柚皮苷分子印迹聚合物的制备及其水相识别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的研究工作主要以黄酮类物质—柚皮苷(NG)为印迹分子,研究了柚皮苷分子在水相中的印迹识别。
     首先,利用天然高分子壳聚糖(CS)作为功能体,PEG为致孔剂,制备了柚皮苷分子印迹壳聚糖膜。分别讨论了交联剂、致孔剂和印迹分子的用量对印迹膜结构和性能的影响。用扫描电镜(SEM)、紫外吸收光谱(UV)、红外光谱(FT-IR)进行测试分析。膜的渗透实验结果表明:该印迹膜可有效地在水相中识别印迹分子。同时,将CS负载到二氧化硅(CS@SiO2)上,制成NG印迹CS@SiO2,用X射线粉末衍射(XRD)、FT-IR、SEM等测试技术对该印迹聚合物进行分析表征,探讨了印迹CS@SiO2对印迹分子NG的吸附特性。Scatchard分析表明,该印迹CS@SiO2在识别NG过程中存在1类结合位点。
     其次,以p-环糊精(p-CD)为功能体,采用两种交联剂(环氧氯丙烷和六亚甲基二异氰酸酯),制备了对NG具有特定识别能力的不同形貌的吸附材料。用SEM、比表面分析仪、FT-IR及核磁共振谱(NMR)进行分析测试。采用平衡吸附实验方法研究了聚合物的吸附性能和选择性能。实验结果表明,棒状印迹聚合物(采用乳液聚合,交联剂为六亚甲基二异氰酸酯)对NG具有较高的亲和性和选择性,印迹因子α为1.53。Scatchard分析表明,棒状印迹聚合物在识别NG过程中存在2类结合位点。
     再次,以聚乙烯醇缩丁醛(PVB)为基体、p-CD为功能体、NG为印迹分子、交联剂为六亚甲基二异氰酸酯(HMDI),采用分子印迹技术与电纺丝技术相结合,制备NG分子印迹p-CD类纳米纤维。通过SEM、XRD、FT-IR、TG等对印迹纤维进行表征。该印迹纤维具有较好的选择性,经过六次再生实验,吸附性能几乎不变。利用固体致孔剂SiO2对该印迹纤维进行改性,印迹纤维吸附性能有较大的提高。
     最后,以邻氨基酚为单体,无电活性物质NG为模板分子,用循环伏安法在碳电极上电聚合成能识别NG的敏感膜。通过SEM、XRR及电化学方法对该印迹传感器进行表征,结果表明:印迹传感器敏感膜与非印迹膜在形貌结构和电化学特性方面有明显的不同。此传感器对NG有较好的选择性,响应快(30s),重现性好(RSD=1.79%)。传感器对NG的响应在6.0×10-5~1.4×10-4 mol/L范围内呈线性关系,检出限为1.6×10-5 mol/L。
This thesis is mainly the studies on molecular imprinting technique of naringin (NG) in aqueous media.
     Firstly, a molecularly imprinted membrane (MIM) was prepared in aqueous media using natural biopolymer chitosan (CS) as a functional polymer, NG as a template molecule by phase-inversion technique. The effects of linkage reagent, porogen and imprinting molecule on membranes structure and properties were discussed. The morphologies of the MIM before and after modification with the PEG porogen were observed by scanning electron microscopy (SEM). The infrared spectra (FT-IR) confirmed that the formation of hydrogen bond between functional polymer and template molecules. The NG-CS MIM showed an excellent performance when imprinted membrane was used to separate NG from neohesperidin/naringin in the aqueous media. Meanwhile, a naringin imprinting CS@SiO2 was prepared by using chitosan covering on silicon dioxide as a functional polymer, and characterized with X-ray diffraction (XRD)、FT-IR、SEM and so on. The binding properties were discussed by equilibrium binding experiment method. Scatchard analysis of the imprinted CS@SiO2 suggests that there was a class of binding sites during the molecularly imprinted polymer (MIP) recognizing NG.
     Secondly, based on two cross linker (hexamethylene diisocyanate, HMDI /epichlorohydrin), different non-covalent NG-β-CD imprinted polymers were prepared by usingβ-cyclodextrine (β-CD) as a functional monomer and naringin (NG) as a template molecule, and characterized by means of SEM, BET adsorption apparatus, FT-IR and 1H-nuclear magnetic resonance (1H-NMR). The binding property and selectivity were evaluated by equilibrium binding experiment method. The binding experiments demonstrated that rod-like MIP which was prepared by emulsion polymerization using HMDI as cross linker exhibited the highest selectivity, its imprinting factorsαis 1.53. Scatchard analysis of the rod-like MIP suggests that there were two classes of binding sites during the MIP recognizing NG.
     Thirdly, a novel molecularly imprinted composite nanofiber was prepared by a simple electrospinning technique, in which PVB was chosen as matrix,β-CD was used as functional monomer and NG as template molecules. After cross-linked by HMDI, the composite nanofiber exhibited a high specific binding capacity. The morphological structure of the nanofibers was studied by means of FT-IR, XRD and SEM. The binding experiments demonstrated that the molecularly imprinted composite nanofiber shows the specific binding sites and the selective binding ability for NG. The molecularly imprinted nanofiber could be used at least six times without any loss in binding capacity. Using silica as the pore-forming reagen, the imprinted nanofiber showed more excellent binding ability for NG.
     Last, the sensor of NG, a non-electroactive substance, was the first to be prepared based on the molecular imprinting technique. The NG imprinting sensitive film was coated through the electropolymerization of o-aminophenol on the surface of a graphite electrode in the presence of NG which was considered as the template, and characterized by SEM, XRR and electrochemical analyses. The results showed that the imprinted electrode was significantly different from the non-imprinted electrode in morphologies and electrochemical properties, and a linear relationship between the decrease of peak current and the naringin concentration was found in the range of 6.0×10-5-1.4×10-4 mol/L with a detection limit of 1.6×10-5 mol/L. Moreover, the imprinted electrode exhibits a good selectivity and rapid response to the NG template molecules, as well as an excellent reproducibility (RSD=1.79%).
引文
[1]刘莉华,宛晓春,李大祥.黄酮类化合物抗氧化活性构效关系的研究进展[J],安徽农业大学学报,2002,29(3):265-270.
    [2]Safari M R, Sheikh N. Efects of flavonoids on the susceptibility of low-density lipoprotein to oxidative modification [J]. Prostaglandins, leukotrienes Essential Fatty Acids,2003,69(1):73-77.
    [3]Jagetia G C, Reddy T K. The grapefruit tlavanone naringin protects against the radiation-induced genomic instability in the mice bone marrow:A micmnucleus study [J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis,2002, 519(1-2):37-48.
    [4]Kawaguchi K, Kikuchi S. Suppression of lipopolysaccharide-induced tumor necrosis factor-release and liver injury in mice by naringin [J]. European J Phazm,1999,368: 245-250.
    [5]Fuhr U, Maier A, Keller A, et al. Lacking efect of grapefruit juice on thcopbylline phamaacokinedes [J]. Int J Clin Pharmaco Ther,1995,33:311-314.
    [6]Kim H J, Coo T O, YOng B P, et al. Naringin alters the cholesterol biosynthesis and antioxidant enzynme activities in LDL receptor-knockout mice under cholesterol fed condition [J]. Life sci,2004,74:1621-1634.
    [7]Pu M R, Banerjee U C. Production, purification and characterization of the debittering enzyme naringinase [J]. Biotechnol. Adv,2000,18(3):207-217.
    [8]Fuhr U. Drug interactions with grapefruit juice [J], Drug Saf,1998,18 (4):251-272.
    [9]Wulff G, Sarhan A. Using of polymers with enzyme-analogous structures for the resolution of racemates [J], Angew Chem (Int Ed Engl),1972,11:341-349.
    [10]Wulff G, Sarhan A, Zabrochi K. Enzyme-analogue built polymers and their use for the resolution of racemates [J]. Tetrahedron Lett,1973,44:4329-4335.
    [11]Mosbach K, Viatakis G, Muller R, et al. Drug assay using anti-body mimics maden by molecular imprinting [J], Nature,1993,361:645-647.
    [12]Ulbricht M. Membrane separations using molecularly imprinted membranes [J], Journal of Chromatography B,2004,804:113-125.
    [13]Trojanowicz M, Kaniewska M. Electrochemical chiral sensors and biosensors [J], Electroanalysis,2009,21(3-5):229-238
    [14]Alexander C, Andersson H S, Andersson L I, et al. Molecular imprinting science and technology:a survey of the literature for the years up to and including 2003 [J], J Mol Recognit,2006,19:106-180.
    [15]Maier N M, Lindner W. Chiral recognition applications of molecularly imprinted polymers:a critical review [J], Anal Bioanal Chem,2007,389:377-397.
    [16]Schirmer C, Meisel H. Synthesis of a molecularly imprinted polymer for the selective solid-phase extraction of chloramphenicol from honey [J], Journal of Chromatography A,2006,1132:325-328.
    [17]左言军,余建华,黄启斌.沙林酸印迹聚邻苯二胺纳米膜制备及结构表征[J],物理化学学报,2003,19(6):528-532.
    [18]Trotta F, Drioli E, Baggiani C, et al. Molecular imprinted polymeric membrane for naringin recognition [J], J Membr Sci,2002,201:77-84.
    [19]Tasselli F, Donato L, Drioli E. Evaluation of molecularly imprinted membranes based on different acrylic copolymers [J], J Membr Sci,2008,320:167-172.
    [20]Fu G Q, Zhao J C, Yu H, et al. Bovine serum albumin-imprinted polymer gels prepared by graft copolymerization of acrylamide on chitosan [J], React Funct Polym,2007,67:442-450.
    [21]Su H J, Li Q, Tan TW. Double-functional characteristics of a surface molecular imprinted adsorbent with immobilization of nano-TiO2 [J], J Chem Technol Biotechnol,2006,81:1797-1802.
    [22]Yu Q, Deng S B, Yu G. Selective removal of perfluorooctane sulfonate from aqueous solution using chitosan-based molecularly imprinted membranes polymer adsorbents [J], Water Research,2008,4:3089-3097.
    [23]王学军,许振良,杨座国等,水相识别分子印迹技术[J],化学进展,2007,19(5):805-812.
    [24]Sreenivasan K. Synthesis and evaluation of molecularly imprinted polymers for nucleic acid bases using aniline as a monomer [J], React Funct Polym,2007,67:859 -864.
    [25]Sueyoshi Y, Fukushima C, Yoshikawa M. Molecularly imprinted nanofiber membranes from cellulose acetate aimed for chiral separation [J], J Membr Sci,2010, 357:90-97.
    [26]Su L Q, Qiao S, Zhang W B. Studies on the synthesis and properties of malachite green imprinted polymer [J], Chinese Chemical Letters,2007,18:229-232.
    [27]Jiang X M, Jiang N., Zhang H X, et al. Small organic molecular imprinted materials: their preparation and application [J], Anal Bioanal Chem,2007,389:355-368.
    [28]Shea K J, Stodd G J, Shavell D M. Synthesis and characterization of high cross linked polyacryamides and polymethacryamides:A new of macroporous polyamides [J], Macromolecules,1990,23:4497-4506.
    [29]Shea K J, Sasaki D Y. On the control of microenvironment shape of functionalized network polymers prepared by template polymerization [J], J Am Chem Soc,1989, 111:3442-3447.
    [30]Joshi V P, Kulkarni M G, Mashelkar R A. Enhancing adsorptive separation by molecularly imprinted polymers:Role of imprinting techniques and system parameters [J], Chem Eng Sci,2000,55:1509-1519.
    [31]Biffls A, Graham N B, Wulff G. The synthesis, characterization and molecular recognition properties of imprinted microgels[J], Macromol Chem Phys,2001, 202:163-174.
    [32]黄丹丹,李莉,殷勇冠等.分子印迹聚合物选择性富集长春碱的研究[J],中国科学:化学,2010,40(6):794-800.
    [33]Farrington K, Magner E, Regan F. Predicting the performance of molecularly imprinted polymers:Selective extraction of caffeine by molecularly imprinted. solid phase extraction [J], Analytica Chimica Acta,2006,566:60-68.
    [34]张铁莉,刘锋,李克安.模板分子中作用基团的数目及位置对印迹聚合物印迹效应的影响[J],高等学校化学学报,2010,31(6):1126-1130.
    [35]Yu C, Mosbach K. Molecular imprinting utilizing an amide functional group for hydrogen bonding leading to highly efficient polymers [J], J Org Chem,1997,62: 4057-4064
    [36]Marx S, Liron Z. Molecular imprinting in thin films of organic-inorganic hybrid sol-gel and acrylic polymers [J], Chem. Mater,2001,13:3624-3630.
    [37]Benito-Pen E, Moreno-Bondi M, Aparicio S, et al. Molecular engineering of fluorescent penicillins for molecularly imprinted polymer assays [J], Anal Chem,2006, 78:2019-2027.
    [38]Sellergren B, Lepisto M, Mosbach K. Highly enantioselective and substrate-selective polymers obtained by molecular imprinting utilizing noncovalent interactions:NMR and chromatographic studies on the nature of recognition [J], J Am Chem Soc,1988, 110:5853-5860.
    [39]Fazal F M, Hansen D E. Glucose-specific poly (allylamine) hydrogels-A reassessment [J], Bioorganic & Medicinal Chemistry Letters,2007,17:235-238.
    [40]Yoshimatsu K, Reimhult K, Krozer A, et al. Uniform molecularly imprinted microspheres and nanoparticles prepared by precipitation polymerization: The control of particle size suitable for different analytical applications [J], Analytica Chimica Acta,2007,584:112-121.
    [41]Wang P, Hu W M, Su W K. Molecularly imprinted poly (methacrylamide-co-metha-crylic acid) composite membranes for recognition of curcumin [J], Analytica Chimica Acta,2008,615:54-62.
    [42]Chronakis I S, Milosevic B, Frenot A, et al. Generation of molecular recognition sites in electrospun polymer nanofibers via molecular imprinting [J], Macromolecules, 2006,39:357-361.
    [43]Silvestri D, Barbani N, Cristallini C, et al. Molecularly imprinted membranes for an improved recognition of biomolecules in aqueous medium[J], J Membr Sci,2006,282: 284-295.
    [44]彭宁,阎凤超,陈磊等.呋喃分子印迹聚合物的制备及其吸附特性[J],分析化学,2010,38(4):559-563.
    [45]Wei S, Jakusch M, Mizaikoff B. Capturing molecules with templated materials— Analysis and rational design of molecularly imprinted polymers [J], Analytica Chimica Acta,2006,578:50-58.
    [46]Whitcombe M J, Rodriguez M E, Villar P, et al. A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: synthesis and characterisation of polymeric receptors for cholesteros [J], J Am Chem Soc,1995,117:7105-7111.
    [47]Piletsky S A, Piletskaya E V, Yano K, et al. Biomimetic receptor system for sialic acid based on molecular imprinting [J], Anal Lett,1996,29(2):157-170.
    [48]Schirmer C, Meisel H. Synthesis of a molecularly imprinted polymer for the selective solid-phase extraction of chloramphenicol from honey [J], Journal of Chromatography A,2006,1132:325-328.
    [49]Nakano T, Satoh Y, Okamoto Y. Synthesis and chiral recognition ability of a cross-linked polymer gel prepared by a molecular imprint method using chiral helical polymers as templates [J], Macromolecules,2001,34:2405-2407.
    [50]Rick J, Chou T C. Using protein templates to direct the formation of thin-film polymer surfaces [J], Biosen Bioelectr,2006,22:544-549.
    [51]Bergmann N M, Peppas N A. Molecularly imprinted polymers with specific recognition for macromolecules and proteins [J]. Prog Polym Sci,2007, doi:10.1016/j.progpolymsci.2007.09.004
    [52]Mosbach K, Ramstrom O. The emerging technique of molecular imprinting and its future impact on biotechnology [J], Biotechnology,1996,14 (2):163-170.
    [53]Glad M, Peinholdsson P, Mosbach K. Molecularly imprinted cocomposite polymers based on trimethylolpropane trimethacrylate (TRIM) particles for efficient enantiomeric separations [J], React Polym,1995,25:47-54.
    [54]Carter S R, Rimmer S, Molecular recognition of caffeine by shell molecular imprinted core-shell polymer particles in aqueous media [J], Adv Mater,2002,14(9): 667-670.
    [55]谢亚林,司士辉,杨政鹏等.牛血清白蛋白在超薄纳米二氧化钛膜表面的印迹与吸附[J],分析化学,2007,35(4):555-558.
    [56]高学超,高保娇,牛庆媛等.采用新型离子表面印迹材料在皮米尺度上对相邻稀土离子进行识别分离的研究[J],化学学报,2010,68(11):1109-1118.
    [57]王志华,康敬万,张会妮等.锌-槲皮素配位分子印迹聚合物膜渗透特性的研究[J],化学学报,2007,65(18):2019-2024.
    [58]卢春阳,马向霞,何锡文等.药物氟哌酸分子印迹聚合物膜的制备及其渗透性质研究[J],高等学校化学学报,2005,26(7):1356-1359.
    [59]Yang T, Li Y H, Wei S, et al. Development of a selective molecularly imprinted polymer-based solid-phase extraction for indomethacin from water samples [J], Anal Bioanal Chem,2008,391:2905-2914.
    [60]蒋凯,冯芳.分子印迹技术在体内药物固相萃取中的应用[J],药学进展,2004,28(8):344-348.
    [61]Xia Y Q, Guo T Y, Song M D, et al. Selective separation of quercetin by molecular imprinting using chitosan beads as functional matrix [J], React Funct Polym,2006, 66:1734-1740.
    [62]Xie J C, Zhu L L, Xu X J. Direct extraction of specific pharmacophoric flavonoids from gingko leaves using a molecularly imprinted polymer for quercetin [J], J Chromatogr B,2003,788:233-242.
    [63]谢建春,朱丽荔,徐筱杰.分子印迹亲和色谱与质谱联用实现中草药活性成分分离鉴定一体化[J],化学学报,2002,60(3):385-388.
    [64]何江川,林强.热敏性印迹水凝胶的合成及对甘草酸分离性能的研究,化学研究与应用,2005,17(2):216-219.
    [65]Hu S G, Li L, He X W. Solid-phase extraction of esculetin from the ash bark of Chinese traditional medicine by using molecularly imprinted polymers [J], J Chromatogr A,2005,1062:31-37.
    [66]Fu Q, He L C, Zhang Q Q, et al. Uniformly sized molecularly imprinted polymers for on-line concentration, purification, and measurement of nimodipine in plasma[J], J Appl Polym Sci,2009,111:2830-2836.
    [67]刘祥军,刘吉众,赵睿等.三甲氧基苄啶分子印迹整体住的制备及色谱性能,高等学校化学学报,2007,28(10):1878-1880.
    [68]Wang L, Zhang Z J, Huang L G. Molecularly imprinted polymer based on chemilu-minescence imaging for the chiral recognition of dansyl-phenylalanine [J], Anal Bioanal Chem,2008,390:1431-1436.
    [69]郭天瑛,张丽影,郝广杰等.氨基酸衍生物手性分离分子印迹聚合物[J],化学进展,2004,16(4):638-642.
    [70]Long Y, Sun Y, Wang Y, Xing X C, et al. Molecular imprinted polymer with positivel charged assistant recognition polymer chains for adsorption/enrichment of low content target protein [J], Chinese Science Bulletin,2008,53(17):2617-2623.
    [71]Bossi A, Bonini F, Turner A P F, et al. Molecularly imprinted polymers for the recognition of proteins: The state of the art [J], Biosensors and Bioelectronics,2007, 22:1131-1137.
    [72]李琼,杜艳丽,杨科珂.谷胱甘肽分子印迹聚合物的制备及其性能研究[J],2007,28(6):1059-1063.
    [73]Lieberzeit P A, Dickert F L. Rapid bioanalysis with chemical sensors:novel strate-gies for devices and artificial recognition membranes [J], Anal Bioanal Chem,2008, 391:1629-1639.
    [74]Liang R N, Zhang R M, Qin W. Potentiometric sensor based on molecularly imprinted polymer for determination of melamine in milk [J], Sensors and Actuators B,2009,141:544-550.
    [75]Holthoff E L, Bright F V. Molecularly templated materials in chemical sensing, Analy Chim Acta,2007,594:147-161.
    [76]Haupt K, Mosbach K. Molecularly imprinted polymers and their use in biomimetic sensors [J], Chem Rev,2000,100,2495-2504.
    [77]李永,周文辉,杨黄浩等.表面分子印迹高分子膜修饰硅胶用于血清中茶碱的固相萃取[J],应用化学,2010,27(1):102-106.
    [78]Bhardwaj N, Kundu S C. Electrospinning:A fascinating fiber fabrication technique [J], Biotech Adv,2010,28:325-347.
    [79]Chen Y B, Guo J, Kim H. Preparation of poly (vinylidene fluoride)/phosphotungstic acid composite nanofiber membranes by electrospinning for proton conductivity [J], React Funct Polym,2010,70:69-74.
    [80]Xie C Y, Li X B, Luo X M. Release modulation and cytotoxicity of hydroxylcampt-othecin-loaded electrospun fibers with 2-hydroxypropyl-β-cyclodextrin inoculations [J], International Journal of Pharmaceutics,2010,391:55-64.
    [81]Cheng S, Shen D Z, Zhu X S, et al. Preparation of nonwoven polyimide/silica hybrid nanofiberous fabrics by combining electrospinning and controlled in situ sol—gel techniques [J], European Polymer Journal,2009,45:2767-2778.
    [82]Zhang L J, Webster T J. Nanotechnology and nanomaterials:Promises for improved tissue regeneration [J], Nano Today,2009,4:66-80.
    [83]Wellea A, Krogerb M, Doring M, et al. Electrospun aliphatic polycarbonates as tailored tissue scaffold materials [J], Biomaterials,2007,28:2211-2219.
    [84]Yarin A L, Koombhongse S, Reneker D H, Bending instability of electrically charged liquid jets of poly-mersolutionsinelectrospinning [J], J Appl Phys,2000,89: 3018-3026.
    [85]Qi J Y, Li X, Li Y, et al. Selective removal of Cu (Ⅱ) from contaminated water using molecularly imprinted polymer[J], Front Chem Eng China,2008,2(1):109-114.
    [86]Itou Y, Nakano M, Yoshikawa M. Optical resolution of racemic amino acid derivatives with molecularly imprinted membranes from tetrapetide consisting of glycinyl residues [J], J Membr Sci,2008, doi:10.1016/j.memsci.2008.07.051
    [87]Cai Z F, Dai H J, Si S H,et al. Molecular imprinting and adsorption of metallothione-in on nanocrystalline titania membranes [J], Applied Surface Science,2008(254): 4457-4461.
    [88]Wang X J, Xu Z L, Feng J L,et al. Molecularly imprinted membranes for the recognition of lovastatin acid in aqueous medium by a template analogue imprinting strategy[J], J Membr Sci,2008,31:397-405.
    [89]田晓琴,冯芳,狄斌等.水相中制备硅胶表面分子印迹聚合物及色谱性能研究[J],中国药科大学学报,2009,40(5):435-439.
    [90]Dunia M G, Daniela F C, Joo F M, et al. Physical interactions in macroporous scaffolds based on poly(-caprolactone)/chitosan semi-interpenetrating polymer networks [J], Polymer,2009,50:2058-2064.
    [91]陈妮娜,陈日耀,郑曦等mCMC-PEG/mCS-PEG双极膜的制备与表征[J],高分子学报,2008,(11):1068-1075.
    [92]吴洪,赵艳艳,喻应霞等.分子印迹壳聚糖膜分离手性苯丙氨酸[J],功能高分子学报,2007,19-20(3):262-266.
    [93]Che K, Faizal M, Yusuke H, et al. Scaffold membranes for selective adsorption of a-tocopherol by phase inversion covalently imprinting technique [J], J Membr Sci, 2008,322:503-511.
    [94]Zhao C S, Yu B Y, Qian B S, et al. BPA transfer rate increase using molecular impri-nttted polyethersulfone hollow fiber membrane [J], J Membr Sci,2008,310:38-43.
    [95]Zhang Q Q, Kusunoki T, Xu Q. Porous imprinted polymer membranes prepared by phase separation in compressed liquid CO2[J], Anal Bioanal Chem,2007,388:665-673.
    [96]Xu C X, Chen R Y, Zheng X, et al. Preparation of PVA-GA-CS/PVA-Fe-SA bipolar membrane and its application in electro-generation of 2,2-dimethy 1-3-hydroxypro-pionic acid [J], J Membr Sci,2008,307:218-224.
    [97]崔铮,相艳,张涛.硫酸交联壳聚糖膜质子传导行为的研究[J],化学学报,2007,65(17):1902-1906.
    [98]Mohammad A K, Margaret T, Colin R. The effect of molecular imprinting on the pore size distribution of polymers[J], Adsorption,2007,13:315-321.
    [99]Zhang X G, Teng D Y, Wu Z M. PEG-grafted chitosan nanoparticles as an injectable carrier for sustained protein release [J]. J Mater Sci: Mater Med,2008,19:3525-3533.
    [100]卢春阳,马向霞,何锡文等.邻香草醛分子印迹聚合物的制备及其透过选择性质的研究[J],化学学报,2005,63(6):479-483.
    [101]Piletsky S A, Panasyuk T L, Piletskaya E V. Receptor and transport properties of imprinted polymer membranes—a review [J], J Membr Sci,1999,157:263-278.
    [102]张栓红,孙昌梅,曲荣君.表面分子(离子)印迹硅胶/聚合物的制备及性能研究进展[J],高分子通报,2010,(4):17-29.
    [103]Brown M E, Puleo D A. Protein binding to peptide-imprinted porous silica scaffolds [J]. Chem Eng J,2007, doi:10.1016/j.cej.2007.09.002
    [104]Soares C M F, Zanin G M, Moraes de F F, et al. Molecular imprinting of β-cyclo-dextrin/cholesterol template into a silica polymer for cholesterol separation [J], J Incl Phenom Macrocycl Chem,2007,57:79-82.
    [105]王江涛,宋兴良.虚拟模板/硅胶表面分子印迹材料的制备及其在海水溶液中的吸附行为研究[J],分析化学,2010,38(8):1121-1126.
    [106]小宫山真.分子印迹学—从基础到应用[B],吴世康,汪鹏飞,译,北京,科学出版社,2004,pp.34-35.
    [107]Esmaeili M A, Yazdanparast R. Molecularly imprinted poly β-cyclodextrin polymer: Application in protein refolding [J], Biochem Biophys Acta,2007,1770:943-950.
    [108]Fundueanu G, Constantin M, Mihai D, et al. Menegatti, Pullulan-cyclodextrin microspheres:A chromatographic approach for the evaluation of the drug-cyclodextrin interactions and the determination of the drug release profiles [J], J Chromatogr B, 2003,791:407-419.
    [109]Wulff G. Molecular imprinting in cross-linked materials with the aid of molecular templates—a way towards artificial antibodies [J], Angew Chem Int Ed,1995,34: 1812-1832.
    [110]Hishiya T, Asanuma H, Komiyama M, et al. Spectroscopic anatomy of molecular-imprinting of cyclodextrin-evidence for preferential formation of ordered cyclodextrin assemblies [J], J Am Chem Soc,2002,124:570-575.
    [111]Cobden D H. Molecular electronics nanowires begin to shine [J], Nature,2001,409: 32-33.
    [112]Reneker DH, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning [J], Nanotechnology,1996,7:216-223.
    [113]Li D, Xia Y N. Electrospinning of nanofibres:reinventing the wheel [J]. Adv Mater, 2004,16:1151-1170.
    [114]Bhardwaj N, Kundu SC. Electrospinning:A fascinating fiber fabrication techni(?)e [J], Biotechnology Advances,2010,28:325-347.
    [115]Shalumon K T, Binulal N S, Selvamurugan N. Electrospinning of carboxymetlyl chitin/poly(vinyl alcohol) nanofibrous scaffolds for tissue engineering applications [J], Carbohydrate Polymers,2009,77:863-869.
    [116]Yoshimatsu K, Ye L, Lindberg J, et al. Selective molecular adsorption using electrospun nanofiber affinity membranes [J], Biosens Bioelectron,2008,23:1208-1215.
    [117]Tokuyama H, Naohara S, Fujioka M, et al. Preparation of molecular impr(?)ted thermosensitive gels grafted onto polypropylene by plasma-initiated graft polymer-ization [J], React Funct Polym,2008,68:182-188.
    [118]Chen Y, Kele M, Quinones I, et al. Influence of the pH on the behavior of an imprinted polymeric stationary phase—supporting vidence for a binding site model [J], J Chromatogr A,2001,927:1-17.
    [119]Andac M, Mirel S, Senel S, et al. Ion-imprinted beads for molecular recognition based mercury removal from human serum [J], Int J Biol Macromol,2007,40:159-166.
    [120]Bai J, Yang Q B, Li M Y, et al. Preparation of composite nanofibers containing gold nanoparticles by using poly(N-vinylpyrrolidone) and β- cyclodextrin [J], Mater Chem Phys,2008,111:205-208.
    [121]Uyar T, Balan A, Toppare L, et al. Electro spinning of cyclodextrin functionalized poly(methyl methacrylate)(PMMA) nanofibers [J], Polymer,2009,50:475-480.
    [122]Uyar T, Besenbacher F. Electrospinning of cyclodextrin functionalized polyethylene oxide (PEO) nanofibers [J], Eur Polym J,2009,45:1032-1037.
    [123]Uyar T, Havelund R, Nur Y, et al. Molecular filters based on cyclodextrin functionalized electrospun fibers [J], J Membr Sci,2009,332:129-137.
    [124]Uyar T, Hacaloglu J, Besenbacher F. Electrospun polystyrene fibers containing high temperature stable volatile fragrance/flavor facilitated by cyclodextrin inclusion complexes [J], React Funct Polym,2009,69:145-150.
    [125]Liu R L, Cai N, Yang W Q, et al. Sea-island polyurethane/polycarbonate composite nanofiber fabricated through electrospinning [J], J Appl Polym Sci,2010,116:1313-1321.
    [126]Saenger W, Jacob J, Gessler K, et al. Complexation thermodynamics of cyclodex-trins [J], Chem Rev,1998,98:1787-1802.
    [127]刘秋叶,盖青青,何锡文等.复合分子印迹聚合物体系选择性富集蛋白质样品中的溶菌酶[J],高等学校化学学报,2008,29(3):505-509.
    [128]李晶,赵曙辉,侯书雅等.纳米TiO2/β-环糊精溶胶在棉织物上的应用[J],印染,2008,9:1-4.
    [129]李和生,王鸿飞,周石磊等.柑橘类果汁中柚皮苷的分析[J],农业机械学报,2006,37(4):76-79,90.
    [130]周大勇,徐青,薛兴亚等.高效液相色谱-电喷雾质谱法测定枳壳中黄酮苷类化合物[J],分析化学,2006,34(9):S31-S35.
    [131]Pietrzyk A, Suriyanarayanan S, Kutner W, et al. Selective histamine piezoelectric chemosensor using a recognition film of the molecularly imprinted polymer of bis(bithiophene) derivatives [J], Analytical Chemistry,2009,81(7):2633-2643.
    [132]Rezaei B, Jafari M T, Khademi R. Selective separation and determination of primidone in pharmaceutical and human serum samples using molecular imprinted polymer-electrospray ionization ion mobility spectrometry [J], Talanta,2009,79(3): 669-675.
    [133]谢成根,李淮芬,谢春燕等.水杨酸分子印迹膜电化学传感器的制备[J],分析化学,2009,37(7):1045-1048.
    [134]武五爱,尹志芬,尉景瑞等.米托蒽醌分子印迹传感器的研究及其应用[J],高等学校化学学报,2008,29(7):1334-1338.
    [135]付萍,袁若,柴雅琴等.基于壳聚糖-纳米金/纳米普鲁士蓝/L-半胱氨酸修饰的葡萄糖传感器的研究[J],化学学报,2008,66(15):1796-1802.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700