生物矿化针铁矿处理含铬废水及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁的(氢)氧化物,是土壤、沉积物和水体的常见组分。特别是针铁矿(α—FeOOH)是分布最广的表生矿物,是红土型矿石中的主要矿物成分,含量≥15%,也是我国东海、长江口和黄河口海域的各种水合氧化物中的主要成分,且具有稳定的化学性质和较高的比表面积,吸附性能良好,对阴、阳离子、重金属离子及有机螯合剂在地表环境中的迁移和沉淀有重要影响,因而具有十分重要的环境学意义。利用这样一种来自于天然的,因而具有良好的环境属性的物质来处理重金属废水,具有其它许多材料所不具备的环境协调性等方面的优势。
     本研究进行了利用天然生物矿化针铁矿处理含铬模拟废水以及大冶有色金属公司的实际废水实验,旨在研究该针铁矿对重金属的吸附固定能力及机理,考察其作为吸附材料在废水处理及原位土壤修复中的可行性。
     在本实验得出的最优条件下,吸附Cr_2O_~(2-)与CrO_4~(2-)模拟废水的介质pH值为7.00,吸附Cr~(3+)的介质pH值为5.50;当Cr_2O_7~(2-)、CrO_4~(2-)和Cr~(3+)的初始浓度为10mg/L时,其去除率分别达到89.33%、88.27%和98.26%。用吸附了铬离子的针铁矿进行的二次吸附实验(条件同前)去除率达到80%左右,表明该针铁矿可以重复利用。淡水介质中的解吸实验(条件同吸附实验,样品吸附时的初始浓度为20mg/L)发现,Cr~(3+)的解吸率为0.318%,CrO_4~(2-)则为9.64%,表明针铁矿对重金属离子具有较强的固定能力。
     矿化合成样品吸附比较研究表明,表面较高浓度的有机大分子修饰FeOOH对CrO_4~(2-)的吸附行为与纯FeOOH存在明显差异。说明环境中针铁矿矿物与重金属离子的界面作用受到多糖、蛋白质等有机物的显著影响,同时它们的微结构也起剑重要作用,而比表面积并不是矿物吸附性能的决定因素。
     光电子能谱研究表明,吸附Cr~(3+)后样品的XPS谱图中出现了比较弱的N1s峰,说明有少量NO_3~-参与离子交换反应。对该N1s峰进行的退卷积处理表明N在针铁矿上发生了还原反应。对吸附Cr~(3+)后的样品进行的XPS测试发现,铬的化学状态除有Cr(Ⅲ)外,主要为Cr(Ⅵ)。表明Cr~(3+)在针铁矿表面发生了氧化反应。NO_3~-在针铁矿表面的还原作用有可能促进了Cr~(3+)氧化为Cr(Ⅵ)。吸附Cr_2O_7~(2-)样品的XPS测试,则发现铬的化学状态除Cr(Ⅵ)外还有Cr(Ⅲ)出现,说明在吸附过程中Cr(Ⅵ)发生了还原反应。
     SEM研究表明,针铁矿的微形貌及其中的粘土成分对铬离子的吸附都会有影响。草莓状颗粒上α-FeOOH含量较高,6价铬吸附量也较大,说明α-FeOOH对6价铬有较强的吸附能力;粘土含量较高的小颗粒则对Cr~(3+)吸附能力较强。TEM/EDX、SEM/EDX及XPS分析发现铬的吸附存在不均匀性。
Iron (oxy)hydroxide is a common consitutent of soils, sediments, and aquifers. As a iron (oxy)hydroxide, goethite (-FeOOH) is the most abundant mineral in the surface environment which accounts for 15% of weight in laterite. Goethite is also abundant in Dong hai, the estuaries of Yangtse River and Yellow river. Owing to its stable property, high surface areas and high reactivity, goethite has good performance as adsorbent and so has prominent effects on the transportation, transformation, and precipitation for a large number of cations, anions, metal ions, and organic chelates in subsurface environment. So, It has many advantages such as good and inimitable compatibility as a material for the treatment of heav-metal-containing waste water.
    In this research sorption and de-sorption studies were conducted to investigate the adsorption and binding efficiency for the chromium-containing model solution and factual waste water with the biomineralized goethite. The aim of this study was to probe the feasibility with it as sorbent material in enigeered system in plant and in situ environmental remediation.
    At the optimized conditions, the medium pH is 7.00 for CrO42- and Cr2O72-and 5.50 for Cr3+. When the initial concentration of chromium is 10 mg/L the removal ratio is 89.33%, 88.27%, and 98.26% respectively. Re-adsorption under the conditions ibidem got the removal ratio 80% indicated that the material can be utilized for several times. 0.318% and 9.64% desorption for Cr3+ and CrO42- were found with the specimens sorbed at the initial concention of 20mg/L under the condition same with adsorption showed a good binding ability of goethite for chromium.
    Comparison study of chromium adsorption with natural goethite and specimen biomineralized in systems with macromolecule organic substances found distinct difference in their behavior. So, it is concluded that the interface interaction between goethite and heavy metal ions was notably affected by
    
    
    organic materials such as polysaccharide, protein and its microstructure also plays important role in it and the specific surface area isn't the determinant factor.
    X-ray photoelectron spectroscopy (XPS) study of the specimem adsorbed with Cr3+ showing a weak Nls spectrum indicated the involving of NO3 in the sorption. The deconvolution of the Nls showed the deoxidization of NO3-. Apart of it, XPS analysis also found Cr (VI) chemical state besides Cr(III) which was the indication of the oxidation of. The deoxidization of NOs" may promote the oxidation of Cr (III). We also found Cr (III) in the XPS spectrum of the specimem adsorbed with C^O?2' besides Cr (VI). This is the evidence of the deoxidization of Cr2O72-.
    Scanning electron microscope (SEM) study showed that the micropattern of goethite and clays intermingled in the specimem also had distinct effects on the sorption of chromium. High content of -FeOOH on strawberry-like particles corresponding to high content of Cr (VI) demonstrated the strong binding ability of goethite for Cr (VI). However, the binding ability of goethite for Cr(III) is weaker than clay containing A^Os in the form of kaolin. TEM/EDX, SEM/EDX and XPS studies found the adsorption of Cr(III) on goethite non-homogeneously.
引文
[1] 丁述理,彭苏萍,刘钦甫等.膨润土吸附重金属离子的影响因素初探——以Zn~(2+)为例.岩石矿物学杂志,2001.20(4):579-582
    [2] 鲁安怀.环境矿物材料研究方向探讨.岩石矿物学杂志,1997.16(3):184—187
    [3] 鲁安怀.环境矿物材料在土壤、水体、大气污染治理中的利用.岩石矿物学杂志,1999.18(4):292—300
    [4] 宋和付,陈安国,夏畅斌.膨润土吸附去除Zn~(2+)、Cd~(2+)的研究.材料保护,2001.34(9):40-42
    [5] 胡付欣,杨性坤.改性膨润土及其在含铬废水处理中的应用研究.非金属矿,2002.21(1):46-47
    [6] 廖立兵,Donald G.,Fraser.铬酸根离子在羟基铁离子-蒙脱石体系中的吸附行为研究.地球科学—中国地质大学学报,2002.27(5):584-591
    [7] 姜浩,廖立兵,王素萍.低聚合羟基铁离子,蒙脱石复合体吸附砷的实验研究.地球化学,2002.31(6):593-601
    [8] 何宏平,郭九皋,朱建喜等.蒙脱石、高岭石、伊利石对重金属离子吸附容量的实验研究.岩石矿物学杂志,2001.20(4):573-578
    [9] 王毅,王艺,王恩德.改性蒙脱石吸附pb~(2+)、Hg~(2+)的实验研究.岩石矿物学杂志,2001.20(4):565-567
    [10] 何宏平,郭九皋,谢先德等.蒙脱石中Cu~(2+)的吸附态研究.地球化学,2000.29(2):198-201
    [11] 翁国坚,李湘祁,汤德平等.铝锆柱撑蒙脱石处理Cr(Ⅵ)废水的应用研究.福州大学学报(自然科学版),2003.31(1):116-119
    [12] 郑礼胜,王士龙,张虹等.用沸石处理含镉废水的试验研究.环境科学动态,1995.(4):19-21
    [13] 马鸿文,肖万,陶红.利用13X沸石分子筛净化含pb~(2+)废水的实验研究.现代地质,2003.17(2):157-162
    [14] 陶红,马鸿文.13X型沸石净化含铜废水的实验研究.岩石矿物学杂志,1999.18(4):329-334
    [15] 宋和付,夏畅斌,何湘柱.天然沸石对Pb(Ⅱ)和Ni(Ⅱ)离子的吸附作用研究.矿产与地质,2000.14(4):276-278
    [16] 罗道成,易平贵,陈安国.改性沸石对电镀废水中Pb~(2+)、Zn~(2+)、Ni~(2+)的吸附.材料保
    
    护,2002.35(7):41-43
    [17] 田玉红,毛文洁,刘正西.锰矿尾矿去除水中Cu~(2+)的实验研究.广西工学院学报,2001.12(3):50-53
    [18] 潘纲,秦延文,李贤良等.用EXAFS研究Zn在水锰矿上的吸附—解吸机理.环境科学,2003.24(3):1-7
    [19] 潘纲,李贤良,秦延文等.EXAFS研究Zn在δ—MnO_2上的吸附—解吸机理.环境科学,2003.24(4):54-59
    [20] 鲁安怀.环境矿物材料研究方向探讨.岩石矿物学杂志,1997.16(增刊):184-187
    [21] Paras Trivedi and Lisa Axe. Ni and Zn sorption to amorphous versus crystalline iron oxides: macroscopic studies. Journal of colloidal and inteface science, 2001. 244: 221-229
    [22] 赵宗升.氧化铁砷体系除砷机理探讨.中国环境科学,1995.15(1):18-21
    [23] 蒋馥华,张萍,桂江虹等.氧化铁凝胶对稀土离子的吸附研究.武汉冶金科技大学学报,1996.19(1):45-50
    [24] 冯易君,陈文浚,李首健等.水合氧化铁对废水中某些放射性核素的吸附研究.环境污染与防治,1995.17(2):19-23
    [25] 喻德忠,蔡汝秀,潘祖亭.纳米级氧化铁的合成及其对Cr(Ⅵ)的吸附性能研究.武汉大学学报(理学版),2002.48(2):136-138
    [26] Hesham Abdel-Samad, Philip R. Watson. An XPS study of adsorption of chromate on goethite(α-FeOOH). Applied Surface Science, 1997. (108): 371-377
    [27] Yiwei Deng, Malin Stjernstr(?)m and Steven Banwart. Accumulation and remobilization of aqueous chromium(Ⅵ) at iron oxide surfaces: application of a thin-film continuous flow-through reactor. Journal of Contaminant Hydrology, 1996. 21: 141-151
    [28] 樊耀亭,马英歌,童张法.水合氧化铁对痕量铀的吸附行为.环境化学,2001.20(5):470-476
    [29] 陈晋阳,黄卫.无定形氢氧化铁吸附水溶液中镉离子机理的XPS研究.分析测试学报,2002.21(3):70-72
    [30] Darren P. Rodda, John D. Wells, and Bruce B. Johnson. Anomalous adsorption of copper(Ⅱ) on goethite. Journal of colloid and interface science, 1996. 184:564-569
    [31] 周代华,李学垣,徐凤琳.Cu~(2+)在针铁矿表面吸附的红外光谱研究.华中农业大学学报,1996.15(2):153-156
    [32] 陆雅海,朱祖祥,袁可能.针铁矿对重金属离子的竞争吸附研究.土壤学报,1996.33(1):78-83
    
    
    [33] Liu C. and Huang P.M.. Pressure-jump relaxation studies on kinetic of lead sorption by iron oxides formed under the influence of citric acid. Geoderma, 2001. 102:1-25
    [34] Bargar J.R., Brown G.E Jr., and Park G.A.. Surface complexation of Pb(Ⅱ) at oxide-water inteface:Ⅱ. XAFS and bond-valence determination of mononuclear Pb(Ⅱ) sorption products and surface functional groups on iron oxides. Geochim. Cosmichim. Acta, 1997. 61:2639-2652
    [35] Bargar J.R., Brown G.E Jr., and Park G.A.. Surface complexation of Pb(Ⅱ) at oxide-water inteface:Ⅲ. XAFS determination of Pb(Ⅱ) and Pb(Ⅱ)-chloro adsorption complexes on goethite and alumina. Geochim. Cosmichim. Acta,1998. 62:193-207
    [36] Eick M.J., PeakJ.D., Brady P.V. et aL Kinetic of lead adsorption/desorption on goethite: Residence time effect. Soil Sci., 1999. 164:28-39
    [37] C.Liu and M. Huang. Kinetic of lead adsorption by iron oxides formed under the influence of citrate. Geochimica et Cosmochimica Acta, 2003.67(5): 1045-1054
    [38] Hesham Abdel-Samad, Philip R. Watson. An XPS study of the lead on goethite(α-FeOOH). Applied surface science, 1998. 136:46-54
    [39] 王丹丽,董晓丹,王恩德.针铁矿对重金属离子的吸附作用.黄金,2002.23(2):44-46
    [40] 王丹丽,王恩德.针铁矿及腐殖质对水体重金属离子的吸附作用.安全与环境学报,2001.1(4):1-4
    [41] A. Düker, A. Ledin, S. Karlsson et al. Adsorption of zinc on colloidal (hydr)oxides of Si, Al and Fe in the presence of fulvic acid. Applied Geochemistry, 1995.10:197-205
    [42] A. Garcia-Sánchez, A.Alastuey, X. Querol. Heavy metal adsorption by different minerals: application to the remediation of polluted soils. The Science of the Environment, 1999. 242:179-188
    [43] M. Ding, B. H. W. S. De Jong, S. J. Roosendaal, and A. Vredenberg. XPS studies on the electronic structure of bonding between solid and solutes: adsorption of Arsenate, chromate, phosphate, Pb~(2+), and Zn~(2+) ions on amorphous black ferric oxyhydroxide. Geochimica et Cosmochimica Acta, 2000. 64(7): 1209-1219
    [44] M.Lehmanm, A.I. Zouboulis, K.A. Matis. Modelling the sorption of metals from aqueous solutions on goethite fixed-beds. Environmental pollution, 2001. (113): 121-128
    [45] Jens Moiler, Anna ledin, Peter Steen Mikkelsen. Removal of dissolved heavy metals from pre-settled storm water runoff by iron-oxide coated sand (IOCS).
    
    From: http://www.enpc.fr/cereve/HomePages/varrault/www-jes-2002/Moeller-Paper-2002. pdf
    [46] Wang J.S., Huang P.M., Liaw W.K. et al. Kinetics of the desorption of mercury from selected freshwater sediments as influenced by chloride. Water, Air, Soil Pollution, 1991. 56:533-543
    [47] Durate A.C., Pereira M.E., Oliveira J.P. et al. Mercury desorption from contaminated sediments. Water, Air, Soil Pollution, 1991.56:77-82
    [48] J. Xue, P.M. Huang. Zinc adsorption-desorption on short-range ordered iron oxide as influenced by citric acid during its formation. Geoderma, 1995. 64:343-356
    [49] Young T.C., Depinto J.V. and Kipp T.W.. Adsorption and desorption of Zn, Cu and Cr by sediments from the Raisin River (Michigan). J. Great Lakes Res., 1987. 353-366
    [50] Schultz M.F., Benjamin M.M. and Ferguson J.F.. Adsorption and desorption of metals on ferrihydrite: reversibility of the reaction and sorption properties of the regenerated solid. Environ. Sci. Technol, 1987. 21:863-869
    [51] Allen P. Davis and Mahendra Upadhyaya. Desorption of cadmium from goethite (α-FeOOH). Water research, 1996. 30(8): 1894-1904
    [52] Kaijun Wang, Baoshan Xing. Adsorption and desorption of cadmium by goethite pretreated with phosphate. Chemosphere, 2002. 48:665-670
    [53] Andrew R. Felmy and James R. Rustad. Molecular statics calculation of proton binding to goethite surfaces: Thermodynamic modeling of the charging and protonation of goethite of goethite in aqueous solution. Geoehimica ET Cosmochimica Acta, 1998.62 (1): 25-31
    [54] D. Kova(?)evi(?), A. Pohlmeier, G. (?)zbas et al. The adsorption of lead species on goethite. Colloid and Surfaces, 2000. 166:225-233
    [55] S.R.Randall, D.M.Sherman, K.V. Ragnarsdottir et al. the mechanism of cadmium surface complexation on iron oxyhydroxide minerals. Geochimica et Cosmochimica Acta, 1999. 63(19/20): 2971-2987
    [56] Paras Trivedi, Lisa Axe and James Dyer. Adsorption of metal ions onto goethite: single-adsorbate and competitive systems. Colloids and surfaces, 2001. (191): 107-121
    [57] Mario Villalobo, Maya A. Trotz and James O.Leckie. Surface complexation Modeling of carbonate effects on the adsorption of Cr(Ⅵ), Pb(Ⅱ) and U(Ⅵ) on goethite. Environ. Sci. Technol, 2001. (35): 3849-3856
    [58] R. Weerasooriya, H.J. Tobschall. Mechanistic modeling of chromate adsorption onto
    
    goethite. Colloid and surfaces, 2000. (162): 167-175
    [59] 夏立江,王宏康.土壤污染及其防治.上海:华东理工大学出版社.2001.67-73
    [60] Scott E. Fendorf. Surface reactions of chromium in soils and waters. Geoderma, 1995.(67): 55-71
    [61] 丁振华,王明仕,冯俊明.天然铁(氢)氧化物对铜离子的吸附特征.矿物学报,2003.23(1):70-74
    [62] 汤艳杰,贾建业,谢先德.铁锰氧化物在污染土壤修复中的作用.地球科学进展,2002.17(4):557-564
    [63] 王恩德,王丹丽,王毅.铁矿物形成过程中的细菌作用研究.岩石矿物学杂志,2001.20(4):414-418
    [64] 李翔,张俐娜.黑木耳酸性杂多糖的超声波辐射降解.应用化学,1996.13(1):98-100
    [65] 李东霞,张双全,刘平.SCAMP硫酸酯化多糖的制备及其光谱鉴定.光谱学与光谱分析,2002.22(1):59-62
    [66] 钦传光,黄开勋,徐辉碧.凝胶过滤色谱法测定泥鳅多糖的组成及分子量.分析化学,2002.30:411-413
    [67] Jillian F. Banfield., Susan A. Welch., Hengzhong Zhang et al. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science, 2000. 289:751-754
    [68] C.B. Kennedy, S. D. Scott, and F.G. Ferris. Characterization of bacteriogenic iron oxide deposits from axial volcano, Juan de fuca Ridge, Northeast Pacific Ocean. Geomicrobiology Journal, 2003. (20): 199-214
    [69] 王晓蓉.环境化学.南京:南京大学出版社,2001:79
    [70] 王典芬.X-射线光电子能谱在非金属材料研究中的应用.武汉:武汉工业大学出版社,1994
    [71] 刘世宏,王当憨,潘承璜.X射线光电子能谱分析.北京:科学出版社,1988:11-12
    [72] Tyrone L. Daulton, Brenda J. Little, Jin W. Kim et al. Quantitative environmental cell-transmission electron microscopy: studies of microbial Cr(Ⅵ) and Fe(Ⅲ) reduction. From: http://www.jeoleuro.com/news/news37E/htm/06/
    [73] 朱立军,傅平秋,万国江.碳酸盐岩红土中氧化铁矿物表面化学特征及其吸附机理研究.环境科学学报,1997.17(2):174—177
    [74] 赵谨,鲁安怀,姜浩.天然磁铁矿处理含Hg(Ⅱ)废水实验研究.岩石矿物学杂志,2001.20(4):549—553
    
    
    [75] 闻辂.矿物红外光谱学.重庆:重庆大学出版社,1989.112-113
    [76] 杨南如,岳文海.无机非金属材料图谱手册.武汉:武汉工业大学出版社
    [77] 曲荣君,阮文举,王祥梅等.甲壳质—重金属离子配合物的红外光谱研究.离子交换与吸附,2000.16(3):213-218
    [78] 符迈群,唐兰模,张萍等.壳聚糖吸附Cr(Ⅵ)的机理研究.四川联合大学学报(工程科学版),1997.1(5):8-13
    [79] R. E. 布坎南,N. E. 吉本斯等编.伯杰细菌鉴定手册.北京:科学出版社,1984
    [80] Sonia Kucera, R. S. Wolfe. A selective enrichment method for Gallionella ferruginea. Journal of bacteriology, 1957.74:344-349
    [81] J. Verran, J. F. D. Stott, S. L, Quarmby and M.Bedwell. Detection, cultivation and maintenance of Gallionella in labortary microcosms. Letters in Applied Microbiology, 1995.20:341-344

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700