含侧链多胺准聚轮烷的合成及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
葫芦脲因其特殊的结构特征,已成为国内外研究热点,特别是近几年,葫芦脲分子自组装形成轮烷或者准轮烷在分子开关、分子梭、信息存储等方面,以及葫芦脲的主客体化学在生物体和药物缓释等方面都具有潜在价值。本文设计合成了不同结构特征具有葫芦脲结构的准轮烷聚合物,探索了不同聚合物的聚集行为,同时研究了聚合物与DNA的键合作用,并制备了金纳米粒子材料。论文首先综述了葫芦脲及其在多胺聚合物方面的研究应用成果,从而阐明了论文选题的科学意义,并围绕多胺聚合物与葫芦脲的超分子相互作用进行了一系列理论与应用方面的研究。
     (1)设计合成了N’-3-乙烯苄基丁二铵盐酸盐与葫芦脲组装轮烷单体,利用带有葫芦脲的N-3-乙烯苄基丁二铵盐酸盐的准聚轮烷单体(3VBCB)以过硫酸钾(KPS)做引发剂,在水溶液中通过自由基聚合生成新型侧链准聚轮烷P3VBCB。其结构通过1HNMR、EA、FT-TR、TGA、DSC和激光光散射进行了表征、测试和分析。同时,通过P3VBCB与DNA在溶液中电泳、UV-Vis、荧光分析发现P3VBCB与DNA存在相互作用,且呈现正相关关系。P3VBCB具有较强破坏DNA双螺旋结构的性质,显示较强的DNA变性剂的特征。
     (2)利用准轮烷单体N-3-乙烯苄基丁二铵盐酸盐和葫芦[6]脲合成一种新的准轮烷单体与丙烯酰胺(AM)通过自由基聚合反应制备了具有准轮烷结构的共聚物PAM3VBCB。1H NMR, FTIR,元素分析数据表明葫芦[6]脲穿在了聚合物的侧链上,并没有因为聚合反应而从侧链脱落;TGA和DSC表征数据表明聚合物的热稳定性随着侧链葫芦[6]脲个数的增加而增强,主要是由于随着侧链葫芦[6]脲个数的增加,共聚物的结构刚性增加导致的。DLS数据表明共聚物的水合动力学半径随着共聚物浓度的增加而增加,而且由于随着溶液pH的增加,小分子葫芦[6]脲尿从共聚物侧链的脱落,造成其随着溶液pH的增加而跳跃增加。同时由于葫芦[6]脲的脱落,PAM3VBCB溶液的pH和电导率随着NaOH滴加量的增加而出现跳跃。
     (3)制备了单体N'-(乙烯基苄基)-1,4-丁二铵盐酸盐(4VB)和葫芦[6]脲组装合成一种新的准轮烷单体4VBCB,然后在水溶液中用K2S2O8为引发剂通过4VBCB与丙烯酰胺(AM)通过自由基聚合反应制备了带有葫芦[6]脲结构的共聚物PAM4VBCB,并通过1HNMR, FTIR,元素分析,激光光散射,TGA和DSC对其结构进行了表征。TGA和DSC数据表明共聚物的热力学性质随着AM与4VBCB摩尔比的降低而增强,DLS数据表明共聚物的平均水合动力学半径随着共聚物浓度的增加而增加,这是由于侧链准聚轮烷分子间相互作用的结果。PAM4VBCB-4水合动力学半径随着pH升高而突跃增加,这主要因为随着pH升高,准聚轮烷中的葫芦[6]脲脱落。在PAM4VBCB存在下用氯金酸与与硼氢化钠通过水热反应形成金纳米颗粒负载的碳膜复合材料进行研究,通过XRD和TEM研究了金纳米颗粒负载的碳膜复合材料的形貌特征,实验结果表明共聚物PAM4VBCB可以通过简易和对环境友好的条件制备出尺寸在5-25 nm的金纳米颗粒负载的碳膜复合材料。
     (4)利用4VBCB与N-异丙基丙烯酰胺(NAM)在水溶液中通过自由基引发的聚合反应制备了具有温敏的含准轮烷结构的共聚物PNAM4VBCB,通过1HNMR, FTIR,元素分析,激光光散射,TGA和DSC对其结构进行了表征。DLS数据显示准轮烷结构的水合动力学半径随着共聚物浓度的增加而增加。通过DLS和UV-Vis研究了共聚物的温敏性,并且它们的相转变温度能够通过调节NAM/4VBCB在共聚物中的摩尔比进行控制。由于随着溶液pH的增加准轮烷结构的小分子葫芦[6]脲脱落,造成PNAM4VBCB溶液的pH和电导率随着pH增加而出现突跃。同时,以PNAM4VBCB为模板用水热合成一步法合成了金纳米颗粒负载的碳膜复合材料。我们通过TEM研究金纳米颗粒负载的碳膜复合材料来探究实验验条件对金纳米颗粒负载情况的影响,实验结果表明金纳米颗粒的尺寸在5-25 nm的,并通过控制实验参数成功的实现了两种形貌的转化
     (5)利用一种准轮烷单体4VBCB与N,N—二甲基内烯酰胺(DMAA)通过自由基引发的聚合反应制备了具有准轮烷结构的共聚物PDMAA4VBCB。共聚物的结构通过1HNMR, FTIR,元素分析,扫描电镜进行了表征,采用激光光散射测定了共聚物的分子量。扫描电镜表明随着4VBCB与DMAA的摩尔比例的增加,共聚物形成的小球直径增加。DLS数据还表明共聚准轮烷PDMAA4VBCB具有温度敏感的性质,并且相变温度能够通过调整共聚准轮烷中的DMAA4VBCB摩尔比进行控制。此外,通过控制氯化钙和碳酸钠或者BaCl2和Na2SO4的加入来调节共聚物侧链上的葫芦[6]脲穿环与脱环。
Cucurbit[6]uril is a nonadecacylic cage compound which has a relatively rigid structure with a hollow core and accessible from the exterior by two carbonyl-fringed portals. Taking advantage of this fact, many researchers have studied rotaxane, polyrotaxanes, molecular necklace and molecular switch using cucurbit[n]uril (CB[n]). In this paper, we synthesized some side chain polyrotaxanes with CB[n]. Different polymers were synthesized with different pseudorotaxane monomer and acrylamide et al. Brief research background of this work is introduced, in which the history and recent progress in cucurbituril and polyelectrolytes as well as the application of CB[6] in polyelectrolytes are reviewed from a worldwide angle of view. The objective and the scientific significance of this doctoral dissertation are also pointed out.
     (1) A novel side-chain pseudorotaxane monomer N'-(3-vinylbenzyl)-1, 4-diaminobutane dihydrochloride with cucurbit[6]uril threaded (3VBCB) were prepared. We synthesized the side-chain polymers of P3VBCB by free radical polymerization with KPS as initiator in aqueous solution, which was characterized by 1H NMR, FT-IR, elemental analysis, DSC, TGA and static light scattering. At the same time, the interaction between DNA and P3VBCB was studied by gel electrophoresis and UV-Vis.
     (2) New copolymers of acrylamide and complex pseudorotaxane monomer N'-(3-vinylbenzyl)-1,4-diaminobutane dihydrochloride with cucurbit[6]uril threaded (3VBCB) were prepared via free radical polymerization in aqueous solution, which were characterized by 1H NMR, FT-IR, elemental analysis, and static light scattering. The thermal properties of copolymers were studied by TGA and DSC, and the effects of the copolymer concentration and pH on the average hydrodynamic radius (Rh) of the copolymers were studied by DLS. At the same time, the interaction between DNA and PAM3VBCB was studied by gel electrophoresis and UV-Vis.
     (3) New side-chain copolymers of acrylamide and complex pseudorotaxane monomer N'-(4-vinylbenzyl)-1,4-diaminobutane dihydrochloride with cucurbit[6]uril threaded (4VBCB) were prepared via free radical polymerization in aqueous solution. The copolymers PAM4VBCB were characterized by 1H NMR, FT-IR, elemental analysis, and static light scattering. Then the as-obtained copolymer PAM4VBCB, HAuCl4 and NaBH4 were used as reactants to obtain uniform Au NPs/carbon film composites via a hydrothermal process, and through tuning the experimental parameters such as reaction time, pH, quantity of HAuCl4 solution, and so on, Au NPs or Au@ carbon spHere core-shell like structures could also be obtained.
     (4) The side-chain copolymers of N-isopropyl acrylamide (NAM) and complex pseudorotaxane monomer N'-(4-vinylbenzyl)-1,4-diaminobutane dihydrochloride with cucurbit[6]uril (CB[6]) threaded (4VBCB) were prepared via free-radical polymerization in aqueous solution. The copolymers with CB[6] (PNAM4VBCB) were characterized by 1H NMR, FT-IR, elemental analysis, and static light scattering. And both pH and electrical conductivity curves of the solution of PNAM4VBCB-4 have a jump. In addition, the copolymers have thermal sensitivity and their phase-change temperatures could be controlled by adjusting the mole ratio of NAM/4VBCB in the copolymers. At the same time, the as-obtained copolymer PNAM4VBCB, HAuCl4 and NaBH4 were used as reactants to obtain uniform Au NPs/carbon film composites via a hydrothennal process, which was studied by TEM to analyze a distributing of the polymer nano material.
     (5) The side-chain copolymers DMAA and complex pseudorotaxane monomer N'-(4-vinylbenzyl)-1,4-diaminobutane dihydrochloride with cucurbit[6]uril (CB[6]) threaded (4VBCB) were prepared via free-radical polymerization in aqueous solution. The copolymers with CB[6] (PDMAA4VBCB) were characterized by 1H NMR, FT-IR, elemental analysis, and static light scattering. DLS data show that the copolymers have thennal sensitivity and their phase-change temperatures could be controlled by adjusting the mole ratio of DMAA/4VBCB in the copolymers. We can contral on or out of CB[6] in the pendent by controlling CaCl2 & NaCO3 addition, or BaCl2 & Na2SO4 addition.
引文
[1]Lehn J M, Supramolecular Chemistry 2 Scope and Perspectives, Molecules, Supermolecules, and Molecular Devices. Angew. Chem Int. Ed.,1988,27,89-112.
    [2]Schill G Catenanes, Rotaxanes and Knots. New York, Academic Press,1971.
    [3]Gokel G W, In Comprehensive Supramolecular Chemistry, Vol.1, Eds; Atwood J L, Devies J E D, MacNicol D D, Vogtle F, Pergamoon Press, Oxford,1996,1.
    [4]Szejtli J, Ose T. In Comprehensive Supramolecular Chemistry, Vol.3, Eds; Atwood J L, Devies J E D, MacNicol D D, Vogtle F, Pergamoon Press, Oxford, 1996,1.
    [5]Gutsche C D. In Calixarenes, Monographs in Supramolecular Chemistry, Es.; Stoddart J F, Rolyal Society of Chemistry, London,1989,1.
    [6]Chen X H, Cong F Z, Liu S C, et al. Sino-Foreign Jaint-Venture Yizhou Pharmaceutical. Co, Ltd, Harbin:P R China. CN1251306,2000,5.
    [7]Holland L, Rizzi G, Malton Peter, Cosmetic compositions, The Procter& Gamble Company. USA. WO0067717,2000,20.
    [8]Zhao J Z, Kim H J, Oh J, et al. Cucurbit[n]uril Derivatives Soluble in Water and Organic Solvents. Angew. Chem. Int. Ed,2001,40 (22):4233-4235.
    [9]Behrend R, Meyer E.. Rusche F. I. Ueber Condensationsproducte aus Glycoluril und Formaldehyd. Justus Liebigs Ann. Chem.,1905,339:1-37.
    [10]Freeman W A, Mock W L, Shih N Y. Theoretical studies of the 1,2-hydrogen shift.11. Controversial barrier height between silaethylene and methylsilylene. J. Am. Chem. Soc.,1981,103 (24):7367-7368.
    [11]Kim J, Jung I S, Kim S Y, et al. New Cucurbituril Homologues:Syntheses, Isolation, Characterization, and X-ray Crystal Structures of Cucurbit[n]uril (n=5, 7, and 8). J. Am. Chem. Soc.,2000,122 (3):540-541.
    [12]毕强,胡英鹏,杨琴等.水-盐酸两步法分离瓜环混合物.有机化学,2007,27(7):880-884.
    [13]Jansen K, Busehmann H J. Wego A, et al. Cucurbit[5]uril. Decamethylcucurbit[5]uril and Cucurbit[6]uril. Synthesis. Solubility and Amine Complex Formation J Incl. Phenom. Macrocyclic Chem.,2001,39:357-363.
    [14]Day A I, Blanch R J, Arnold A P, et al. A Cucurbituril-Based Gyroscane:A New Supramolecular Form. Angew. Chem. Int. Ed.,2002,41(2):275-277.
    [15]Liu SM, Zavalij P Y, Isaacs L. Cucurbit [10] uril. J. Am. Chem. Soc.,2005, 127(48):16798-16799.
    [16]Kim K, Samal S,Kumar R N, et al. PCT, WO05/103053,2005.
    [17]Isaacs L, Park S K, Liu SM, et al. The Inverted Cucurbit[n]uril Family. J. Am. Chem. Soc.,2005,127 (51):18000-18001.
    [18]Liu simin, Kim Kimoon, Isaacs Lyle. Mechanism of the Conversion of Inverted CB[6] to CB[6]. J. org. chem.,2007,72:6840-6847.
    [19]Huang WeiHao, Zavalij Peter Y., Isaacs Lyle. Chiral Recognition inside a Chiral Cucurbituril. Angrew. Chem. Int. Ed.,2007,46:7425-7427.
    [20]Buschmann, H. J., E. Cleve, and E. Schollmeyer. Cucurbituril as a ligand for the complexation of cations in aqueous solutions. Inorganica chimica acta,1992, 193(1):93-97.
    [21]Buschmann, H. J., et al. Determination of complex stabilities with nearly insoluble host molecules:cucurbit [5] uril, decamethylcucurbit [5] uril and cucurbit [6] uril as ligands for the complexation of some multicharged cations in aqueous solution. Analytica Chimica Acta,2001.437(1):157-163.
    [22]Lorenzo, S., et al., The first endoannular metal halide-cucurbituril:cis-SnCl4 (OH2)2@ cucurbit [7] uril. CrystEngComm,2001,3(49):230-236.
    [23]Samsonenko, D.G., et al.. Synthesis and Crystal Structure of Supramolecular Adducts of Macrocyclic Cavitand Cucurbituril with Chromium (Ⅲ) and Nickel (Ⅱ) Aqua Complexes. Russian Journal of Coordination Chemistry,2003,29(3): 178-186.
    [24]Samsonenko, D.G., et al., Cucurbituril as a New Macrocyclic Ligand for Complexation of Lanthanide Cations in Aqueous Solutions. European Joural of Inorganic Chemistry,2002:2380-2388.
    [25]Buschmann, H.J., K. Jansen, and E. Schollmeyer. Cucurbit [6] uril as ligand for the complexation of lanthanide cations in aqueous solution. Inorganic Chemistry Communications,2003,6(5):531-534.
    [26]Sokolov, M.N., D.N. Dybtsev, V. Fedin. Supramolecular compounds of cucurbituril with molybdenum and tungsten chalcogenide cluster aqua complexes. Russian chemical bulletin,2003,52(5):1041-1060.
    [27]Gerasko, O.A., D.G. Samsonenko, and V. Fedin, Supramolecular chemistry of cucurbiturils. Russian Chemical Reviews,2002,71(9):741-760.
    [28]Yan, K., et al., Synthesis and Crystal Structure of New Supramolecular Adducts [PtCl6]2 with Cucurbit [7] uril:[(H3O)2(PtCI6)]3(C42H42N28O14)2.H2O. Wuhan University Journal of Natural Sciences,2004,9(1):99-101.
    [29]Mock, W.L. and N.Y. Shih, Host-guest binding capacity of cucurbituril. The Journal of Organic Chemistry,1983,48(20):3618-3619.
    [30]Mock, W.L., N.Y. Shih. Structure and selectivity in host-guest complexes of cucurbituril. Journal of Organic Chemistry,1986,51(23):4440-4446.
    [31]Mock, W.L., N.Y. Shih. Organic ligand-receptor interactions between cucurbituril and alkylammonium ions. Journal of the American Chemical Society,1988, 110(14):4706-4710.
    [32]Neugebauer, R. and W. Knoche, Host-guest complexes of cucurbituril with 4-amino-4'-nitroazobenzene and 4,4'-diaminoazobenzcne in acidic aqueous solutions. Journal of the Chemical Society, Perkin Transactions 2,1998,1998(3): 529-534.
    [33]韩宝航,刘育.葫芦脲:分子识别与组装.有机化学,2003,23(2):139-149.
    [34]Hoffmann, R., et al., Host-Guest Complexes of Cueurbitural with the 4-methylbenzylammonium ion, alkali-metal cations and NH4+. Journal of the Chemical Society. Faraday transactions,1994,90(11):1507-1511.
    [35]Marquez. C., W.M. Nau, Two Mechanisms of Slow Host-Guest Complexation between Cucurbit [6] uril and Cyclohexylmethylamine:pH-Responsive Supramolecular Kinetics. Angewandte Chemie-International Edition in English, 2001,40(17):3155-3160.
    [36]Dantz, D.A., et al., Complexation of Volatile Organic Molecules from the Gas Phase with Cucurbituril and β-Cyclodextrin. Supramolecular Chemistry,1998, 9(2):79-83.
    [37].Haouaj, M.E., et al., NMR study of the reversible complexation of xenon by cucurbituril. Journal of the Chemical Society, Perkin Transactions 2,2001. 2001(5):804-807.
    [38].Karcher, S., A. Kornmueller, and M. Jekel, Removal of reactive dyes by sorption/complexation with cucurbituril. Water Science & Technology,1999. 40(4):425-433.
    [39].Karcher, S., A. Kornmuller, and M. Jekel, Cucurbituril for water treatment. Part I: Solubility of cucurbituril and sorption of reactive dyes. Water Research,2001. 35(14):3309-3316.
    [40].Kornmuller, A, S. Karcher, and M. Jekel, Cucurbituril for water treatment. Part II: Ozonation and oxidative regeneration of cucurbituril. Water Research,2001. 35(14):3317-3324.
    [41].Wagner, B. D. and A. I. MacRae, The Lattice Inclusion Compound of 1, S-ANS and Cucurbituril:A Unique Fluorescent Solid. JOURNAL OF PHYSICAL CHEMISTRY B,1999.103:10114-10119.
    [42].Wagner, B. D., et al., A fluorescent host-guest complex of cucurbituril in solution:a molecular Jack O'Lantern. Canadian Journal of Chemistry,2001. 79(7):1101-1104.
    [43].Zhao, J., et al., Cucurbit[n]uril Derivatives Soluble in Water and Organic Solvents Angewandte Chemie International Edition,2001.40(22): 4233-4235.
    [44].Samsonenko, D.G., et al., Distortion of the Cucurbituril Molecule by an Included 4-Methylpyridinum Cation. Journal of Structural Chemistry,2002.43(4): 664-668.
    [45].Zhang, H., et al., Cucurbit [6] uril Pseudorotaxanes:Distinctive Gas-Phase Dissociation and Reactivity. Journal-american Chemical Society,2003.125(31): 9284-9285.
    [46].严琨et al.,大环化学和超分子化学研究进展.2002:西北大学出版社300-301.
    [47].刘静,欣.,et al.,瓜环与哌嗪衍生物主客体配合物的研究.无机化学学报,2004.20(002):139-146.
    [48].Mock, W. L. and J. Pierpont, A cucurbituril-based moiecular switch. Journal of the Chemical Society, Chemical Communications,1990(21):1509-1511.
    [49].Jun, S. I., et al., Rotaxane-based molecular switch with fluorescence signaling. Tetrahedron Letters,2000.41(4):471-475.
    [50].Kim, K., et al., A pseudorotaxane on gold:Formation of self-assembled monolayers, reversible dethreading and rethreading of the ring, and ion-gating behavior. Angewandte Chemie-International Edition,2003.42(20):2293-2296.
    [51].Jeon, W. S., et al., Control of the stoichiometry in host-guest complexation by redox chemistry of guests:Inclusion of methylviologen in cucurbit[8]uril. Chemical Communications,2002(17):1828-1829.
    [52].Kim, H. J., et al., Selective inclusion of a hetero-guest pair in a molecular host: Formation of stable charge-transfer complexes in cucurbit[8]uril. Angewandte Chemie-International Edition,2001.40(8):1526-1529.
    [53].Jeon, Y. J., et al., Supramolecular amphiphiles:Spontaneous formation of vesicles triggered by formation of a charge-transfer complex in a host. Angewandte Chemie-International Edition,2002.41(23):4474-4476.
    [54]. Lee, J. W., et al., Unprecedented host-induced intramolecular charge-transfer complex fonnation. Chemical Communications,2002(22):2692-2693.
    [55]. Choi, S., et al., A stable cis-stilbene derivative encapsulated in cucurbit[7]uril. Chemical Communications,2003(17):2176-2177.
    [56]. Jeon, W. S., et al., A [2]pseudorotaxane-based molecular machine:Reversible formation of a molecular loop driven by electrochemical and photochemical stimuli. Angewandte Chemie-International Edition,2003.42 (34),4097-4100.
    [57]Edmondson S, Huck W T S. Quasi-2D Polymer Objects from Patterned, Crosslinked Polymer Brushes Adv. Mater.,2004.16,1327-1328
    [58]Kim K, Jeon W S. Kim D, et al. PCT, WO05/103125,2005.
    [59]Kim K, Balaji R, Oh D H, et al. PCT, WO04/072151.2004.
    [60]Nagarajan E R, Oh D H, SelvapalamN, et al, Cucurbituril anchored silica gel Tetrahedron Lett.,2006,47,2073-2075
    [61]Hwang llha, Baek KangKyun, Jung Minseon,et al. Noncovalent Immobilization of Proteins on a Solid Surface by Cucurbit[7]uril-Ferrocenemethylammonium Pair, a Potential Replacement of Biotin-Avidin Pair J. AM. CHEM. SOC.2007, 129:4170-4171
    [62]Liu S M, Xu L, Wu C T, et al, Preparation and characterization of perhydroxyl-cucurbit[6]uril bonded silica stationary phase for hydrophilic-interaction chromatography Talanta,2004,64(4),929-934
    [63]Tuncel, D. and J. H. G. Steinke, Mainchain pseudopolyrotaxanes via post-threading with cucurbituril. Chemical Communications,2001(03): 253-254.
    [64].Meschke, C., H. J. Buschmann, and E. Schollmeyer, Synthesis of mono-, oligo-and polyamide-cucurbituril rotaxanes. Macromolecular Rapid Communications, 1998.19(1):59-63.
    [65].Meschke, C., H. J. Buschmann, and E. Schollmeyer, Polyrotaxanes and pseudopolyrotaxanes of polyamides and cucurbituril. Polymer,1999.40(4): 945-949.
    [66].Buschmann, H. J., et al., Synthesis of cucurbituril-spermine-[2]rotaxanes of the amide-type. Supramolecular Chemistry,2000.11 (3):225-231.
    [67].Choi, S., et al., Pseudopolyrotaxanes made to order:Cucurbituril threaded on polyviologen. Macromolecules,2002.35(9):3526-3531.
    [68](1)Tan Y B, Choi S W, Lee J W, et al. Macromolecules,2002,35:7161-7165; (2) Xiaoling Huang, Yebang Tan, Yuexia Wang, Hui Yang, Jie Cao, Yuju Che; Synthesis, Characterization and Properties of Copolymer of Acrylamide and Complex Pseudorotaxane Monomer Consisting of Cucurbit[6]uril with butyl ammonium methacrylate, Journal of Polymer Science Part A:Polymer Chemistry,2008.46 (18),5999-6008.:(3) Xiaoling Huang. Yebang Tan. Qifeng Zhou. Yuexia Wang, Yuju Che; Aggregation Behavior of Sodium Alginate with Cucurbit[6]uril in Aqueous Solution. Carbohydrate polymer, 2008,74 (3),635-690; (4) Xiaoling Huang, Yebang Tan. Qifeng Zhou. Yuexia Wang; Fabrication of Cucurbit[6]uril Mediated Alginate Physical Hydrogel Beads and Its Application as a Drug Carrier, e-Polymers,2008, no.095,1-11.
    [69]侯昭升(Hou Z S),谭业邦(Tan Y B),黄玉玲(Huang Y L)等.高分子学(Acta Polymerica Sinica),2005,4:491-495
    [70](1)侯昭升(Hou Z S),谭业邦(Tan Y B),王成威(Wang C W)等.高等学校化学学报(Chem. J. Chin. Univ.),2005,26(4),773-777; (2)Hui Yang, Yebang Tan, Jingcheng Hao, Side-chain polypseudorotaxanes by threading cucurbit[7]uril onto poly-N-n-butyl-N'-(4-vinylbenzyl)-4,4'-bipyridinium bromide chloride: Synthesis, characterization, and properties. Journal of Polymer Science, Part A: Polymer Chemistry,2010, vol 48, No.10,2135-2142
    [71], (1)Choi Soo Whan, Ritter Helmut. Macoromol. Rapid Commun,2007.28; 101-108(2)Ying-Wei Yang, Niveen M. Khashab, J. Fraser Stoddart, and Jeffrey I. Zink, Duai-Controlled Nanoparticles Exhibiting AND Logic. J. AM. CHEM. SOC.2009,131,11344-11346
    [72].Aivarez-Parrlla, E., et al., Dendritic growth of a supramolecular complex. Angewandte Cheinie-International Edition,2000.39(16):2856-2858.
    [73].Lee, J. W. and K. Kim, Rotaxane dendrimers. Dendrimers Ⅴ:Functional And Hyperbnmehed Building Blocks, Photophysical Properties, Applications In Materials And Life Sciences,2003.228:111-140.
    [74].Lee, J. W., et al., Novel pseudorotaxane-terminated dendrimers:Supramolecular modification of dendrimer periphery. Angewandte Chemie-International Edition, 2001.40(4):746-749.
    [75].Ong, W. and A. E. Kaifer, Molecular encapsulation by cucurbit[7]uril of the apical 4,4'-bipyridinium residue in Newkome-type dendrimers. Angewandte Chemie-International Edition,2003.42(19):2164-2167.
    [76]Choi S, Lee J W, Ko Y H, Kim K. Pseudopolyrotaxanes Made to Order: Cucurbituril Threaded on Polyviologen. Macromolecules,2002,35:3526-3531
    [77]Tan Y, Choi S W, Lee J W, et al. Synthesis and Characterization of Novel Side-Chain Pseudopolyrotaxanes Containing Cucurbituril.Macromolecules,2002, 35:7161-7165
    [78]Isobe H., Tomita N., Lee J W, et al. Ternary Complexes Between DNA, Polyamine, and Cucurbituril:A Modular Approach to DNA-Binding Molecules Angew. Chem. Int. Ed.,2000,39:4257-4260
    [79]Lim Y B, Kim T, Lee J W, et al. Self-Assembled Ternary Complex of Cationic Dendrimer, Cucurbituril, and DNA:Noncovalent Strategy in Developing a Gene Delivery Carrier. Bioconjugate Chem.,2002,13:1181-1185
    [80]王仁雷,华春.多胺及其在植物体内的作用,植物杂志.1994(3):30-32.
    [81]吴远根,邱树毅,张难,佟会,宋治福.高分子季铵盐型抗菌塑料的制备和抗菌性能.材料研究学报,2007,21(4):421-426.
    [82]Lee J. H., Jung H. W., Kang I. K., Lee H. B. Cell behavior on polymer surfaces with different functional-groups. Biomaterials,1994,15 (9):705-711.
    [83]Rasmussen J. R., Stedronsky E. R., Whitesides G. M. Introduction, modification, and characterization of functional-groups on surface of low-density polyethylene film. J. Am. Chem. Soc.,1977,99 (14):4736-4745.
    [83]刑其毅.基础有机化学(第二版).北京:科学出版社,1993:635-676.
    [84]刘淑芬.多胺型鳌合树脂的介成和性能研究.商丘师范学院学报,2004,20(5):101-104.
    [85]李善吉,俞善信,张鲁西.聚氯乙烯-多乙烯多胺树脂对金属离子的吸附.湖南师范大学自然科学学报,1997,20(4):56-60.
    [86]刘春萍,曲荣君,刘庆俭,孙琳.多胺型螫合树脂对重金属离子的吸附研究.离子交换与吸附,1998,14(6):548-553.
    [87]Serguei V. Vinogradov, Tatiana K. Bronich, and Alexander V. Kabanov, Self-Assembly of Polyamine-Poly(ethylene glycol) Copolymers with Phosphorothioate Oligonucleotides. Bioconjugate Chem.1998,9,805-812.
    [88]Motoi Oishi, Kazunori Kataoka, Yukio Nagasaki. pH-Responsive Three-Layered PEGylated Polyplex Micelle Based on a Lactosylated ABC Triblock Copolymer as a Targetable and Endosome-Disruptive Nonviral Gene Vector. Bioconjugate Chemistrv,2006,17,677-688.
    [89]Xiao-Chuan Liu, Jonathan S. Dordick. Sugar-containing Polyamines Prepared Using Galactose Oxidase Coupled with Chemical Reduction. J. Am. Chem. Soc., 1999,121,466-467.
    [90]Ali Hayek, Sebnem Ercelen, Xin Zhang, Frederic Bolze, Jean-Franciiois Nicoud, Emmanuel Schaub, Patrice L. Baldeck,Yves Mely, Conjugation of a New Two-Photon Fluorophore to Poly(ethylenimine) for Gene Delivery Imaging. Bioconjugate Chemistry,2007,18,844-851.
    [91]Sibdas Singha Mahapatra, Niranjan Karak, Hyperbranched aromatic polyamines with s-triazine rings. Journal of Applied Polymer Science,2007,106,95-102.
    [92]Tsuyoshi Michinobu, Jun Inui, and Hiroyuki Nishide, m-Phenylene-Linked Aromatic Poly(aminium cationic radicals:Persistent High-Spin Organic Polyradicals. Org. Lett.2003,5,2165-2168.
    [93]Michael Kramer, Jean-FranAois Stumbe, Gunther Grimm,Brigitte Kaufmann,Ute Kruger, Martin Weber, and Rainer Haag, Dendritic Polyamines:Simple Access to New Materials with Defined Treelike Structures for Application in Nonviral Gene Delivery. ChemBioChem,2004,5,1081-1087.
    [94]David E. Bergbreiter, Andrew M. Kippenberger, and William M. Lackowski, New Syntheses of Hyperbranched Polyamine Grafts. Macronmolecules,2005,38, 47-52.
    [95]Sungrok Ko, Jyongsik Jang, Controlled Amine Functionalization on Conducting Polypyrrole Nanotubes as Effective Transducers for Volatile Acetic Acid. Biomacromolecules, 2007,8,182-187.
    [96]Sidransky H. Effect of spermine on hepatic polyribosomes and protein synthesis in rats Biochem. Med.1982,27(1):68-81.
    [97]Pegg AE. Recent advances in the biochemistry of polyamines in eukaryotes. Biochem. J.,1986,234:249-262.
    [98]Victor C., Zhao M., Crooks R. M., Self-Assembled Inverted Micelles Prepared from a Dendrimer Template:Phase Transfer of Encapsulated Guest. J. Am. Chem. Soc.,1999,121 (20),4910-4911.
    [99]王俊,刘伟华,李翠勤,葛腾杰.杨锦宗.自组装聚酰胺-胺大分子对甲基橙 相转移行为的影响.应用化学,2006,22(6):679-681.
    [100]尹峰,赵紫霞,吴宝艳,王新胜,王艳艳,陈强.基于多壁碳纳米管和聚丙烯胺层层自组装的葡萄糖生物传感器.分析化学,2007,7:1021-1024.
    [101]Wallace HM, Fraser AV. Biochem. Soc. Trans.,2003,31(2):393-396.
    [102]Huang Y, Pledgie A, Rubin E. et al. Cancer Bio. Then,2005,4(9):1006-1013
    [103]Hoist C.M., Frydman B, Marton L.J., et al. Differential polyamine analogue effects in four human breast cancer cell lines. Toxicology,2006,223(1-2):71-81.
    [104]黄世文,付烈振,卓仁禧等.中国科学(B辑),2003,1(33):1-4]、壳聚糖纳米粒基因载体[黄伟,崔光华,贺俊峰,等.药学学报,2002,37(12):981-983.
    [105]平渊,马强,陈建海,葡聚糖-精胺阳离子聚合物基因载体体外基因转染的研究药学学报,2007,42(6):669-674
    [106]马守栋.陈建海,葡聚糖-寡胺纳米粒基因载体的制备及表征中国药学杂志2006,41(13):1005-1009
    [107]M. Luz Godino-Salido, Rafael Lopez-Garzon, Paloma Arranz-Mascaros, M. Dolores Gutierrez-Valero, Antonio Santiago-Medina, Javier Garcia-Martin, Study of the adsorption capacity to Co2+, Ni2+ and Cu2+ ions of an activecarbon/functionalized polyamine hybrid material Polyhedron.2009,28: 3781-3787
    [108]刘春萍,唐清华,纪春暖,孙琳,宋维相,铜模版—多胺酚醛型螯合树脂的吸附性能研究.烟台师范学院学报,2003,19(2):107-110
    [109]庄银凤,王国伟,朱仲棋,NIPA类共聚温敏水凝胶中水的状态和耐热性郑州大学学报(理学版)2003,1:62-66
    [110]Zhao M., Sun L. Crooks R.M., Preparation of Cu Nanoclusters within Dendrimer Templates.J.AM. Chem.Soc.1998,120(19):4877-4878
    [111]Esumi K., Houdatsu H., Yoshimura T.. Antioxidant Action by Gold-PAMAM Dendrimer Nanocomposites Langmuir,2004,20(7):2536-2538; Marc R. K.: Michael G., Weir V.,etal., Synthesis and Characterization of Pt Dendrimer-Encapsulated Nanoparticles:Effect of the Template on Nanoparticle Formation Chem. Mater.,2008,20(16):5218-5228
    [112]Ye H., John A., Crooks R.M., Effect of Particle Size on the Kinetics of the Electrocatalytic Oxygen Reduction Reaction Catalyzed by Pt Dendrimer-Encapsulated Nanoparticles. Langmuir,2007,23 (23):11901-11906
    [113]Ye H., Scott R.W.J., Crooks R.M., Synthesis, Characterization, and Surface Immobilization of Platinum and Palladium Nanoparticles Encapsulated within Amine-Terminated Poly(amidoamine) Dendrimers. Langmuir,2004,20(7): 2915-2920
    [114](1)Scott R.W.J., Wilson O.M., Crooks R.M., Synthesis, Characterization, and Applications of Dendrimer-Encapsulated Nanoparticles. J. Phys. Chem. B,2005, 109(2):692-704(2)Pierre Thuery, Second-Sphere Tethering of Rare-Earth Ions to Cucurbit[6]uril by Iminodiacetic Acid Involving Carboxylic Group Encapsulation. Inorg. Chem.2010,49,9078-9085(3)Kai Chen, Li Li Liang, Yun-Qian Zhang, Qian-Jiang Zhu, Sai-Feng Xue; and Zhu Taolnorg, Novel Supramolecular Assemblies Based on Coordination of Samarium Cation to Cucurbit[5]uril. Chem. 2011,50,7754-7760(4)Xiaoyong Lu and Eric Masson, Fomiation and Stabilization of Silver Nanoparticles with Cucurbit[n]urils (n=5-8) and Cueurbituril-Based Pseudorotaxanes in Aqueous Medium. American Chemical Society, Langmuir.2011,27.3051-3058(5) Richard W. Taylor, Tung-Chun Lee, Oren A. Scherman, Ruben Esteban, Javier Aizpurua, Fu Min Huang, Jeremy J. Baumberg, and Sumeet Mahajan, Precise Subnanometer Plasmonic Junctions for SERS within Gold Nanoparticle Assemblies Using Cucurbit[n]uril "Glue". TAYLOR ETAL.2011, VOL.5, NO.5,3878-3887
    [115]樊新华,姚维沿,李国平,罗运军,以聚酰胺-胺树形分子为模板制备AgI纳米簇感光科学与光化学2006,24(6):454-461
    [116]王元凤,赵科,杨瑞琴,王彦吉,靳玉娟,罗运军,胺端基型CdS/PAMAM潜在显现指印的应用 中国司法鉴定,2008,4:43-45.
    [1]Ooya, T.; Mori, H.; Terano, M.; Yui, N. Synthesis of a biodegradable polymeric supramolecular assembly for drug delivery.Macromol. Rapid Commun.1995,16, 259
    [2]Ooya, T.; Yui, N. Synthesis and characterization of biodegradable polyrotaxane as a novel supramolecular-structured drug carrier. J. Biomater. Sci. Polym. Ed.1997, 8,437
    [3]Kamimura, W.; Ooya, T.; Yui, N. Heterogeneity of serum albumin samples with respect to solid-state aggregation via thiol-disulfide interchange-Implications for sustained release from polymers. J. Controlled Release 1997,44,295
    [4]Ooya, T.; Yui, N. Supramolecular dissociation of biodegradable polyrotaxanes by enzymatic terminal hydrolysis.Macromol. Chem. Phys.1998,199,2311.
    [5]Watana'oe, J.; Ooya, T.; Yui, N. Preparation and Characterization of a Polyrotaxane with Non-enzymatically Hydrolyzable Stoppers.Chem. Lett.1998,1031.
    [6]Hiroaki Fujita, Tooru Ooya, Yui N. Controlled"Living" Radical Polymerization. Atem Transfer Radical Polymerization Catalyzed by Copper(I) and Picolylamine Complexes. Macromolecules,1999,32,2534-2541.
    [7]Julia Jeromin and Helmut Ritter, Cyclodextrins in Polymer Synthesis:Free Radical Polymerization of a N-Methacryloyl-11-aminoundeeanoic Acid/p-Cyclodextrin Pseudorotaxane in an Aqueous Medium. Macromolecules, 1999,32,5236-5239;
    [8]Olaf Noll, Helmut Ritter, Synthesis of new side-chain polyrotaxanes via free radical polymerization of a water-soluble semi-rotaxane monomer consisting of 2, 6-dimethyl-β-cyclodextrin and 3-O-(11-acryloylaminoundecanoyl)eholic acid. Macromol. Chem. Phys.,1998,199,791-794.
    [9]Isao Yamaguchi, Kohtaro Osakada, and Takakazu Yamamoto, Introduction of a Long Alkyl Side Chain to Poly(benzimidazole)s. N-Alkylation of the Imiciazole Ring and Synthesis of Novel Side Chain Polyrotaxanes.Macromolecules,1997, 30,4288-4294.
    [10]Isao Yamaguchi, Kohtaro Osakada, and Takakazu Yamamoto, A Novel Crown Ether Stopping Group for Side Chain Polyrotaxane. Preparation of Side Chain Polybenzimidazole Rotaxane Containing Alkyl Side Chain Ended by Crown Ether-ONa Group. Macromolecules,2000,33,2315-2319.
    [11]Toshikazu Takata, Hiroaki, Satoko Asai, Nobuhiro Kihara and Yoshio Furusho, Radically Polymerizable Pseudorotaxane Monomers:Versatile Building Units for Side Chain Polyrotaxane Synthesis. Chemisty Letter,1999,111-112.
    [12]Gibson, H. W.; Yamaguchi, N. "Side Chain Poly(methacrylate pseudorotaxane)s", Polymer Preprints,2000,41(1),18-19.
    [13]Yamaguchi, N; Gibson, H. W. Non-covalent Chemical Modification of Crown Ether Side Chain Polymethacrylates with a Secondary Ammonium Salt:A New Polypseudorotaxane, Macromol. Chem. Phys.,2000,201,815-824
    [14]Mock W L. Shih N Y, Host-guest binding capacity of cucurbituril. J. Org. Chem., 1983,48,3618;
    [15]Mock W L, Shih N Y, Structure and selectivity in host-guest complexes of cucurbituril. J. Org. Chem.,1986,51,4440;
    [16]Mock W L, Shih N Y, Organic ligand-receptor interactions between cucurbituril and alkylammonium ions. J. Am. Chem. Soc.1988,110,4706-4710.
    [17]Mock W L, Shih N Y, Dynamics of molecular recognition involving cucurbituril. J. Am. Chem. Soc.1989,111,2697-2699
    [18]Jeon Y-M, Whang D. Kim J., Kim K, A Simple Construction of a Rotaxane and Pseudorotaxane:Syntheses and X-Ray Crystal Structures of Cucurbituril Threaded on Substituted Spermine.Chem. Letter,1996,503-504.
    [19]. H. Isobe, N. Tomita, J. W. Lee, H.-J. Kim, K. Kim and E. Nakamura,Temary Complexes Between DNA, Polyamine, and Cucurbituril:A Modular Approach to DNA-Binding Molecules Angew. Chem. Int. Ed.,2000,39,4257-4260
    [20]E. Lee, J. Heo and K. Kim, A Three-Dimensional Polyrotaxane Network.Angew. Chem. Int. Ed.,2000,39,2699-2701;
    [21]Sung Im Jun, Jae Wook Lee, Shigeru Sakamoto, Kentaro Yamaguchi, Kimmon Kim, Rotaxane-based molecular switch with fluorescence signaling.Tetrahedron Lett.2000,41,471-475;
    [22]Jae Wook Lee, Young Ho Ko, Sang-Hyun Park, Kentaro Yamaguchi, and Kimoon Kim, Novel Pseudorotaxane-Terminated Dendrimers:Supramolecular Modification of Dendrimer Periphery. Angew. Chem. Int. Ed.2001,40,746-749.
    [23]Jae Wook Lee, Sung Im Jun, Kimoon Kim, An efficient and practical method for the synthesis of mono-N-protected α, ω-diaminoalkanes. Tetrahedron Letter, 2001,42,2709-2711.
    [24]Tan, Y.B., et al., Synthesis and characterization of novel side-chain pseudopolyrotaxanes containing cucurbituril. Macromolecules,2002.35(18): 7161-7165.
    [25]侯昭升,et al.,侧链准聚轮烷的制备及表征--葫芦脲[6]与聚[4-乙烯基-溴(N-正丁基)吡啶季铵盐]的超分子自组装.高分子学报,2005(4):491-495.
    [26]侯昭升,et al.,葫芦脲与主链聚紫精的超分子自组装制备准聚轮烷及其性质研究.高等学校化学学报,2005.26(4):773-777.
    [27]Yang Hui; Tan Yebang; Wang Yuexia. Fabrication and properties of cucurbit[6]uril induced thermo-responsive supramolecular hydrogels Soft Matter 2009,5,3511-3516.
    [28]Yang Hui, Tan Yebang, Huang Xiaoling, Wang Yuexia, Research Progress of Cucurbituril Progress in Chemistry,2009,21,1:164-173
    [29]Yang Hui; Tan Yebang; Hao Jingcheng. Side-chain Polypseudorotaxane by Threading Cucurbit[7]uril onto Poly-N-n-butyl-N'-(4-vinylbenzyl)-4, 4'-bipyridinium bromide chloride:Synthesis, Characterization and Properties, journal of polymer science part A:polymer chemistry Journal of Polymer Science: Part A:Polymer Chemistry 2010,48,2135-2142.
    [30]Yang Hui; Tan Yebang; Hao Jingcheng. Cucurbit[7]uril Moving on Side Chains of Polypseudorotaxanes:Synthesis, Characterization and Properties Journal of Polymer Science:Part A:Polymer Chemistry 2011,49,2138-2146.
    [31]Lee H K, Park K M, Jeon Y J,et al. Vesicle Formed by Amphiphilc Cucurbit[6]uril:Versatile, Noncovalent Modification of the Vesicle Surface, and Multivalent Binding of Sugar-Decorated Vesicles to Leetin J. Am. Chem. Soc.,2005,127,5006-5007
    [32]Edmondson S, Huck W T S. Quasi-2D Polymer Objects from Patterned, Crosslinked Polymer Brushes Adv. Mater.,2004,16,1327-1328
    [33]Nagarajan E R, Oh D H, SelvapalamN, et al, Cucurbituril anchored silica gel Tetrahedron Lett.,2006,47,2073-2075
    [34]Hwang llha, Baek KangKyun, Jung Minseon,et al. Noncovalent Immobilization of Proteins on a Solid Surface by Cucurbit[7]uril-Ferrocenemethylammonium Pair, a Potential Replacement of Biotin-Avidin Pair J. AM. CHEM. SOC.2007, 129:4170-4171
    [35]Liu S M, Xu L, Wu C T, et al, Preparation and characterization of perhydroxyl-cucurbit[6]uril bonded silica stationary phase for hydrophilic-interaction chromatography Talanta.2004,64(4),929-934
    [36]Tuncel, D. and J. H. G. Steinkc, Mainchain pseudopolyrotaxanes via post-threading with cucurbituril. Chemical Communications,2001(03): 253-254.
    [37].Meschke, C., H. J. Buschmann, and E, Schollmeyer, Synthesis of mono-, oligo-and polyamide-cucurbituril rotaxanes. Macromolecular Rapid Communications, 1998.19(1):59-63.
    [38].Meschke, C., H. J. Buschmann, and E. Schollmeyer. Polyrotaxanes and pseudopolyrotaxanes of polyamides and cucurbituril. Polymer,1999.40(4): 945-949.
    [39].Buschmann, H. J., et al., Synthesis of cucurbituril-spermine-[2]rotaxanes of the amide-type. Supramolecular Chemistry,2000.11(3):225-231.
    [40].Choi, S., et al., Pseudopolyrotaxanes made to order:Cucurbituril threaded on polyviologen. Macromolecules,2002.35(9):3526-3531.
    [41]. (l)Choi Soo Whan, Ritter Helmut. Macoromol. Rapid Commun,2007.28; 101-108 (2) Ying-Wei Yang, Niveen M. Khashab, J. Fraser Stoddart. and Jeffrey I. Zink, Dual-Controlled Nanoparticles Exhibiting AND Logic. J. AM. CHEM. SOC.2009,131,11344-11346
    [42].Alvarez-Parrilla, E., et al., Dendritic growth of a supramolecular complex. Angewandte Chemie-International Edition,2000.39(16):2856-2858.
    [43].Lee, J. W. and K. Kim, Rotaxane dendrimers. Dendrimers Ⅴ:Functional And Hyperbranched Building Blocks, Photophysical Properties, Applications In Materials And Life Sciences,2003.228:111-140.
    [44].Lee, J. W., et al., Novel pseudorotaxane-terminated dendrimers:Supramolecular modification of dendrimer periphery. Angewandte Chemie-International Edition, 2001.40(4):746-749.
    [45]Lim Y B, Kim T, Lee J W, et al. Self-Assembled Ternary Complex of Cationic Dendrimer, Cucurbituril, and DNA:Noncovalent Strategy in Developing a Gene Delivery Carrier. Bioconjugate Chem.,2002,13:1181-1185
    [46].向永哲,王娜,张骥等.基于大环多胺的新型线型聚合物的合成及与DNA相互作用的研究.中国科学B:2009,39,3:269-274.
    [47].沈吴宇,朱凡,施炜等.三聚氰胺与鯡鱼精DNA相互作用研究.Acta Chimica Sinica, Vol.68,2010,17:1719-1725..
    [48].赵广超,朱俊杰,陈洪渊.电化学诱导咪唑铜配合物断裂DNA的研究.高等学校化学学报.Vol.24,2003,3;414-418.
    [49]. Kashanian S. Askari S, Ahmad i F, Omidfar K, Ghobadi S, Tarighat FA. In vitro study of DNA interaction with clodinafop-propargyl herbicide. DNA Cell Biol. 2008 Oct;27(10):581-6.
    [50]. Xiang, Q.-X.;Chen, J.-X.; Yang, X.-R.; Cai, X.-R.; Xiong, J.-R. Interaction between Monosquaramide Macrocyclic Tetraamine Metal Complexes and DNA. Chin. J. Org. Chem.2008,28(7),1223-1226 (in Chinese).
    [51]. Osland A, Kleppe K. Polyamine induced aggregation of DNA. Nucl Acids Res, 1977,4(3):685-695[DOI]
    [52]. Haq I, Chowdhry BZ, Jenkins TC. Calorimetric techniques in the study of high-order DNA-drug interactions. Methods Enzymol.2001; 340:109-49
    [53].Koltover I, Wagner K, Safinya C R. DNA condensation in two dimensions. Proc Natl Acad Sci USA,2000,97(26):14046-14051.
    [54].Raspaud E, Chaperon I, Leforestier A. Livolant F. Spermine-induced aggregation of DNA, nucleosome, and chromatin. Biophys J,1999,77(3):1547-1555.
    [55].江崇球,贺吉香,王金山.EB荧光探针法研究多粘菌素B与DNA的作用方式.光谱学与光谱分析,2002,22(1):103-106.
    [1]Jasys, V. J.; Kelbaugh, P. R.; Nason, D. M.; Phillips, D.; Saccomano, N. A.; Stroh, J. G.; Volkmann, R.A. The total synthesis of argiotoxing 636,659 and 673. Tetrahedron Lett.1988,29,6223~6226
    [2]Jasys, V. J.; Kelbaugh, P. R.; Nason, D. M.; Phillips, D.; Rosnack, K. J.; Garlich, J. R.; Stolowich, N. J. Reagents for the stepwise functiona -lization of spermidine, homospermidine, and bis(3-aminopropyl)amine J. Org. Chem.1984,49, 2997~3001.
    [3]Bergeron. R. J.; Mcmanis, J. S.; Liu, C. Z.; Feng, Y.; Weimar, W. R.; Luchetta, G. R.; W Q.; Ortiz-Ocasio, J.; Vinson, J. R. T.; Kramer, D.; Porter, C. Antiproliferative Properties of Polyamine Analogs:A Structure- Activity Study J. Med. Chem.1994,37,3464~3476.
    [4]Bergeron R. J.; Weimar.W. R.; Wu. Q.; Feng, Y.; Mcmanis J. S.; Polyamine Analogue Regulation of NMDA MK-801 Binding:A Structure-Activity Study J. Med. Chem.1996,39,5257~5266.
    [5]Bergeron. R. J.; Feng, Y.; Weimar, W. R.; Mcmanis, J. S.; Dimova, H.; Porter. C Raisler, B.; Phanstiel. O. A Comparison of Structure-Activity Relationships between Spermidine and Spermine Analogue Antineoplastics J.Med.Chem.1997, 40,1475~1494.
    [6]Carboni, B.; Benalil.A.; Vaulter, M. Aliphatic amino azides as key building blocks for efficient polyamine syntheses J.Org. Chem.1993,58,3736~3741.
    [7]Vaulter, M.; Carboni.B.; Martinez-Freshneda. P. An efficient synthesis of N,N'-substituted symmetrical diamines Synth. Commun.1992,22,665~671.
    [8]Nagarajan S.; Ganem. B.; Chemistry of naturally occurring poly-amines.10.Nonmetabolizable derivatives of spermine and spermidine J. Org. Chem.1986,51,4856~4861.
    [9]Kunesch. G.; An efficient synthesis of some biologically important monoacylated diamines Tetrahedron Lett.1983,24,5211~5214.
    [10]Miyashita. M.; Sato. H.; Yoshikoshi. A.; Toki. T.; Matsushita, M.; lrie. H; Yanami. T.; Kikuchi. Y.; Takasaki, C.; Nakajima. T.; Synthetic studies on spider neurotoxins (Ⅰ):Total synthesis of nephilatoxins (NPTX-9 and NPTX-11), new neurotoxins of joro spider. Tetrahedron Lett.1992,33,2833~2836.
    [11]Nagarajan. S.; Ganem. B.; Catalysis by cyclodextrins in nucleophilic aromatic substitution reactions.2. Amines as nucleophiles J.Org.Chem.1987,52, 5004~5008.
    [12]Levchine.l.;Pajan.P.;Borloo.M.;Bollaert.W.;Haemers.A.; An efficient synthesis of selectively funetionalized spermidine, Synthesis.1994,37-39
    [13]Golding.B. T.; O'Sullivan. M. C.; Smith. L. L.; Convenient routes to alkyl-substituted polyamines, Tetrahedron Lett.1988,29,6651--6654
    [14]Lochner. M.; Geneste, H.; Hesse.M.; Helv. Chim. Acta.1998,81,2270
    [15]Karigiannis.G.;Mamos.P.;Balayiannis.G.;Katsoulis.I.;Papaioannou.D.;Natural products analogs as scaffolds for supramoleeular and combinatorial chemistry/Tetrahedron Lett.1998,30,5709-5712.
    [16]Fan Wang, Sukhdev Manku, and Dennis G. Hall* Solid Phase Syntheses of PolyamineToxins HO-416b and PhTX-433. Use of an Efficient Polyamide Reduction Strategy That Facilitates Access to Branched Analogues Org. Lett., 2000,2(11),1581~1583.
    [17]Christian A. Olsen, Matthias Witt, Jerzy W. Jaroszewski. and Henrik Franzyk Solid-Phase Polyamine Synthesis Using Piperazine and Piperidine Building Blocks, Org. Lett.,2003,5 (22),4183~4185.
    [18]Phanstiel O. IV, Price H. L., Wang L., Juusola J., Kline M., Shah S. M., The Effect of Polyamine Homologation on the Transport and Cytotoxicity Properties of Polyamine-(DNA-Intercalator) Conju- gates. J. Org. Chem.,2000,65(22); 7710~7710
    [19]Nagamani D., Ganesh K. N., Pyrrolidyl Polyamines:Branched, Chiral Polyamine Analogues That Stabilize DNA Duplexes and Triplexes.Org. Lett., (Communication); 2001,3(1); 103~106.
    [20]Wang C, Delcros J.-G., Cannon L., Konate F., Carias H., Biggerstaff J., Gardner R. A., Phanstiel O. Ⅳ, Defining the Molecular Requirements for the Selective Delivery of Polyamine Conjugates into Cells Containing Active Polyamine Transporters, J. Med. Chem.,2003,46(24); 5129~5138.
    [21]Frydman B., Bhattacharya S., Sarkar A., Drandarov K., Chesnov S., Guggisberg A., Popaj K., Sergeyev S., Yurdakul A., Hesse M., Basu H. S., Marton L. J., Macrocyclic Polyamines Deplete Cellular ATP Levels and Inhibit Cell Growth in Human Prostate Cancer Cells J. Med. Chem.,2004,47(4); 1051~1059.
    [22]Manku S., Wang F., Hall D. G., Synthesis and High Performance Liquid Chromatography/Electrospray Mass Spectrometry Single-Bead Decoding of Split-Pool Structural Libraries of Polyamines Supported on Polystyrene and Polystyrene/Ethylene Glycol Resins J. Comb. Chem.,2003,5(4); 379~391.
    [23]Wang C., Delcros J.-G., Biggerstaff J., Phanstiel O. Ⅳ,Molecular Requirements for Targeting the Polyamine Transport System. Synthesis and Biological Evaluation of Polyamine-Anthracenc Conjugates, J. Med. Chem.,2003,46(13); 2672~2682.
    [24]Miranda C., Escarti F., Lamarque L., Yunta M. J. R., Navarro P., Garcia-Espana E., Jimeno M. L., New 1H-Pyrazole-Containing Polyamine Receptors Able To Complex L-Glutamate in Water at Physiological pH Values, J. Am. Chem. Soc. 2004,126(3); 823~833.
    [25]Ooya, T.; Mori, H; Terano, M.; Yui. N. Synthesis of a biodegradable polymeric supramolecular assembly for drug delivery.Macromol. Rapid Commun.1995,16, 259
    [26]Ooya, T.; Yui, N. Synthesis and characterization of biodegradable polyrotaxane as a novel supramolecular-structured drug carrier. J. Biomater. Sci. Polym. Ed. 1997,8,437
    [27]Kamimura, W.; Ooya. T.; Yui, N. Heterogeneity of serum albumin samples with respect to solid-state aggregation via thiol-disulfide interchange-Implications for sustained release from polymers. J. Controlled Release 1997,44,295
    [28]Ooya, T.; Yui, N. Supramolecular dissociation of biodegradable polyrotaxanes by enzymatic terminal hydrolysis.Macromol. Chem. Phys.1998,199,2311.
    [29]Watanabe, J.; Ooya, T.; Yui, N. Preparation and Characterization of a Polyrotaxane with Non-enzymatically Hydrolyzable Stoppers.Chem. Lett.1998, 1031
    [30]Hiroaki Fujita, Tooru Ooya, Yui N. Controlled/"Living" Radical Polymerization. Atom Transfer Radical Polymerization Catalyzed by Copper(I) and Picolylamine Complexes. Macromolecules,1999,32,2534-2541.
    [31]Julia Jeromin and Helmut Ritter, Cyclodextrins in Polymer Synthesis:Free Radical Polymerization of a N-Methacryloyl-11-aminoundecanoic Acid/β-Cyclodextrin Pseudorotaxane in an Aqueous Medium. Macromolecules, 1999,32,5236-5239;
    [32]Olaf Noll, Helmut Ritter, Synthesis of new side-chain polyrotaxanes via free radical polymerization of a water-soluble semi-rotaxane monomer consisting of 2, 6-dimethyl-β-cyclodextrin and 3-O-(11-acryloylaminoundecanoyl)cholic acid. Macromol. Chem. Phys.,1998,199,791-794.
    [33]Isao Yamaguchi, Kohtaro Osakada, and Takakazu Yamamoto, Introduction of a Long Alkyl Side Chain to Poly(benzimidazole)s. N-Alkylation of the Imidazole Ring and Synthesis of Novel Side Chain Polyrotaxanes.Macromolecules.1997, 30,4288-4294.
    [34]Isao Yamaguchi, Kohtaro Osakada, and Takakazu Yamamoto, A Novel Crown Ether Stopping Group for Side Chain Polyrotaxane. Preparation of Side Chain Polybenzimidazole Rotaxane Containing Alkyl Side Chain Ended by Crown Ether-ONa Group. Macromolecules,2000,33,2315-2319.
    [35]Toshikazu Takata, Hiroaki, Satoko Asai, Nobuhiro Kihara and Yoshio Furusho, Radically Polymerizable Pseudorotaxane Monomers:Versatile Building Units for Side Chain Polyrotaxane Synthesis. Chemisty Letter.1999,111-112.
    [36]Gibson, H. W.; Yamaguchi, N. "Side Chain Poly(methacrylate pseudorotaxane)s", Polymer Preprints,2000,41(1),18-19.
    [37]Yamaguchi, N; Gibson, H. W. Non-covalent Chemical Modification of Crown Ether Side Chain Polymethacrylates with a Secondary Ammonium Salt:A New Polypseudorotaxane, Macromol. Chem. Phys.,2000,201,815-824
    [38]Mock W L, Shih N Y, Host-guest binding capacity of cucurbituril. J. Org. Chem., 1983,48,3618;
    [39]Mock W L, Shih N Y, Structure and selectivity in host-guest complexes of cucurbituril. J. Org. Chem.,1986,51,4440;
    [40]Mock W L, Shih N Y, Organic ligand-receptor interactions between cucurbituril and alkylammonium ions. J. Am. Chem. Soc.1988,110,4706-4710.
    [41]Mock W L, Shih N Y, Dynamics of molecular recognition involving cucurbituril. J. Am. Chem. Soc.1989,111,2697-2699
    [42]Jeon Y-M, Whang D. Kim J., Kim K, A Simple Construction of a Rotaxane and Pseudorotaxane:Syntheses and X-Ray Crystal Structures of Cucurbituril Threaded on Substituted Spermine.Chem. Letter,1996,503-504.
    [43]. H. Isobe, N. Tomita, J. W. Lee, H.-J. Kim, K. Kim and E. Nakamura,Ternary Complexes Between DNA, Polyamine, and Cucurbituril:A Modular Approach to DNA-Binding Molecules Angew. Chem. Int. Ed.,2000,39,4257-4260
    [44]E. Lee, J. Heo and K. Kim,, A Three-Dimensional Polyrotaxane Network.Angew. Chem. Int. Ed.,2000,39,2699-2701;
    [45]Sung Im Jun, Jae Wook Lee, Shigeru Sakamoto, Kentaro Yamaguchi. Kimmon Kim, Rotaxane-based molecular switch with fluorescence signaling.Tetrahedron Lett.2000,41,471-475;
    [46]Jae Wook Lee, Young Ho Ko, Sang-Hyun Park, Kentaro Yamaguchi, and Kimoon Kim, Novel Pseudorotaxane-Terminated Dendrimers:Supramolecular Modification of Dendrimer Periphery. Angew. Chem. Int. Ed.2001,40,746-749.
    [47]Jae Wook Lee, Sung Im Jun, Kimoon Kim, An efficient and practical method for the synthesis of mono-N-protected α, ω-diaminoalkanes. Tetrahedron Letter, 2001,42,2709-2711.
    [48]Tan, Y.B., et al., Synthesis and characterization of novel side-chain pseudopolyrotaxanes containing cucurbituril. Macromolecules,2002.35(18): 7161-7165.
    [49]侯昭升,et al.,侧链准聚轮烷的制备及表征--葫芦脲[6]与聚[4-乙烯基-澳(N-正丁基)吡啶季铵盐]的超分子自组装.高分子学报,2005(4):491-495.
    [50]侯昭升,et al.,葫芦脲与主链聚紫精的超分子自组装制备准聚轮烷及其性质研究.高等学校化学学报,2005.26(4):773-777.
    [51]Yang Hui; Tan Yebang; Wang Yuexia. Fabrication and properties of cucurbit[6]uril induced thermo-responsive supramolecular hydrogels Soft Matter 2009,5,3511-3516.
    [52]Yang Hui, Tan Yebang, Huang Xiaoling, Wang Yuexia, Research Progress of Cucurbituril Progress in Chemistry,2009,21,1:164-173
    [53]Yang Hui; Tan Yebang; Hao Jingcheng. Side-chain Polypseudorotaxane by Threading Cucurbit[7]uril onto Poly-N-n-butyl-N'-(4-vinylbenzyl)-4, 4'-bipyridinium bromide chloride:Synthesis, Characterization and Properties, journal of polymer science part A:polymer chemistry Journal of Polymer Science: Part A:Polymer Chemistry 2010,48,2135-2142.
    [1]Daniel MC, Astruc D:Gold nanoparticles:Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 2004,104:293.
    [2]Li CC, Cai WP and Cao BQ, et al:Mass Synthesis of Large, Single-Crystal Au Nanosheets Based on a Polyol Process. Adv Funct Mater 2006,16:83-90.
    [3]Korotcenkova G, Gulinab LB, Choa BK, Hanc SH, Tolstoy VP:SnO2-Au nanocomposite synthesized by successive ionic layer depositionmethod: Characterization and application in gas sensors. Materials Chemistry and Physics 2011,128:433-441.
    [4]Andrew Pearson, Harit Jani, Kourosh Kalantar-zadeh, Suresh K. Bhargava and Vipul Bansal:Gold Nanoparticle-Decorated Keggin Ions/TiO2 Photococatalyst forImproved Solar Light Photocatalysis. Langmuir 2011,27:6661-6667.
    [5]Garcia-Serrano J, Galindo AG, Pal U:Au-Al2O3 nanocomposites:XPS and FTIR spectroscopic studies. Sol Energy Mater Sol C 2004,82:291-298.
    [6]Donkova B, Vasileva P, Nihtianova D, et al.:Synthesis, characterization, and catalytic application of Au/ZnO nanocomposites prepared by coprecipitation. J Mater Sci 2011,46:7134-7143.
    [7]Cao Q, Zhao H, Yang YM, et al.:Electrochemical immunosensor for casein based on gold nanoparticles andpoly(1-Arginine)/multi-walled carbon nanotubes composite film functionalizedinterface. Biosensors and Bioelectronics.2011,26: 3469-3474.
    [8]Hu YJ, Jin J, Wu P, Zhang H, Cai CX:Graphene-gold nanostructurecomposites fabricated by electrodeposition andtheir electrocatalytic activity toward the oxygen reduction and glucose oxidation. Electrochimica Acta 2010,56:491-500.
    [9]Tuan Anh Pham, Byung Choon Choi, Kwon Taek Lim, Yeon Tae Jeong:A simple approach for immobilization of gold nanoparticles on graphene oxidesheets by covalent bonding. Applied Surface Science 2011,257:3350-3357.
    [10]Zhang ZY, Zhang P, Guo K:Facile synthesis of fluorescent Au@SiO2 nanocomposites for application incellular imaging. Talanta 2011,85: 2695-2699.
    [ll]Ryan Muszynski, Brian Seger, and Prashant V. Kamat:Decorating Graphene Sheets with Gold Nanoparticles. J Phys Chem C,2008,112:14,5263-5266.
    [12]Hassan H. M. A., Abdelsayed V., Khder A. E. R. S., et al.:Microwave synthesis of graphene sheets supporting metal nanocrystalsin aqueous and organic media. J Mater Chem,2009,19:3832.
    [13]. Raymo, F. M.; Stoddart, J. F. Interlocked macromolecules. Chem Rev 1999,99, 1643-1663.
    [14]. Lehn, J. M. Supramolecular Chemistry—Scope and Perspectives Molecules, Supermolecules, and Molecular Devices Angew Chem Int Ed 1988,27,89-91 (89-112)
    [15]. Gibson, H. W.; Bheda, M. C.; Engen, T. Rotaxanes, catenanes, polyrotaxanes, polycatenanes and related materials. Prog Polym Sci 1994,19,843-945.
    [16]. Amabilino, D. B.; Stoddart, J. F. Interlocked and intertwined structures and superstructures. Chem Rev 1995,95,2725-2828.
    [17]. Nepogodiev, S. A.; Stoddart, J. F. Cyclodextrin-based catenanes and rotaxanes Chem Rev 1998,98,1959-1976.
    [18]. Raymo, F. M.; Stoddart, J. F. Interlocked macromolecules Chem Rev 1999,99, 1643-1663.
    [19]. Balzani, V.; Gomez-Lopez, M.; Stoddart, J. F. Molecular Machines. Ace Chem Res 1998,31,405-414.
    [20]. Chamborn, J.; Sauvage, J. Functional Rotaxanes:From Controlled Molecular Motions to Electron Transfer Between Chemically Nonconnected Chromophores. Chem Eur J 1998,4,1362-1366.
    [21]. Murakami, H.; Kawabuvhi, A.; Kotoo, K.; Kunitake, M.; Nakashima, N. A Light-Driven Molecular Shuttle Based on a Rotaxane. J Am Chem Soc 1997,119, 7605-7606.
    [22]. Bissell, R. A.; Cordova, E.; Kaifer, A. E.; Stoddart, J. F. A Chemically and Electrochemically Switchable Molecular Shuttle Nature 1994,369,133-137.
    [23]. Lane, A. S.; Leigh, D. A.; Murphy, A. Peptide-Based Molecular Shuttles J Am Chem Soc 1997.119.11092-11093.
    [24]. Jun, S. I.; Lee. J. W.; Sakamoto, S.; Yamaguchi, K.; Kim, K. Rotaxane-bascd molecular switch with fluorescence signaling Tetrahedron Lett 2000,41, 471-475.
    [35]. Choi, S. W.; Park, S. H.; Ziganshina, A. Y.; Ko, Y. H.; Lee, J. W.; Kim, K. A stable cis-stilbene derivative encapsulated in cucurbit[7]uril. Chem Commun 2003,2176-2177.
    [26]. Tuncel, D.; Steinke, J. H. G. Catalytically self-threading polyrotaxanes. Chem Commun 1999,1509-1510.
    [27]. Tuncel, D.; Steinke, J. H. G. Mainchain pseudopolyrotaxanes via post-threading with cucurbituril. Chem Commun 2001,253-254.
    [28]. Krasia, T. C.; Steinke, J. H. G. Formation of oligotriazoles catalysed by cucurbituril. Chem Commun 2002,22-23.
    [29]. Tuncel, D.; Steinke, J. H. G. Catalytic Self-Threading:A New Route for the Synthesis of Polyrotaxanes. Macromolecules 2004,37:288-302.
    [30]. Day, A.; Arnold, A.; Blanch, R. J.; Snushall, B. Controlling Factors in the Synthesis of Cucurbituril and Its Homologues. J. Org. Chem.2001,66, 8094-8100.
    [31]. Kim, J.; Jung, I. S.; Kim. S. Y.; Lee, E.; Kang. J. K.; Sakamoto, S.; Yamaguchi, K.; Kim, K. New Cucurbituril Homologues:Syntheses, Isolation, Characterization, and X-ray Crystal Structures of Cucurbit[n]uril (n) 5,7, and 8) J. Am. Chem. Soc.2000,122,540-541.
    [1]. Raymo, F. M.; Stoddart, J. F. Interlocked macromoleculesChem Rev 1999,99, 1643-1663.
    [2]. Lehn, J. M. Supramolecular Chemistry-Scope and Perspectives Molecules, Supermolecules, and Molecular Devices Angew Chem Int Ed 1988,27,89-91. (89-112)
    [3]. Gibson, H. W.; Bheda, M. C.; Engen, T. Rotaxanes, catenanes, polyrotaxanes, polycatenanes and related materials Prog Polym Sci 1994,19,843-945.
    [4]. Amabilino, D. B.; Stoddart, J. F. Interlocked and intertwined structures and superstructures Chem Rev 1995,95,2725-2828.
    [5]. Nepogodiev, S. A.; Stoddart, J. F. Cyclodextrin-based catenanes and rotaxanes Chem Rev 1998,98,1959-1976.
    [6]. Balzani, V.; Gomez-Lopez, M.; Stoddart, J. F. Molecular Machines Ace Chem Res 1998,31,405-414.
    [7]. Chamborn, J.; Sauvage, J. Functional Rotaxanes:From Controlled Molecular Motions to Electron Transfer Between Chemically Nonconnected Chromophores Chem Eur J 1998,4,1362-1366.
    [8]. Murakami, H.; Kawabuvhi, A.; Kotoo, K.; Kunitake, M.; Nakashima, N. A Light-Driven Molecular Shuttle Based on a Rotaxane. J Am Chem Soc 1997.119, 7605-7606.
    [9]. Bissell, R. A.; Cordova, E.; Kaifer, A. E.; Stoddart, J. F. A Chemically and Electrochemically Switchable Molecular Shuttle Nature 1994,369,133-137.
    [10]. Lane, A. S.; Leigh, D. A.; Murphy, A. Peptide-Based Molecular Shuttles J Am Chem Soc 1997,119,11092-11093.
    [11]. Jun, S. I.; Lee, J. W.; Sakamoto, S.; Yamaguchi, K.; Kim, K. Rotaxane-based molecular switch with fluorescence signaling Tetrahedron Lett 2000,41, 471-475.
    [12], Choi, S. W.; Park, S. H.; Ziganshina, A. Y.; Ko, Y. H.; Lee, J. W.;Kim, K. A stable cis-stilbene derivative encapsulated in cucurbit[7]uril. Chem Commun 2003,2176-2177.
    [13]. Tuncel, D.; Steinke, J. H. G. Catalytically self-threading polyrotaxanes. Chem Commun 1999,1509-1510.
    [14]. Tuncel, D.; Steinke, J. H. G. Mainchain pseudopolyrotaxanes via post-threading with cucurbituril. Chem Commun 2001,253-254.
    [15]. Krasia, T. C.; Steinke, J. H. G. Formation of oligotriazoles catalysed by cucurbituril Chem Commun 2002,22-23.
    [16]. Tuncel, D.; Steinke, J. H. G. Catalytic Self-Threading: A New Route for the Synthesis of Polyrotaxanes Macromolecules 2004,37:288-302.
    [17]Marand, E.; Hu, Q.; Gibson, H. W.; Veytsman, B., Spectroscopic Characterization of Hydrogen Bonding in Poly(urethane-rotaxane)s. Macromolecules,1996,29, 2555;
    [18]Gong, C.; Gibson, H. W., Synthesis and Characterization of a Polyester/Crown Ether Rotaxane Derived from a Difunctional Blocking Group. Macromolecules, 1996,29,7029;
    [19]Gong. C.; Gibson, H. W. A, Self-Threading-Based Approach for Branched and/or Cross-linked Poly(methaerylate rotaxane)s. J. Am. Chem. Soc.,1997,119, 5862-5866.;
    [20]Gong. C.; Gibson, H. W., Poly(urethane/crown ether rotaxane)s with Solvent Switchable Microstructures. Macromolecules,1998,31,308-313;
    [21]Gibson, H. W.; Yamaguchi, N., Side Chain Poly(methacrylate pseudorotaxane)s Polymer Preprints,2000,41(1),18-19.
    [22]Harada, A.; Kamachi, M. Complex formation between poly(ethylene glycol) and a-cyclodextrin Macromolecules 1990,23,2821
    [23]Harada, A.; Li, J.; Kamachi. M. The molecular necklace:a rotaxane containing many threaded a-cyclodextrins. Nature 1992,356,325
    [24]Harada, A.; Li, J.; Kamachi, M. Complex formation between polyisobutylene and cyclodextrins:inversion of chain-length selectivity between.beta.-cyclodextrin and gamma.-cyclodextrin Macromolecules 1993,26.5267;
    [25]Harada, A.; Li, J.; Kamachi, M. Formation of Inclusion Complexes of Monodisperse Oligo(ethylene glycol)s with.alpha.-Cyclodextrin Macromolecules 1994,27,4538
    [26]Harada, A.; Okada, M.; Li, J.; Kamachi, M. Preparation and Characterization of Inclusion Complexes of Poly(propylene glycol) with Cyclodextrins. Macromolecules 1995,28,8406
    [27]Harada, A.; Li, J.; Kamachi, M. Non-ionic [2]rotaxanes containing methylated α-cyclodextrins. J. Chem. Soc., Chem. Commun.1997,1413
    [28]Harada, A.; Kawaguchi, Y.; Nishiyama, T.; Kamachi, M. Complex formation of poly(ε-caprolactone) with cyclodextrin Macromol. Rapid Commun.1997,18,535
    [29]Harada, A.; Nishiyama, T.; Kawaguchi, Y.; Okada, M.; Kamachi, M. Preparation and Characterization of Inclusion Complexes of Aliphatic Polyesters with Cyclodextrins. Macromolecules 1997,30,7115;
    [30]Ooya, T.; Mori, H.; Terano, M.; Yui, N. Synthesis of a biodegradable polymeric supramolecular assembly for drug delivery. Macromol. Rapid Commun.1995,16, 259
    [31]Ooya, T.; Yui, N. Synthesis and characterization of biodegradable polyrotaxane as a novel supramolecular-structured drug carrier. J. Biomater. Sci. Polym. Ed. 1997,8,437
    [32]Kamimura, W.; Ooya, T.; Yui, N. Interaction of supramolecular assembly with hairless rat stratum comeum. J. Controlled Release 1997,44,295
    [33]Ooya, T.; Yui, N. Supramolecular dissociation of biodegradable polyrotaxanes by enzymatic terminal hydrolysis Macromol. Chem. Phys.1998,199,2311.
    [34]Watanabe, J.; Ooya, T.; Yui, N. Preparation and Characterization of a Polyrotaxane with Non-enzymatically Hydrolyzable Stoppers Chem. Lett.1998, 1031
    [35]Hiroaki Fujita, Tooru Ooya, Yui N. Thermally Induced Localization of Cyclodextrins in a Polyrotaxane Consisting of β-Cyclodextrins and Poly(ethylene glycol)-Poly(propylene glycol) Triblock Copolymer Macromolecule,1999, 32,2534-2541.
    [36]Julia Jeromin and Helmut Ritter, Cyclodextrins in Polymer Synthesis:Free Radical Polymerization of a N-Methacryloyl-11-aminoundecanoic Acid/β-Cyclodextrin Pseudorotaxane in an Aqueous Medium. Macromolecules, 1999,32,5236-5239;
    [37]Olaf Noll, Helmut Ritter, Synthesis of new side-chain polyrotaxanes via free radical polymerization of a water-soluble semi-rotaxane monomer consisting of 2,6-dimethyl-β-cyclodextrin and 3-O-(11-acryloylaminoundecanoyl)cholic acid. Macromol. Chem. Phys.,1998,199,791-794.
    [38]Isao Yamaguchi, Kohtaro Osakada, and Takakazu Yamamoto, Introduction of a Long Alkyl Side Chain to Poly(benzimidazole)s. N-Alkylation of the Imidazole Ring and Synthesis of Novel Side Chain Polyrotaxanes. Macromolecules,1997, 30,4288-4294.
    [39]Isao Yamaguchi, Kohtaro Osakada, and Takakazu Yamamoto, A Novel Crown Ether Stopping Group for Side Chain Polyrotaxane. Preparation of Side Chain Polybenzimidazole Rotaxane Containing Alkyl Side Chain Ended by Crown Ether-ONa Grou Macromolecules,2000,33,2315-2319.
    [40]Toshikazu Takata, Hiroaki. Satoko Asai, Nobuhiro Kihara and Yoshio Furusho, Radically Polymerizable Pseudorotaxane Monomers:Versatile Building Units for Side Chain Polyrotaxane Synthesis Chemisty Letter,1999,111-112;
    [41]Gibson. H. W.; Yamaguchi, N. "Side Chain Poly(methacrylate pseudorotaxane)s", Polymer Preprints,2000,41(1),18-19.
    [42]Yamaguchi, N; Gibson, H. W. Non-covalent Chemical Modification of Crown Ether Side Chain Polymethacrylates with a Secondary Ammonium Salt:A New Polypseudorotaxane, Macromol. Chem. Phys.,2000,201,815-824
    [1]Dhara, D.; Chatterji, P.R. Swelling and deswelling pathways in non-ionic poly(N-isopropylacrylamide) hydrogels in presence of additives. Polymer 2000, 41,6133-6143.
    [2]Sachiro Kakinoki, Isao Kaetsu, Masashi Nakayama, Kouichi Sutani, KumaoUchida, Kouji Yukutake. Temperature and pH responsiveness of poly-(DMAA-co-unsaturated carboxylic acid) hydrogels synthesized by UV-irradiation. Radiation Physics and Chemistry 2003,67,685-693.
    [3]Kazutoshi Haraguchi, Robin Farnworth, Akira Ohbayashi, Toru Takehisa. Compositional Effects on Mechanical Properties of Nanocomposite Hydrogels Composed of Poly(N,N-dimethylacrylamide) and Clay.Macromolecules 2003, 36(15),5732-5741.
    [4]Zhe Lin, Yuanrong Cheng, Hao Lii, Liang Zhang, Bai Yang. Preparation and characterization of novel ZnS/sulfur-containing polymer nanocomposite optical materials with high refractive index and high nanophase contents. Polymer 2010, 51,5424-5431.
    [5]Jun, S. I.; Lee, J. W.; Sakamoto, S.; Yamaguchi, K.; Kim, K. Rotaxane-based molecular switch with fluorescence signaling. Tetrahedron Lett 2000,41, 471-475.
    [6]Choi, S. W.; Park, S. H.; Ziganshina, A. Y.; Ko, Y. H.; Lee, J. W.; Kim, K. A stable cis-stilbene derivative encapsulated in cucurbit[7]uril. Chem Commun 2003, 18,2176-2177.
    [7]Tuncel, D.; Steinke, J. H. G. Mainchain pseudopolyrotaxanes via post-threading with cucurbituril. Chem Commun 2001,3,253-254.
    [8]Krasia, T. C.; Steinke, J. H. G. Formation of oligotriazoles catalysed by cucurbituril. Chem Commun 2002,1,22-23.
    [9]Tuncel, D.; Steinke, J. H. G. Catalytic Self-Threading:A New Route for the Synthesis of Polyrotaxanes. Macromolecules 2004,37:288-302.
    [10]Kamitori, S.; Matsuzaka, O.; Kondo, S.:Muraoka. S.; Okuyama, K.; Noguchi, K.; Okada. M.:Harada. A. A Novel Pseudo-Polyrotaxane Structure Composed of Cyclodextrins and a Straight-Chain Polymer:Crystal Structures of Inclusion Complexes of β-Cyclodextrin with Poly(trimethylene oxide) and Poly(propylene glycol). Macromolecules 2000,33,1500-1502.
    [11]Herrmann, W.; Keller, B.; Wenz, G. Kinetics and thermodynamics of the inclusion of ionene-6aqueous solution, Macromolecules 1997,30,4966-4972.
    [12]Fujita, H.; Ooya, T.; Yui, N. Thermally Induced Localization of Cyclodextrins in a Polyrotaxane consisting of b-Cyclodextrins and Poly(ethylene glycol)-Poly(propylene glycol) Triblock-Copolymer, Macromolecules.1999,32, 2534-2541.
    [13]Harada, A.; Okada, M.; Kawaguchi, Y.; Kamachi, M. Macromolecular Recognition:New Cyclodextrin Polyrotaxanes and Molecular Tubes. Polym Adv Technol 1999,10,3-12.
    [14]Gong, C. G.; Ji, Q.; Subramaniam, C.; Gibson, H. W. Main chain polyrotaxanes by threating crown ethers onto a preformed polyurethane:preparation and properties. Macromolecules 1998,31,1814-1818.
    [15]Mason, P. E.; Bryant, W. S.; Gibson. H. W./Dethreading Exchange Rates as Structural Probes in Polypseudorotaxanes, Macromolecules 1999,32,1559-1569.
    [16]Takata, T.; Kihara, N.; Furusho, Y. Polyrotaxanes and Polycatenanes:Recent Advances in Syntheses and Applications of Polymers Comprising of Interlocked Structures. Adv Polym Sci 2004,171,1-75.
    [17]Huang, F.; Gibson H. W. Polypseudorotaxanes and polyrotaxanes. Prog Polym Sci 2005,30,982-1018.
    [18]Harada, A.; Hashizume, A.; Yamaguchi, H.; Takashima, Y. Polymeric Rotaxanes. Chem Rev 2009,109,5974-6023.
    [19]Day, A.; Arnold, A. P.; Blanch, R. J.; Snushall, B. J. Controlling Factors in the Synthesis of Cucurbituril and Its Homologues. Org. Chem.2001,66,8094-8100.
    [20]Kim, J.; Jung, I. S.; Kim, S. Y.; Lee, E.;Kang. J. K.;Sakamoto. S.; Yamaguchi, K.; Kim, K. J. New Cucurbituril Homologues:Syntheses, Isolation, Characterization, and X-ray Crystal Structures of Cucurbit[n]uril (n=5,7,and 8). Am. Chem. Soc.2000,122.540-541.
    [21]Whang, D. M.; Park, K. M.; Heo, J.; Ashton, P.; Kim, K. J. Molecular Necklace: Quantitative Self-Assembly of a Cyclic Oligorotaxane from Nine Molecules. Am Chem Soc 1998,120,4899-4900.
    [22]Lee, E. S.; Heo, J. S.; Kim, K. A Three-Dimensional Polyrotaxane. Network. Angew Chem Int Ed 2000,39,2699-2701.
    [23]Lee, J. W.; Kim, K. P.; Kim, K. A kinetically controlled molecular switch based on bistable [2]rotaxane. Chem Commun 2001,11,1042-1043.
    [24]Tan, Y. B.; Choi, S. W.; Lee, J. W.; Ko, Y. H.; Kim, K. Synthesis and Characterization of Novel Side-Chain Pseud opolyrotaxanes Containing Cucurbituril. Macromolecules 2002,35,7161-7165.
    [25]Choi, S.; Lee, J. W.; Ko, Y. H.; Kim, K. Pseudopolyrotaxanes Made to Order: Cucurbituril Threaded on Polyviologen. Macromolecules 2002,35,3526-3531.
    [26]Jeon, W. S.; Ziganshina, A. Y.; Lee, J. W.; Ko, Y. H.; Kang, J. K.; Lee, C.;Kim, K. A [2]Pseudorotaxane-Based Molecular Machine:Reversible Formation of a Molecular Loop Driven by Electrochemical and Photochemical Stimuli. Angew Chem Int Ed 2003,42,4097-4100.
    [27]Kim, K.; Jeon, W. S.; Kang, J. K.; Lee, J. W.; Jon, S. Y.; Kim, T. A Pseudorotaxane on Gold:Formation of Self-Assembled Monolayers, Reversible Dethreading and Rethreading of the Ring, and Ion-Gating Behavior. Angew Chem Int Ed 2003,42,2293-2296.
    [28]Kim, K.; Kim, D.; Lee, J. W.; Ko, Y. H. Growth of poly(pseudorotaxane) on gold using host-stabilized charge-transfer interaction. Chem Commun 2004,848-849.
    [29]Dybtsev, D. N.; Chun, H.; Yoon, S. H.; Kim, D.; Kim, K. J. Microporous Manganese Formate:A Simple Metal-Organic Porous Material with High Framework Stability and Highly Selective Gas Sorption Properties. Am Chem Soc 2004,126,32-33.
    [30]Buschmann, H. J.; Jansen, K.; Schollmeyer, E. Cucurbituril as host molecule for the complexation of aliphatic alcohols, acids and nitriles in aqueous solution. Thermochim Acta 2000,346,33-36.
    [31]Yang H.; Tan, Y. B.; Wang Y.X. Fabrication and properties of cucurbit[6]uril induced thermo-responsive supramolecular hydrogels. Soft Matter 2009,5, 3511-3516.
    [32]Yamaguchi, N.; Gibson H. W. Non-covalent Chemical Modification of Crown Ether Side Chain Polymethacrylates with a Secondary Ammonium Salt:A New Polypseudorotaxane, Macromal Chem Phys 2000,201,815-824.
    [33]Huang X. L.; Tan, Y. B.; Wang Y.X.; Yang H.; Cao J.; Che Y. J. Synthesis, characterization, and properties of copolymer of acrylamide and complex pseudorotaxane monomer consisting of cucurbit[6]uril with butyl ammonium methacrylate. Journal of Polymer Science:Part A:Polymer Chemistry 2008,46, 5999-6007.
    [34]Kim, H.; Jeon, W. S.; Ko, Y. H.; Kim, K. Supramolecular Chemistry And Self-assembly Special Feature:Inclusion of methylviologen in cucurbit[7]uril Proceedings of the National Academy of Sciences 2002,8,5007-5011.
    [35]Yang, H.; Tan, Y. B.; Hao, J. C. Side-chain polypseudorotaxanes by threading cucurbit[7]uril onto poly-N-n-butyl-N'-(4-vinylbenzyl)-4,4'-bipyridinium bromide chloride:Synthesis, characterization, and properties. Journal of Polymer Science: Part A:Polymer Chemistry 2010,48,2135-2142.
    [36]Freitag, M.; Galoppini, E. Cucurbituril Complexes of Viologens Bound to TiO2 Films. Langmuir 2010,26,8262-8269.
    [37]Thangavel, A.; Rawashdeh, A.; Sotiriou-Leventis, C.; Leventis, A. Ultrafast Asynchronous Concerted Excited-State Intramolecular Proton Transfer and Photodecarboxylation of o-Acetylphenylacetic Acid Explored by Combined CASPT2 and CASSCF Studies. Org. Lett.,2009,1595-1598.
    [38]Ogoshi, T.; Masuda, K.; Yamagishi, T.; Nakamoto, Y. Side-Chain Polypseudorotaxanes with Heteromacrocyclic Receptors of Cyclodextrins (CDs) and Cucurbit[7]uril (CB7):Their Contrast Lower Critical Solution Temperature Behavior with α-CD. γ-CD, and CB7. Macromolecular,2009,42,8003-8005.
    [39]Kim, C.; Agasti, S.; Zhu, Z.; Isaacs, L.; Rotello, V. Recognition-mediated activation of therapeutic gold nanoparticles inside living cells. Nature Chemistry, 2010,2,962-966.
    [40]Debye, P. J. Molecular-weight Determination by Light Scattering. Phys Colloid Chem 1947,51,18-32.
    [41]Zimm, B. H. J Chem Phys 1948,16,1099-1116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700