曲美他嗪对大鼠脑缺血再灌注损伤保护作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:通过大鼠局灶性脑缺血再灌注模型,研究曲美他嗪(TMZ)对脑缺血再灌注损伤的保护作用。
     方法:参照Zea Longa线栓法并加以改进建立局灶性脑缺血再灌注模型。健康雄性SD大鼠,随机分为假手术组(sham,NS 5ml/kg)、缺血再灌注组(I/R, NS 5ml/kg)、TMZ低剂量组(5mg/kg)、TMZ高剂量组(10mg/kg)。每日上午灌胃给药1次,连续用药2周,末次给药1h后施行手术。缺血2h后将线拔出再灌注。各组动物于再灌注24h后,进行大鼠神经功能缺损评分,评分后处死,行脑病理组织学观察、脑组织含水量及脑梗死体积检测,SOD、ATP酶活性和MDA含量测定。
     结果:1.大鼠缺血2h再灌注24h后,各组动物均出现神经缺损症状,缺血再灌注组尤为显著,TMZ组症状改善,大鼠神经功能损害评分降低(P<0.05);TMZ两个剂量组均使脑梗死体积缩小,脑含水量明显低于缺血再灌注组(P<0.01);病理组织学观察缺血再灌注组可见广泛的脑水肿,神经细胞固缩坏死,TMZ组病变减轻。
     2.大鼠缺血2h再灌注24h后,SOD、ATP酶活性明显降低,MDA含量显著增加,TMZ组SOD、ATP酶活性亦下降,MDA含量增加,但幅度较小,与缺血再灌注组相比有显著性差异(P<0.01)。
     结论:1.线栓法大鼠局灶性脑缺血再灌注损伤模型制作方法简单,病理改变与人脑缺血后的病变相似,具有较高的可靠性、重复性和实用性,是研究脑缺血再灌注损伤的较为理想的动物模型。2. TMZ能降低缺血再灌注后脑组织的MDA含量,增强SOD、ATP酶活力,可减轻脑缺血再灌注损伤,对脑细胞有明显的保护作用。
Objective: In this study, the rat model of focal cerebral ischemia reperfusion was established with the middle cerebral artery occlusion by reversible inserting a nylon thread method ,to study the anti-cerebral ischemia reperfusion injury effects of TMZ and its mechanisms.
     Methods: The model of local ischemia-reperfusion in rats was established with the suture occluded method invented by Zea Longa and improved properly in our lab. Male SD rats were randomly divided into four groups: rats in group1 (sham)only received anesthesia and vessel separation; rats in group 2 received ischemia reperfusion operation and NS ig; in group 3 and 4 received ischemia-reperfusion and TMZ 5 mg/kg and 10mg/kg daily respectively. Rats in each group had been administered drugs for 2 weeks and then operation was done. Two hours later, we drew out the suture to recover perfusion. The neurological deficit score of rats in each group was evaluated after 24h ischemia-reperfusion. Then the subjects were killed .The infarct volume and water content were measured and pathological examination was performed. Influence of TMZ on activity of SOD, ATPase and the content of MDA in cerebral cortex were tested by spectrophotometry.
     Results: 1.All animals in each group manifested neuronal function disorder after 24h reperfusion following 2h ischemia. The symptom of model rats were especially marked. It was found that TMZ could improve the symptom of neurological deficit after cerebral ischemia reperfusion ,and decrease significantly the infarct volume and water content of cerebrum. There were great difference comparaed with the model group(P<0.05). Pathological findings showed that there were wide-ranging cerebral edema and neuronal cells necrosis. The finding also showed that TMZ treatment groups were able to abate pathological changes. 2. The activity of SOD and ATPase was remarkably lower and the content of MDA was higher in ischemia reperfusion group
引文
[1] Longa EZ, Weinstein PR, Carlson S,et al. Reversible middle cerebral artery occlusion without craniotomy in rats[J].Stroke ,1989, 20 (1): 84-91.
    [2] 张均田.现代药理实验方法学(下册)[M].北京:北京医科大学中国协和医科大学联合出版社,1998:1241.
    [3] Young W, Rappaport ZH, Chalit DJ, et al. Regional brain sodium, potassium and water changes in the rat middle cerebral artery occlusion model of ischemia [J]. Stroke,1987, 18:751.
    [4] 李胜. 大鼠大脑中动脉区局灶性脑缺血模型[J].国外医学脑血管疾病分册,1998, 6(1) :3.
    [5] Koizumi J , Yoshida Y, Nakazawa T. Experimental studies of ischemic brain edema: A new experimental model of cerebral embolism in rats in which recirculation can be induced in the ischemic area[J] . Stroke, 1986 , 8 : 1.
    [6] Spey BS, Taylor FL, Terruli M, et al. Temporary middle cerebral artery occlusion in the rat; consistent protocol for a model of stroke and reperfusion[J]. Neuropathol Appl Neurobiol 2000, 26(3):232-242.
    [7] 关云谦, 孙明, 徐超.大鼠颈内动脉线栓法制备局灶性脑缺血模型及影响因素[J] . 国外医学脑血管疾病分册, 2001, 9 (3): 151-153.
    [8] 廖维靖, 刘淑红, 范明, 等. 线栓阻断大鼠大脑中动脉制作缺血性脑损伤模型的改良[J]. 中华物理医学与康复杂志,2002, 24 (6): 345-348.
    [9] 刘亢丁, 苏志强, 李毅平,等.实验性局灶性脑缺血再灌注动物模型的改进及评价[J]. 中风与神经疾病杂志,1997, 14(2):87.
    [10] Schmidley J W. Free radicals in central nervous system ischemia [J ] . Stroke , 1990 ,21(7) :1086 - 1090.
    [11] Haley E C, kassell N F, Alves W M ,et al . Phas trial of tirilazad in aneurismal subarachnoid hemorrhage [J] . J Neurosurg , 1995 ,82 :786-790.
    [12] Hallenbeck JM, Dutka AJ. Background review and current voncepts of reperfusion injury[J]. Arch Neurol, 1990, 47:1245-1249.
    [13] Suzuki J.Chemiluiuminescence in hypoxic brain[J]. Stroke, 1988,19:65-81.
    [14] Mccord JM.Oxygen derived free radicals in postischemic tissue injury[J]. N Engl J Med,1985,312:159-164.
    [15] Chu G X, Chen X. Protective effect of ginsenosides on acute cerebral ischemia/ reperfusion injury of rats [J] . Chinese J Pharmacol and Toxical , 1989 ,3(1) :18-22.
    [16] Niki E, Yamato Y, komouro E ,et al . Membrane damage due to lipid oxidation [J]. Am J Clin Nutr, 1991, 53(suppl) :201-205.
    [17] 海春旭. 自由基生物学于抗氧化剂研究进展[M].西安:陕西旅游出版社,1999: 82-84。
    [18] 李宏. ATPase的研究进展[J].生物学杂志,1996,1:9-12.
    [19] Stojanoric T, Mrsulja BB. Alteration in synaptosmal membrane Na~+-K~+- ATPase of the gerbil cortex and hippocampus following reversible brain ischemia[J]. Metab Brain Dis, 1988, 13(4): 256.
    [20] Wheeler KP, Walker JA, Barker DM.Lipid requirement of the membrane sodium-plus-potassium ion-dependent adenosine triphosphatase system[J]. Biochem J, 1975, 146:713-722.
    [21] 成同怡. Na~+-K~+-ATPase酶的结构和功能[J].国外医学分子生物学分册,1990,12(5):236-238.
    [22] Yung GY, Chen SF , Kinouchi H ,et al. Edema cation content and ATPase activity after middle cerebral artery occlusion in rats[J ].Stroke ,1992 ,23(9):1331-1336.
    [23] Scherar M, Buch E, Stuurt J. Oxidative stress impairs the function of sarcoplasmic reticulum by oxidation of sulfhydey groups in the Ca~(2+) - ATPase [J]. Arch Bichem Biophys, 1986, 246(4):589-601.
    [24] Veitch K, Maisin L, Hue L.Trimetazidine effects on the damage to mitochondrial functions caused by ischemia and reperfusion[J].Am J Cardial,1995,76(6): 25-30.
    [25] Elimadi A, Morin D, Sapena R, et al. Comparison of the effects of cyclosporine A and trimetazidine on Ca~(2+)-dependent mitochondrial swelling[J]. Fundam Clin Pharmacol,1997,11(5):440-447.
    [26] Guarnieri C , Muscari C.Effect of trimetazidine on mitochondrial function and oxidative damage during reperfusion of ischemiahypertrophied rat myocardium[J]. Pharmacology,1993,46(6):324-331.
    [27] Williams FM,TandaK,Kus M,et al.Trimetazidine inhibits neutrophil accumulation after myocardial ischemia and reperfusion in rabbits[J].J Cardiovasc Pharmacol,1993,22(6):828-833.
    [28] Menxies SA,Betx AL, Hoff BT, et al. Contribution of ions and albumin to the formation and resolation of ischemia brain edema[J]. J Neurosurg 1993;78:257
    [29] 褚晓凡,饶明俐,彭健,等. 大鼠局灶脑缺血再灌注神经细胞与微循环形态学动态病理变化[J]. 中国临床康复,2002, 13:1904-1905
    [30] 王根发,王文安,周永炜,等.三七皂甙对大鼠脑缺血再灌注损伤的保护作用[J]. 中国临床康复,2002, 9:1268-1269
    [31] Oguzhanoglu A, Kurt T,Ortac R,et al. Somatosensory evoked potential and histopathological investigations in ischaemia-induced brain damage: effects of trimetazidine in rats [J]. International Journal of Neuroscience, 2003, 113(4):447-454.
    [32] Harpey C, Clauser,P, Labrid C., et al. Trimetazidine, a cellular anti-ischemic agent[J]. Cardiovascular Drug Reviews, 1989,6:292-312.
    [33] Smirnov A, Zarubina, I, Krivoruchko B, et al. Effect of trimetazidine on the brain metabolism during acute ischemia complicated by hypoxia [J]. Biulleten’ Eksperimental’noi Biologii i Meditsiny, 1999, 127:299-301.
    [34] Suzer T, Coskun E, Demir S, et al. Lipid peroxidation and glutathione levels after cortical injection of ferricchloride in rats: Effect of trimetazidine and deferoxamine [J].Research in Experimental Medicine,2000, 199: 223-229.
    [35] Tselepis A, Doulias P, Lourida E, et al.Trimetazidine protects low-density lipoproteins from oxidation and cultured cells exposed to H2O2 from DNA damage[J]. Free Radical Biology & Medicine, 2001,30:1357-1364.
    [1] 董斌. 罗其中. 徐英辉. 脑缺血半暗带区研究进展 [J]. 中华神经外科疾病研究杂志,2005:4(1):90-92.
    [2] Sharp FR , Lu A , Tang Y, et al . Multiple molecular penumbras after focal cerebral ischemia[J] . J Cereb Blood Flow Metab , 2000 , 20 :1011-1032.
    [3] White BC ,Grossman LI ,O NeiI BJ et a1. Global brain ischemia and repprfusion[J].Ann Emerg ,1996 ,27 :588.
    [4] Bergeron M, Ferriero DM, Vreman HJ , et al . Hypoxia-ischemia , but not hypoxia alone , induces the expression of hemeoxygenase21 (HSP-32) in newborn rat brain [J].J Cereb Blood Flow Metab , 1997 , 17 :647-658.
    [5] Gillardon F, Lenz C, Waschke KF,et al.Altered expression of bcl-2,bcl-x,Bax, and c-Fos colocalizes with DNA fragmentation and ischemic cell damage following middle cerebral artery occlusion in rats[J].Brain Res Mol Brain Res,1996, 40:254-260.
    [6] Endres M, Namura S, Shimizu-Sasa mata M, et al.Attenuation of delayed neuronal death after mild focal ischemia in mice by inhibition of the caspase family[J]. J Cereb Blood Flow Metab, 1998,18(3):238-247.
    [7] Gong C , Qin Z , Betz AL , et al . Cellular localization of tumor necrosis factor alpha following focal cerebral ischemia in mice [J] . Brain Res , 1998 , 801:1-8.
    [8] Ruocco A , Nicole O , Docagne F , et al . A transforming growth factor-beta agonist unmasks the neuroprotective role of this endogenous cytokine inexcitotosic and ischemic brain injury [J] . J Cereb Blood Flow Metab ,1999 , 19 :1345-1356.
    [9] Lin TN , Te J , Lee M, et al . Induction of basic fibroblast growth factor(bFGF) expression following focal cerebral ischemia [J] . Brain Res Mol Brain Res , 1997 , 43 :255-265.
    [10] Huang LE , Willmire WG, Gu J , et al . Inhibition of hypoxia inducible factor11activation by carbon monoxide and nitric oxide. Implications for oxygen sensing and signaling[J] . J Biol Chem, 1999 , 274 :9038-9044.
    [11] Huang Z , Paul L. Effacts of cerebral ischemia in mice deficient in neuronal nitric oxide synthase[J]. Science , 1994 , 265 :1883.
    [12] Faraci FM. Nitric oxide production during focal cerebral ischemia in rats[J]. Stroke , 1994 , 25 :697.
    [13] Huang Z. Huang PL , Panahian , et al. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase[J]. Science , 1994 ,265 :1883.
    [14] Huang Z , Huang PL , Ma J , et al. Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro-l-arginine[J]. J Cereb Blood Flow Metab, 1996, 16:981.
    [15] Iadecola C , Zhang F , Casey R , et al. Knockout mice lacking the inducible nitric oxide synthase gene are resistant to cerebral ischemia[J]. Soc Neurosci Abstract , 1996 , 22 :1693.
    [16] Stronc A, Tomlinson BE, Venables CS.Flow and neuronal density in tissue surrounding chronic infarction[J].Stroke,1984,15:180-181.
    [17] Takano K, Latour LL , Formato JE , et al . The role of spreading depression in focal ischemia evaluated by diffusion mapping[J]. Ann Neurol,1996 ,39 :308-318.
    [18] Frykholm P , Andersson JLR , Valtysson J , et al. A metabolic threshold of irreversible ischemia demonstrated by PET in a middle cerebral artery occlusion reperfusion primate model[J]. Acta Neurol Scand, 2000, 102 (1): 18-26.
    [19] Heiss WD, Kracht L, Grond M, et al. Early [11C]flumazenil/ H2 opositron emission tomography predicts irreversible ischemic cortical damage in stroke patients receiving acute thrombolytic therapy[J]. Stroke, 2000, 31 (2): 366-369.
    [20] Read SJ, Hirano T, Abbott DE, et al. The fate of hypoxic tissue on F18 fluoromisonidazole positron emission tomography after ischemic stroke[J]. Ann Neurol , 2000 , 48 (2) : 228-235.
    [21] Kidwell CS, Saver JL, Mattiello J, et al. Thrombolytic reversal of acute human cerebral ischemic injury shown by diffusion/ perfusionmagnetic resonance imaging[J]. Ann Neurol , 2000 , 47 ( 4) : 462-469
    [22] Baron JC, Frackowiak RSJ, Herholz K,et al. Use of PET methods for measure of cerebral energy metabolism and hemodynamics in cerebro vascular disease[J] . J Cereb Blood Flow Metab, 1989, 9:723-742.
    [23] Tenjin H, Ueda S, Mizukawa N , et al. Positron emission tomographic measure-ment of acute hemodynamic changes in primate middle cerebral artery occlusion[J] . J Neurol Med Chir, 1992 ,32 :805-810.
    [24] Baron JC ,Bousser MG,Rey A ,et al. Reversal of focal“misery-perfusion syndro-me”by extra2intracranial arterial bypass in hemodynamic cerebral ischemia. A case study with 150 positron emission tomography [J]. Stroke, 1981,12:454-459
    [25] Heiss WD, Graf R, Wienhard K, et al . Dynamic penumbra demonstrated by sequential multi2tracer PET after middle cerebral artery occlusion in cats[J]. J Cereb Blood Flow Metab, 1994 ,14 :892-902.
    [26] Marchal G,Serrati C ,Rioux P , et al . PET imaging of cerebral perfusion and oxygen consumption in acute ischemia :relation to outcome[J]. Lancet ,1993,341: 925-927.
    [27] Rother J , De Crespigny AJ , D’Arceuil H ,et al . Recovery of apparent diffusion coefficient after ischemia2induced spreading depression relates to cerebral perfusion gradient[J]. Stroke, 1996, 27:980.
    [28] Baird AE, Warach S. Magnetic resonance imaging of acute stroke[J].J Cereb Blood Flow Metab , 1998 , 18 (6) : 583-609.
    [29] Lutsep HL, Albers GW, De Crespigny A, et al. Clinical utility of diffusion weighted magnetic resonance imaging in the assessment of ischemic stroke[J]. Ann Neurol , 1997 , 41 (5): 574-580.
    [30] Albers GW. Diffusion2weighted MRI for evaluation of acute stroke[J]. Neurology, 1998 , 51 (Suppl 3) : 47-49.
    [31] Barber PA, Darby DG, Desmond PM , et al. Prediction of stroke outcome with echoplanar perfusion and diffusion weighted MRI[J]. Neurology , 1998,51(2) : 418-426.
    [32] Baird AT, Warch S. Magnetic resonance inaging of acute stroke [J].Cereb Blood Flow Metab,1998,18(6):593-609.
    [33] Grandin CB, Duprez TP, Smith AM, et al. Usefulness of magneticresonance-derived quantitative measure ments of cerebral blood flow and volume in prediction of infarct growth in hyperacute stroke [J]. stroke, 2001,32(5):1147-1153.
    [34] Fisher M. Characterizing the target of acute stroke therapy[J]. Stroke 1997 ,28 : 866-872.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700