大学学报,2007,38(8):689-692.
    [69]李家富,李红辉,何涛.槲皮素对实验性糖尿病大鼠心肌的保护作用[J].沪州医学院学报,1999,22(2):102-105.
    [70]王琴,卢集森.葛根素的临床应用新进展[J].广州医药,2001,32(4):2-5.
    [71]詹宇红,赵同峰,邓华聪,等.阿魏酸钠抑制糖尿病大鼠心肌非酶糖基化的形成[J].基础医学与临床,2005,25(5):455-458.
    [72]程梅,高海青,许玲,等.葡萄子原花青素对糖尿病大鼠心肌超微结构的影响[J].山东大学学报(医学版),2007,45(4):404-406,411.
    [73]岳兴如,阮耀,阮翘.齐墩果酸对早期糖尿病大鼠心肌非酶糖基化及氧化应激反应的影响[J].中药药理与临床,2006,22(3):32-33.
    [74]张峰,吕清江,李长运,等.牛磺酸对糖尿病心肌病大鼠的保护作用[J].临床心血管病杂志,2005,21(1):22-25.
    [75]吴建宇,唐风华,林志明,等.灵芝孢子粉对糖尿病大鼠心肌细胞 Bax、Bcl-2基因表达的影响[J].海峡药学,2007,19(9):19-21.
    [76]吴建字,王淑秋.灵芝孢子对糖尿病大鼠心肌线粒体细胞色素 C 的影响[J].黑龙江医药科学,2006,29(4):64-64.
    [77]阮耀,岳兴如,徐持华,等.黄芪对早期糖尿病大鼠心肌非酶糖基化及氧化应激反应的影响[J].中药药理与临床,2008;24(1):47-49.
    [78]李长运,曹林生,曾秋棠.黄芪注射液下调血管紧张素 Ⅱ 受体2型的表达保护糖尿病心肌病大鼠的观察[J].中日友好医院学报,2004,18(6):350-353.
    [79]阮耀,岳兴如,李晓明,等.黄芪对糖尿病大鼠心肌 MDA 及 SOD,GSH-PX,Na~+-k~+-ATP 酶活性的影响[J].时珍国医国药,2007,18(3):593-594.
    [80]张淑芹,中梅淑.2-型糖尿病大鼠心肌一氧化氮合酶的改变及翻白草的影响作用研究[J].中医药信息,2005,22(3):59-60.
    [81]谢宗长,钱振坤,柳重威.人参抗实验性糖尿病大鼠脂质过氧化损伤的研究[J].中国 中西医结合杂志,1993,13(5):289-290.
    [82]杨骄霞,张杰,杨旭东.银杏叶提取物对2型糖尿病大鼠心肌非酶糖基化及氧化应激反应的影响[J].牡丹江医学院学报,2007,28(5):34-36.
    [83]李旭升,陈国荣,毛孙忠,等.银杏叶提取物对糖尿病大鼠心肌线粒体的保护作用[J].中国康复理论与实践,2005,11(6):417-418.
    [84]许琪,夏晓英,陈慎仁.益母草防治实验性糖尿病心肌损伤的研究[J].中国糖尿病杂志2007,15(6):370-371.
    [85]许琪,陈慎仁,陈立曙,等.益母草注射液对糖尿病心肌病大鼠心肌细胞凋亡和增殖活性的作用研究[J].中国实用内科杂志2006,26(6):926-928.
    [86]刘星.蜂王浆对实验性2型糖尿病大鼠心肌的保护作用[J].牡丹江医学院学报,2003,24(5):1-3.
    [87]俞淑静,王晓梅,周晶.复方丹参注射液对糖尿病性心肌病患者血清黏附分子及 C 反应蛋白的影响[J].山东医药,2008,48(13):63-64.
    [88]钟鑫,艾静,王宁,等.大明胶囊对糖尿病大鼠心肌 L 型Ca~(2+)通道蛋白 mRNA 表达的影响[J].中国药理学通报,2005,21(5):618-621.
    [89]钟鑫,艾静,王育文,等.大明胶囊对2型糖尿病大鼠心肌钾通道 KV4.2mRNA 表达的影响[J].中国药学杂志,2005,40(23):1831-1833.
    [90]姜德友,柳成刚,朴永植,等.糖心康对糖尿病大鼠心肌细胞凋亡促进与抑制因子基因表达的调控作用[J].时珍国医国药,2007,18(9):2114-2115.
    [91]姚丽,孙洋,白玉宾,等.糖心康对糖尿病大鼠心肌 NF-κβ虑表达的影响[J].实验动物与比较医学,2007,27(3):160-162,167.
    [92]姜德友,白玉宾,姚丽,等.糖心康对糖尿病大鼠心肌基因 ARmRNA 表达的影响[J].中国中医基础医学杂志,2006,12(11):831-833.
    [93]李敏,林兰,倪青,等.糖心平对糖尿病大鼠心肌组织糖化终产物受体 mRNA 表达的调节[J].中国中医基础医学杂志,2007,13(3):206-207.
    [94]李敏,林兰,倪青,等.糖心平对实验性糖尿病心肌病变血管紧张素 Ⅱ 及其1型受体mRNA 变化的影响[J].医学研究杂志,2007,36(4):31-34.
    [95]罗小星,靳利利,薛军,等.开心胶囊对糖尿病大鼠心肌 p53 mRNA 表达的调节[J].中国中西医结合急救杂志,2003,10(2):114-115.
    [96]李赛美,储全根,莫伟,等.加味桃核承气汤及不同提取物对糖尿病大鼠心肌纤维化的影响[J].南京中医药大学学报,2005,21(4):236-239.
    [97]储全根,李赛美,莫伟.加味桃核承气汤及其不同提取物对糖尿病大鼠心肌细胞GluT4 mRNA 表达的影响[J].中国中医基础医学杂志,2006,12(12):912-914.
    [98]储全根,李赛美,莫伟,等.加味桃核承气汤及其不同提取物对糖尿病大鼠心肌细胞钙转运的影响[J].中国中医药信息杂志,2006,13(6):43-45.
    [99]邝秀英,邓常青,熊曼琪,等.三黄降糖方对糖尿病大鼠心肌血管紧张素及相关因子的影响[J].湖南中医学院学报,2004,24(3):6-8,11.
    [100]韩雪山,杨旭芳,包海花.黄连解毒汤对链脲佐菌素所致大鼠心肌损伤的保护作用 研究[J].中国林副特产,2004,(2):38-39.
    [101]丁选胜,戴德哉,叶波平,等.人参白虎汤对糖尿病大鼠心肌中 Glu T4基因表达的影响[J].中国药科大学学报,2004,35(5):460-465.
    [102]李磊,贾秋颖,李燚绯.糖心安汤剂治疗糖尿病性心肌病的临床研究[J].吉林中医药,2006,26(8):14-15.
    [103]郑虎占,董泽宏,余靖.中药现代研究与应用[M].北京:学苑出版社,1997,110.
    [104]戴红.养阴清热活血法对糖尿病大鼠心肌细胞蛋白激酶 CβⅡ表达的影响[J].湖北中医杂志,2004,26(11):5-7.
    [105]徐远芳.活血开郁法对糖尿病大鼠心肌 bcl-2 mRNA 表达的调节[J].中国中医急症,2004,13(5):308-308,310.
    [106]杨晓晖,赵凤志,等.止消通脉宁对糖尿病大鼠心肌超微结构和酶组化的影响[J].北京中医药大学学报,1998,21(2):32-35.
    [107]朴元林,洪英杰,葛光岩.六味地黄汤对实验性糖尿病大鼠心、肝、肾组织中过氧化氢酶活性和过氧化脂质含量的影响[J].延边大学医学学报,1998,21(3):156-160.
    [108]孙红梅,白丽敏,李德伟,等.糖心宁对实验性糖尿病心脏超微结构的影响[J].中国中医基础医学杂志,1998,4(1):25-27.
    [1]Simpson P,Savior S.Differentiation of rat myocytes in sigle cell cultures with and without proliferating nonmyocardial cells[J].Circ Res,1982,50:101.
    [2]邸美仙,李应东.乳鼠心肌细胞的培养[J].中华中医药学刊,2007,25(4):691-692.
    [3]邵华,金秀东,梁军,等.不同差速贴壁时间对心肌细胞培养的影响实验性研究[J].牡丹江医学院学学报,2008,29(1):3-4.
    [4]张卓然.培养细胞学与细胞培养技术[M].上海:上海科学技术出版社,2004:41.
    [5]于颖彦,张伟,罔田茂[日].实用免疫组织化学技术与图谱[M].上海:上海科学普及出版社.1996:8.
    [6]程宝鸾.动物细胞培养技术[M].广州:中山大学出版社,2006:3,119.
    [7]Harary L,Farley B.In vitro studies of single isolated beating heart cells.Science,1960,131:1674-1675.
    [8]Soonpaa MH,Field LJ.Survey of studies examining mammalian cardiomyocytes DNA synthesis.Circ Res,1998,83:15.
    [1]邸美仙,李应东.乳鼠心肌细胞的培养[J].中华中医药学刊,2007,25(4):691-692.
    [2]郝然.参脉注射液对心肌细胞急性缺血再灌注损伤保护作用及机制的研究[D].北京中医药大学学位论文,2004:26-27.
    [3]程宝鸾.动物细胞培养培养技术[M].广州:中山大学出版社,2006:91-92.
    [4]于颖彦,张伟,罔田茂[日].实用免疫组织化学技术与图谱[M].上海:上海科学普及出版社,1996:8.
    [5]司徒镇强,吴军正.细胞培养.第2版.世界图书出版社,2007:200-201.
    [6]Simpson P,Savior S.Differentiation of rat myocytes in sigle cell cultures with and without proliferating nonmyocardial cells[J].Circ Res,1982,50(1):101-116.
    [1]司徒镇强,吴军正.细胞培养[M].世界图书出版社,2007:200-201.
    [2]张卓然.培养细胞学与细胞培养技术[M].上海科学技术出版社,2004:429-430.
    [3]祁洁,刘素筠.罗格列酮对糖尿病大鼠心肌组织中磷酸化 IKK,IκBα表达的影响[J].中国医疗前沿,2008,3(20):28-30.
    [4]文重远,刘永明,王腾,等.罗格列酮对2型糖尿病心肌能量底物代谢的影响[J].中国病理生理杂志,2005,21(6):1081-1084.
    [5]汪华玲,覃数,陈齐红.PPAR_γ激动剂抑制 AngⅡ 诱导乳鼠心肌细胞合成肿瘤坏死因子[J].重庆医科大学学报,2005,30(3):373-375.
    [6]李洁,刘乃丰,魏芹.罗格列酮对糖尿病大鼠心肌纤维化及核因子 κB、结缔组织生长因子表达的影响[J].中国新药与临床杂志,2008,27(3):169-172.
    [7]祁洁,刘素筠.PPAR_γ 激动剂罗格列酮对糖尿病大鼠心肌细胞超微结构的影响[J].临床医药实践杂志.2008,17(11):881-884.
    [8]王绵,苏胜偶,张力辉,等.罗格列酮对2型糖尿病大鼠心肌细胞凋亡及其基因表达的影响[J].中国医师杂志,2005,7(2):181-183.
    [9]宋陈芳,熊世熙.尹学恩,等.几种 ACEI 对实验性糖尿病大鼠心肌细胞凋亡和 Caspase-3及 Fas、FasL 基因表达影响的类效应[J].武汉大学学报(医学版),2008,29(1):24-27.
    [10]李辉,李俭春,江时森,等.卡托普利对糖尿病大鼠心肌组织肾素—血管紧张素系统的影响[J].中国药理学通报,1996,12(4):323-325.
    [11]陈刚,林丽香,庄维特,等.卡托普利对糖尿病性心肌病大鼠心肌组织能量代谢和炎症反应的影响[J].第一军医大学学报,2004,24(7):827-829.
    [5]Takano H,Hasegawa H,Nagai T,et al.Implication of cardiac remodeling in heart failure[J].Intern Med,2003,42(6):465-469.
    [2]周艳芳,欧阳静萍,周成慧,等.苦参碱对心肌成纤维细胞细胞周期的影响及其机制[J].武汉大学学报(医学版),2004,25(3):220-223.
    [1]章红,方朝晖.糖尿病心肌病发病机制的研究[J].医学综述,2008,14(3):419-421.
    [2]Baud L,FouquerayB,Bellocq A,et al.Growth bormone and somatostation in glomerular injury[J].Nephrol,1999,12(1):18.
    [3]Weber KT.Fibrosis and hypertensive heart disease.Curr Opin Cardiol,2000,15(4):264-272.
    [4]Krzes inski JM,Rorive G,Gauw enberge H.Hypertension and ventricular hypertrophy.Acta Cardiologica,1996,2:143-154.
    [1]梁科研,王洪新,包品.高糖加高胰岛素对心肌成纤维细胞增殖的影响[J].锦州医学院学报,2006,27(1):35-37.
    [1]Searls YM,Smirnova IV,Fegley BR,et al.Med Sci Sports Exerc,2004,36(11):1863-1870.
    [2]Mi zushige K,Yao L,Noma T,et al.Circulation,2000,101(8):899-907.
    [3]勒陶然,刘宽.糖尿病心肌病心肌间质重构[J].国外医学心血管疾病分册,2005,32(4):208-210.
    [1]梁科研,王洪新,包品.高糖加高胰岛素对心肌成纤维细胞增殖的影响[J].锦州医学院学报,2006,27(1):35-37.
    [2]林岚,洪华山,王一波,等.胰岛素对心脏细胞增殖的影响及其在心肌肥厚中的作用[J].中国药理学通报,2001,17(6):661-665.
    [3]Santini MP,Tsao L,Monassier L,et al.Enhancing repair of the manlmalian heart.Circ Res 2007,100(12):1732-1740.
    [4]Mazhari R,Hare JM.Advances in cell-based therapy for structural heart disease.Prog Cardiovasc Dis.2007,49(6):387-395.
    [1]梁科研,王洪新,包品.高糖加高胰岛素对心肌成纤维细胞增殖的影响[J].锦州医学院学报,2006,27(1):35-37.
    [1]张风雷,玄军华,崔良民.肿瘤坏死因子-α与糖尿病心肌病关系的研究[J].济宁医学院学.2003,26(3):13-15.
    [2]钟文亮,庄维特,陈刚,等.肿瘤坏死因子α和肿瘤坏死因子α转化酶基因在糖尿病心肌病变大鼠心肌中的表达[A].中华糖尿病杂志,2005,13(4):306-308.
    [3]高俊杰,潘晓黎,吴伟,等.转化生长因子β1和胶原蛋白与糖尿病心肌纤维化的实验研究[J].中国老年病学杂志,2006,26(4):505-507.
    [4]丁丽颖,李玉宏.高糖对乳鼠体外心肌细胞TGF-β_1分泌的影响及胰岛素干预作用[J],中国医师杂志,2005,7(2):222-223.
    [5]雷红,熊世熙,曹萍.转化生长因子β_1与糖尿病心肌病关系的实验研究[J].中国糖尿病杂志,2002,10(1):11-14.
    [6]马善峰,贾强,关宿东,等.大豆异黄酮对糖尿病大鼠心肌组织 NO 含量和 NOS 活性的影响[J].中药新药与临床药理.2006,17(2):89-92.
    [7]Kapadia S,Lee J,Torre-Amione G,et al.Tumor necrosis factor-alpha gene and protein expression in adult feline myocardium after endotoxin administration[J].J Clin Invest,1995,96(2):1042-1052.
    [8]Grunenfelder J,Nminiati D,Murata S,et al.Up regulation of Bcl-2 through hyperbaric pressure transfection of TGF-β_1 ameliorates is chemiare perfusion injury in rat cardiac allo-Grafts[J].J Heart Lung Transplant,2004,21(2):244-250.
    [9]Song W,Lu X,Feng Q.Tumour necrosis factor-αinduces apoptosis via inducible nitric oxide synthase in neonatal mouse cardiomyocytes[J].Cardiovas Res,2000,45(3):595-602.
    [10]Golfman L,Doxin IM,Takeda N,et al.Cardiac sarcolemmal Na~+-Ca~(2+) exchange and Na~+-K~+ ATPase activities and gene expression in alloxan-induced diabetes in rats.Mol Cell Biochem,1998,188(1-2):91-101.
    [1]丁丽颖,李玉宏.高糖对乳鼠体外心肌细胞 TGF-β1分泌的影响及胰岛素干预作用[J]中国医师杂志,2005,7(2):222-223.
    [2]Loscalzo J,Welch G.Nitric oxide and its role in the cardiovascular system.Prog ardiovasc Dis,1995,38:87.
    [3]金惠铭,卢建,殷莲华,等.细胞分子病理生理学.郑州大学出版社,2002:225.
    [4]Maree A,Peer G,Iaina A,et al.Nitric oxide in streptozotocin induced diabetes mellitus in rats[J].Clin Sci(Lond),1996,90(5):379-384.
    [5]中药新药与临床药理,2006,17(2):89-92.
    [6]韩红彦,万为国,张翠.ATRA 对糖尿病大鼠心肌内 iNOS 表达的影响[J].武汉大学学报,2008,29(6):727-731.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700