面向植入体的多孔结构建模及激光选区熔化直接制造研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统方法制造的金属植入体因为自身过重和刚度过大容易引起病人的不适,且实心的结构导致植入体-宿主骨之间无相互啮合固定,容易引起松脱,导致植入体使用寿命减少。为了获得更好生物力学性能的植入体,可以将其表面或者全部模型设计成多孔结构。虽然目前多孔结构的设计和制造/制备方法有很多,但是大多都建立在传统制造方法的基础上,随着增材制造(Additive Manufacturing, AM)技术的发展,更大设计自由度的多孔结构可以被制造出来,包括其中一些精细微小的几何特征。所以更多地考虑仿生的结构和力学参数,对植入体进行多孔化设计和制造是一项非常有意义的研究。
     本文建立在激光选区熔化(Selective Laser Melting, SLM)技术的基础上,研究了基于该技术的多孔结构设计规则,提出了一种由隐函数表示的隐式曲面建构多孔单元的方法,并通过形函数控制的方法对多孔单元进行造型变换构建了空间域的多孔结构,对它们进行结构和力学参数表征,开发了多孔结构建模系统,最后通过SLM技术直接制造多孔植入体,验证了本文建立的方法和技术的可行性。主要研究内容及成果包括以下几方面:
     (1)分析了SLM加工多孔结构的尺寸精度、轮廓精度和几何特征成型分辨率等几何限制,并对激光深穿透、光斑尺寸等技术约束进行了讨论;研究了通过轮廓偏移控制孔隙率的方法;对构成多孔结构的基本元素——支柱的可加工性进行了分析。建立了基于SLM技术的多孔结构设计规则。在规则指导下,可以在设计阶段对多孔结构的结构参数进行控制,使其满足SLM工艺要求,并通过控制工艺参数来提高多孔结构的可加工性。
     (2)提出了一种由隐函数表示的隐式曲面建构多孔单元的方法,通过定义不同的空间实值函数可以定义不同形状和孔隙率的多孔单元。研究了隐函数在多孔单元建模中的关键技术,包括曲面边界表达模型的生成、曲面求交、曲面三角化和STL模型的提取等。该建模方法具有高效性和可控性的特点,可以与现有设计方法相结合,为多孔植入体的设计提供一种新的方法。
     (3)利用有限元中六面体单元对植入体局部或者全部模型进行网格划分,通过形函数控制的方法,利用空间域中8结点六面体单元信息将参数域中母单元进行映射,插值出空间域中不规则六面体子单元。并对空间域中所有子单元的STL模型进行合并,删除重叠三角面片,使相邻子单元成为一体的连通实体,从而构建出连续的多孔植入体模型。
     (4)研究了对多孔结构进行结构和力学参数表征的方法,利用直接表征法和网格表征法对结构参数进行了估测:利用Micro-CT对SLM成型的多孔钛进行结构性能测试,并通过压缩试验法计算了其弹性模量。利用表征法、有限元分析及测试得到的值对结构和力学参数分别进行计算采样,建立了P单元隐函数的系数与其对应的多孔结构的结构参数和力学参数关系的响应面模型,利用该模型可以对其结构参数和力学参数进行估测。
     (5)建立在前述理论和方法的基础上,在VC++环境下结合OpenGL开发了多孔结构建模系统,并建立了与Ansys的数据接口,系统可以读入从Ansys导出的六面体和四面体单元和节点信息。建立在设计规则的基础上,利用多孔结构建模系统设计并通过SLM技术直接制造了两种典型的多孔植入体,零件成型质量较好,孔径在600-1000μm之间,弹性模量与骨骼相当,验证了本文建立的方法和技术的可行性。
The metallic implant manufactured via traditional method easily causes patients' discomfort due to its overweight and excessive stiffness; besides, due to its solid construction, there is no mutual meshing and fixation between implant and host's bone, thus it is easy to cause let-go, which shortens the service life of implants. It is able to design the surface or whole model of implant as porous structure in order to obtain the implant with better biomechanical properties. Although there are many design and manufacturing/preparing methods for porous structures, most of those methods are established on the basis of traditional manufacturing method; with the development of additive manufacturing (AM) technology, the porous structure with bigger design freedom can be manufactured, including some refined and tiny geometrical features. Therefore, more consideration on bionic structural and mechanical parameter is a significant research for porous design and manufacturing of implants.
     This paper researches design rules for porous structures based on selective laser melting (SLM) technology, proposes a method that the implicit surface represented by implict functions is used to construct porous unit and then carries out modeling transformation for porous unit via shape function control method to construct porous structure in spatial domain and conducts representation of structures and mechanical parameters, develops the modeling system of porous structure, and finally directly manufactures porous implants by SLM technology to confirm the feasibility of methods and technologies established in this paper. The main research contents and results include following aspects:
     (1) This paper analyzes the geometric constraints of porous structure processed via SLM, such as dimensional accuracy, outline accuracy and geometric feature molding resolution; gives a discussion on technological constraints such as laser deep penetration and spot size; studies the method that the contour offset is used to control porosity; analyzes the manufacturability of strut which is the basic element of porous structures; establishes the design rules for SLM technology based on porous structure. Under the guidance of these rules, it is able to control the structure parameters of porous structure at design stage to make it meet requirements of SLM technology, and also improve the manufacturability of porous structure through controlling technological parameters.
     (2) This paper proposes a method that the implicit surface represented by implict functions is used to construct porous unit, and defines porous unit with different shapes and porosities via defining different spatial real-valued functions; researches key technologies of implicit function in modeling of porous unit, including the generation of surface boundary representation, surface intersection, surface triangularization and extraction of STL model, etc. With high efficiency and controllability, this modeling method can be combined with existing design method to provide a new method for design of porous implants.
     (3) This paper makes use of hexahedral element to carry out mesh generation for partial and whole model of implant, and then utilizes information about8-node hexahedral elements in spatial domain to make mappings for standard unit in parameter domain via shape function control method, and then obtains irregular hexahedral sub-unit in spatial domain through interpolation. This paper also merges STL models of all sub-unit in the spatial domain, and deletes the overlapping triangles to make between adjacent sub-unit linked as a connecting entity, thus constructing continuous porous implant geometry.
     (4) This paper also researches the method used to represent structural and mechanical parameters of porous structures, and utilizes direct representation method and mesh-based methods to estimate the structural parameter; makes use of Micro-CT to carry out structural performance tests for porous titanium manufactured by SLM technology, and calculates the elastic modulus of porous titanium via compression tests; utilizes the value obtained via representation methods, finite element analysis and tests to carry out calculation sampling respectively on the structural and mechanical parameter, establishes the coefficient of implicit function of P unit and corresponding response surface model of relationship between structural parameter and mechanical parameter of porous structure, and then makes use of this model to estimate its structural and mechanical parameters.
     (5) On the basis of the above mentioned theories and methods, under VC++environment, this paper combines with OpenGL to develop modeling system of porous structure, and establishes the data interface with Ansys, through which the system can read hexahedron and tetrahedron elements and nodes files derived from Ansys. Based on design rules, this paper designs and directly manufacturers two kinds of typical porous implant by use of modeling system of porous structure and SLM technology; the implants have good forming quality with an aperture of600-1000μm, and its elastic modulus is equivalent to that of bone. All of those confirm that the methods and technologiesy established in this paper is feasible.
引文
[1]Wilson C J, Clegg R E, Leavesley D I, et al. Mediation of biomaterial-cell interactions by adsorbed proteins:a review[J]. Tissue engineering,2005,11(1-2):1-18.
    [2]Davies J E. Bone bonding at natural and biomaterial surfaces[J]. Biomaterials,2007, 28(34):5058-5067.
    [3]Spector M, Michno M J, Smarook W H, et al. A high-modulus polymer for porous orthopedic implants:Biomechanical compatibility of porous implants[J]. Journal of biomedical materials research,1978,12(5):665-677.
    [4]Engh C A, Bobyn J D, Glassman A H. Porous-coated hip replacement. The factors governing bone ingrowth, stress shielding, and clinical results [J]. Journal of Bone & Joint Surgery, British Volume,1987,69(1):45-55.
    [5]林凤飞,郑明,林朝晖,等.人工髋关节不同材料假体对骨界面的应力分布研究[J].中国矫形外科杂志,2008,16(7):540-543.
    [6]李业海,徐俊杰.人工髋关节假体材料的生物相容性问题分析[J]. Journal of Clinical Rehabilitative Tissue Engineering Research,2008,12(39).
    [7]Maji P K, Roychowdhury A, Datta D. Minimizing Stress Shielding Effect of Femoral Stem-A Review[J]. Journal of Medical Imaging and Health Informatics,2013,3(2): 171-178.
    [8]Noyama Y, Miura T, Ishimoto T, et al. Bone loss and reduced bone quality of the human femur after total hip arthroplasty under stress-shielding effects by titanium-based implant[J]. Materials Transactions,2012,53(3):565-570.
    [9]Giannatsis J, Dedoussis V, Karalekas D. Architectural scale Modeling using stereolithography[J]. Rapid Prototyping Journal,2002,8(3):200-207.
    [10]Gibson I. Rapid prototyping:from product development to medicine and beyond[J]. Virtual and Physical Prototyping,2006,1(1):31-42.
    [11]Lohfeld S, Barron V, McHugh P E. Biomodels of bone:a review[J]. Annals of biomedical engineering,2005,33(10):1295-1311.
    [12]Muller A, Krishnan K G, Uhl E, et al. The application of rapid prototyping techniques in cranial reconstruction and preoperative planning in neurosurgery[J]. Journal of Craniofacial Surgery,2012,14(6):899-914.
    [13]Johnson E A C, Young P G. On the use of a patient-specific rapid-prototyped model to simulate the response of the human head to impact and comparison with analytical and finite element models[J]. Journal of biomechanics,2005,38(1):39-45.
    [14]Clinkenbeard R E, Johnson D L, Parthasarathy R, et al. Replication of human tracheobronchial hollow airway models using a selective laser sintering rapid prototyping technique[J]. AiHA Journal,2002,63(2):141-150.
    [15]de Beer D J, Truscott M, Booysen G J, et al. Rapid manufacturing of patient-specific shielding masks, using RP in parallel with metal spraying[J]. Rapid Prototyping Journal, 2005,11(5):298-303.
    [16]Chen V J, Smith L A, Ma P X. Bone regeneration on computer-designed nano-fibrous scaffolds[J]. Biomaterials,2006,27(21):3973-3979.
    [17]Chen V J, Smith L A, Ma P X. Bone regeneration on computer-designed nano-fibrous scaffolds[J]. Biomaterials,2006,27(21):3973-3979.
    [18]Dongdong Gu, Zhiyang Wang, Yifu Shen et al..In-situ TiC particle reinforced Ti-Al matrix composites:powder preparation by mechanical alloying and selective laser melting behavior [J]. Applied Surface Science,2009,255(22):9230-9240
    [19]Liu F H, Lee R T, Lin W H, et al. Selective Laser Sintering of Bio-Metal Scaffold[J]. Procedia CIRP,2013,5:83-87.
    [20]任伊宾,杨柯,梁勇.新型生物医用金属材料的研究和进展[J].材料导报,2002,16(2):12-15.
    [21]Yang W, Shen C, Ji Q, et al. Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA[J]. Nanotechnology,2012,20(8):085102.
    [22]Lin C Y, Kikuchi N, Hollister S J. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity [J]. Journal of biomechanics,2004,37(5):623-636.
    [23]Misch C E, Qu Z, Bidez M W. Mechanical properties of trabecular bone in the human mandible:implications for dental implant treatment planning and surgical placement[J]. Journal of Oral and Maxillofacial Surgery,1999,57(6):700-706.
    [24]Reilly D T, Burstein A H. The elastic and ultimate properties of compact bone tissue[J]. Journal of biomechanics,1975,8(6):393-405.
    [25]Yang S, Leong K F, Du Z, et al. The design of scaffolds for use in tissue engineering. Part I. Traditional factors[J]. Tissue engineering,2001,7(6):679-689.
    [26]Nadworny P L, Wang J F, Tredget E E, et al. Anti-inflammatory activity of nanocrystalline silver in a porcine contact dermatitis model[J]. Nanomedicine: Nanotechnology, Biology and Medicine,2008,4(3):241-251.
    [27]Sibbald R G, Contreras-Ruiz J, Coutts P, et al. Bacteriology, inflammation, and healing:a study of nanocrystalline silver dressings in chronic venous leg ulcers [J]. Advances in skin & wound care,2007,20(10):549-558.
    [28]Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis[J]. Biomaterials,2005,26(27):5474-5491.
    [29]Karande T S, Ong J L, Agrawal C M. Diffusion in musculoskeletal tissue engineering scaffolds:design issues related to porosity, permeability, architecture, and nutrient mixing[J]. Annals of biomedical engineering,2004,32(12):1728-1743.
    [30]O'Brien F J, Harley B A, Yannas I V, et al. The effect of pore size on cell adhesion in collagen-GAG scaffolds[J]. Biomaterials,2005,26(4):433-441.
    [31]Torquato S. Random heterogeneous materials:microstructure and macroscopic properties[M]. Springer,2002.
    [32]Karande T S, Ong J L, Agrawal C M. Diffusion in musculoskeletal tissue engineering scaffolds:design issues related to porosity, permeability, architecture, and nutrient mixing[J]. Annals of biomedical engineering,2011,32(12):1728-1743.
    [33]Gibson L J, Ashby M F. Cellular solids:structure and properties[M]. Cambridge university press,1999.
    [34]Kim H S, Al-Hassani S T S. Plastic collapse of cellular structures comprised of doubly tapered struts[J]. International journal of mechanical sciences,2001,43(11):2453-2478.
    [35]Xu P, Yu B. Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry [J]. Advances in Water Resources,2008,31(1):74-81.
    [36]P. C. Carman. Flow of gases through porous media. Academic Press, New York,1956.
    [37]http://www.8666.tv/c_taihua/71307.html
    [38]http://www.tyfmedical.com/cn/Productsinfo.asp?rstid=103
    [39]Arnaud E, De Pollak C, Meunier A, et al. Osteogenesis with coral is increased by BMP and BMC in a rat cranioplasty[J]. Biomaterials,1999,20(20):1909-1918.
    [40]http://www.saramall.com.ar/english/products/jnj/neuro/mesh_titanio.html.
    [41]黄树槐,肖跃加.快速成型技术的展望[J].中国机械工程,2000,11(1-2):195-200
    [42]冯涛,李志刚.快速成型与快速制模技术的最新发展[J].模具工业,2004,4:3-5.
    [43]李涤尘,卢秉恒,赵万华.快速成型的未来发展—快速产品制造[J].航空制造技术,2004,5:48-49.
    [44]Wohlers T. Wohlers Report 2012[M]. Wohlers Associates, Inc,2012.
    [45]顾冬冬,沈以赴.基于选区激光融化的金属材料零件快速成形现状与技术展望[J].航空制造技术,2012(8).
    [46]Kruth J P, Froyen L, Van Vaerenbergh J, et al. Selective laser melting of iron-based powder[J]. Journal of Materials Processing Technology,2004,149(1):616-622.
    [47]杨永强,黄常帅.金属构件选区激光熔化成形技术[J].航空制造技术,2004(z1).
    [48]吴伟辉,杨永强,卫国强.选区激光熔化快速成型制造精密金属零件技术[J].中国激光,2009,34(s1):175.
    [49]陈光霞,曾晓雁.SLM激光快速成型设备的设计与开发[J].机械设计与制造,2010(008):15-16.
    [50]史玉升,钟庆,陈学彬,等.选择性激光烧结新型扫描方式的研究及实现[J].机械工程学报,2002,38(2):35-39.
    [51]Heinl P, Muller L, Korner C, et al. Cellular Ti-6A1-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting[J]. Acta biomaterialia,2008,4(5):1536-1544.
    [52]Heinl P, Rottmair A, Korner C, et al. Cellular titanium by selective electron beam melting[J]. Advanced Engineering Materials,2007,9(5):360-364.
    [53]Qi H B, Yan Y N, Lin F, et al. Direct metal part forming of 316L stainless steel powder by electron beam selective melting[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture,2006,220(11):1845-1853.
    [54]Griffith M L, Keicher D M, Atwood C L, et al. Free form fabrication of metallic components using laser engineered net shaping (LENS)[C]//Solid Freeform Fabrication Proceedings. The University of Texas at Austin,1996,9:125-131.
    [55]王华明,张凌云,李安,等.金属材料快速凝固激光加工与成形[J].北京航空航天大学学报,2004,30(10):962-967.
    [56]Liu W, DuPont J N. Fabrication of functionally graded TiC/Ti composites by laser engineered net shaping[J]. Scripta Materialia,2003,48(9):1337-1342.
    [67]Huang W, Lin X, Chen J, et al. Laser solid forming technology [J]. North-western Polytechnical University Press, Shaanxi,2007.
    [58]黄卫东,李延民,冯莉萍,等.金属材料激光立体成形技术[J].材料工程,2002,3(10):40-43.
    [59]Zhang S, Lin X, Chen J, et al. Heat-treated microstructure and mechanical properties of laser solid forming Ti-6A1-4V alloy[J]. Rare metals,2009,28(6):537-544.
    [60]Huang W, Li Y, Feng L, et al. Laser solid forming of metal powder materials[J]. Cailiao Gongcheng(Journal of Materials Engineering)(China)(China),2002:40-43.
    [61]Murr L E, Esquivel E V, Quinones S A, et al. Microstructures and mechanical properties of electron beam-rapid manufactured Ti-6Al-4V biomedical prototypes compared to wrought Ti-6Al-4V[J]. Materials Characterization,2011,60(2):96-105.
    [62]http://www.custompartnet.com/wu/direct-metal-laser-sintering
    [63]http://www.eos-gmbh.com/
    [64]http://www.netfabb.com/medical.php
    [65]吴伟辉,杨永强.选区激光熔化快速成形系统的关键技术[J].机械工程学报,2007,43(8):175-180.
    [66]杨永强,何兴容,吴伟辉,等.选区激光熔化直接成型个性化骨科手术模板[J].中国激光,2009,36(9):2460-2464.
    [67]SU X, YANG Y, YU P, et al. Development of porous medical implant scaffolds via laser additive manufacturing[J]. Transactions of Nonferrous Metals Society of China,2012,22: s181-s187.
    [68]Xiao D, Yang Y, Su X, et al. An integrated approach of topology optimized design and selective laser melting process for titanium implants materials[J]. Bio-medical materials and engineering,2013,23(5):433-445.
    [69]史玉升,鲁中良,章文献,等.选择性激光熔化快速成形技术与装备[J].中国表面工程,2006,19(5):150-153.
    [70]http://medicaldesign.com/design-engineering/ebm-proves-itself-production-ready-process-titanium-alloy-implant
    [71]O. L.A. Harrysson, O. Cansizoglu, D. J. Marcellin-Little, D. R. Cormier, H. A. West. Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology. Materials Science and Engineering C, 2008,28:366-373.
    [72]CHU T M G, Hollister S J, Halloran J W, et al. Manufacturing and Characterization of 3-D Hydroxyapatite Bone Tissue Engineering Scaffolds[J]. Annals of the New York Academy of Sciences,2002,961(1):114-117.
    [73]Lopez-Heredia M A, Goyenvalle E, Aguado E, et al. Bone growth in rapid prototyped porous titanium implants[J]. Journal of biomedical materials research Part A,2008,85(3): 664-673.
    [74]Lopez-Heredia M A, Sohier J, Gaillard C, et al. Rapid prototyped porous titanium coated with calcium phosphate as a scaffold for bone tissue engineering[J]. Biomaterials,2008, 29(17):2608-2615.
    [75]Cheah C M, Chua C K, Leong K F, et al. Development of a tissue engineering scaffold structure library for rapid prototyping. Part 1:investigation and classification[J]. The International Journal of Advanced Manufacturing Technology,2003,21(4):291-301.
    [76]Sun W, Starly B, Nam J, et al. Bio-CAD modeling and its applications in computer-aided tissue engineering[J]. Computer-Aided Design,2009,37(11):1097-1114.
    [77]Fang Z, Starly B, Sun W. Computer-aided characterization for effective mechanical properties of porous tissue scaffolds[J]. Computer-Aided Design,2005,37(1):65-72.
    [78]Wettergreen M A, Bucklen B S, Starly B, et al. Creation of a unit block library of architectures for use in assembled scaffold engineering[J]. Computer-Aided Design,2005, 37(11):1141-1149.
    [79]Starly B, Lau W, Bradbury T, et al. Internal architecture design and freeform fabrication of tissue replacement structures [J]. Computer-Aided Design,2006,38(2):115-124.
    [80]刘丰,张人佶,陈立峰,等.组织工程支架三维结构点单元数据建模[J].机械工程学报,2006,10(42):37-42.
    [81]Lal P, Sun W. Computer modeling approach for micro sphere-packed bone sca□old[J]. Computer-Aided Design,2004,36(5):487-497.
    [82]吴懋亮,刘廷章,石钢生.仿生支架微孔结构CAD设计方法[J].机械科学与技术,2006,25(11):1285-1287.
    [83]李莉敏,郭桂芳,胡庆夕,等.面向骨组织工程的三维仿生支架的微观结构研究[J].中国制造业信息化,2005,4.
    [84]Liulan L, Qingxi H, Xianxu H, et al. Design and fabrication of bone tissue engineering scaffolds via rapid prototyping and CAD[J]. Journal of Rare Earths,2007,25:379-383.
    [85]Lin L, Zhang H, Yao Y, et al. Application of Image Processing and Finite Element Analysis in Bionic Scaffolds' Design Optimizing and Fabrication[M]//Life System Modeling and Simulation. Springer Berlin Heidelberg,2007:136-145.
    [86]Lin L, Tong A, Zhang H, et al. The mechanical properties of bone tissue engineering scaffold fabricating via selective laser sintering[M]//Life System Modeling and Simulation. Springer Berlin Heidelberg,2007:146-152.
    [87]Hollister S J, Levy R A, Chu T M, et al. An image-based approach for designing and manufacturing craniofacial scaffolds[J]. International Journal of Oral & Maxillofacial Surgery,2000,29(1):67-71.
    [88]李祥,李涤尘,张彦东,等.骨组织微结构观察分析及仿生支架立体光固化间接制造[J].北京生物医学工程,2006,25(2):164-167.
    [89]Cai S, Xi J. A control approach for pore size distribution in the bone scaffold based on the hexahedral mesh refinement[J]. Computer-Aided Design,2008,40(10):1040-1050.
    [90]丁焕文,唐春雷,赵中岳,等.个体化组织工程支架CAD设计与RP制作的方法的研究[J].生物骨科材料与临床研究,2005,2(1):1-4.
    [91]Su X, Yang Y, Xiao D, et al. Processability investigatation of non-assembly mechanisms for powder bed fusion process[J]. The International Journal of Advanced Manufacturing Technology,2013,64(5-8):1193-1200.
    [92]Su X, Yang Y, Xiao D, et al. An investigation into direct fabrication of fine-structured components by selective laser melting[J]. The International Journal of Advanced Manufacturing Technology,2013:1-8.
    [93]Zitter H, Plenk H. The electrochemical behavior of metallic implant materials as an indicator of their biocompatibility[J]. Journal of biomedical materials research,1987, 21(7):881-896.
    [94]Kasemo B. Biocompatibility of titanium implants:surface science aspects[J]. The Journal of prosthetic dentistry,1983,49(6):832-837.
    [95]Minagar S, Berndt C C, Wang J, et al. A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces[J]. Acta biomaterialia,2012,8(8): 2875-2888.
    [96]Cansizoglu O, Cormier D, Harrysson O, et al. An evaluation of non-stochastic lattice structures fabricateed via electron beam melting[J]. Solid Freeform Fabrication,2006: 209-2119.
    [97]王迪,杨永强,何兴容,等.316L不锈钢粉末光纤激光选区熔化特性[J].强激光与粒子束,2010,22(008):1881-1886.
    [98]Wang D, Yang Y, Liu R, et al. Study on the Designing Rules and Processability of Porous Structure Based on Selective Laser Melting (SLM)[J]. Journal of Materials Processing Technology,2013,213(10):1734-1742.
    [99]Osher S, Fedkiw R. Level set methods and dynamic implicit surfaces[M]. Springer,2003.
    [100]Introduction to implicit surfaces[M]. Morgan Kaufmann,1997.
    [101]Mantyla M. An introduction to solid modeling[J].1988.
    [102]Rockwood A P. The displacement method for implicit blending surfaces in solid models[J]. ACM Transactions on Graphics (TOG),1989,8(4):279-297.
    [103]谢和平,孙洪泉.分形插值曲面理论及其应用[J].应用数学和力学,1998,19(4):297-306.
    [104]Sederberg T W, Snively J P. Parametrization of cubic algebraic surfaces[C]//Proceedings on Mathematics of surfaces Ⅱ. Clarendon Press,1987:299-319.-
    [105]Grimm C M, Hughes J F. Smooth isosurface approximation[J]. Implicit Surface,1995, 95:57-76.
    [106]Levoy M. Display of surfaces from volume data[J]. Computer Graphics and Applications, IEEE,1988,8(3):29-37.
    [107]Hart J C. Ray tracing implicit surfaces[J]. Siggraph 93 Course Notes:Design, Visualization and Animation of Implicit Surfaces,1993:1-16.
    [108]Lorensen W E, Cline H E. Marching cubes:A high resolution 3D surface construction algorithm[C]//ACM Siggraph Computer Graphics. ACM,1987,21(4):163-169.
    [109]Fang Z, Starly B, Shokoufandeh A, et al. A Computer-aided Multi-scale Modeling and Direct Fabrication of Bone Structure[J]. Computer-Aided Design and Applications,2005, 2(5):627-634.
    [110]Kai C C, Jacob G G K, Mei T. Interface between CAD and rapid prototyping systems. Part 1:a study of existing interfaces [J]. The International Journal of Advanced Manufacturing Technology,1997,13(8):566-570.
    [111]Bathe K J, Wilson E L. Numerical methods in finite element analysis[J].1976.
    [112]HyperMesh从入门到精通[M].科学出版社,2005.
    [113]Visual C++OpenGL应用程序开发[M].人民邮电出版社,2006.
    [114]莫维尼,Moaveni S,王菘,等.有限元分析:ANSYS理论与应用[M].电子工业出版社,2005.
    [115]Ostoja-Starzewski M. Material spatial randomness:From statistical to representative volume element[J]. Probabilistic Engineering Mechanics,2011,21(2):112-132.
    [116]Hashin Z. Analysis of composite materials[J]. J. appl. Mech,1983,50(2):481-505.
    [117]Harrigan T P, Jasty M, Mann R W, et al. Limitations of the continuum assumption in cancellous bone[J]. Journal of Biomechanics,1988,21(4):269-275.
    [118]Drugan W J, Willis J R. A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites [J]. Journal of the Mechanics and Physics of Solids,1996,44(4):497-524.
    [119]Kerckhofs G, Schrooten J, Elicegui L, et al. Mechanical characterization of porous structures by the combined use of micro-CT and in-situ loading[C]//World Conference on Non-Destructive Testing.2008.
    [120]Hildebrand T, Ruegsegger P. A new method for the model-independent assessment of thickness in three-dimensional images[J]. Journal of microscopy,1997,185(1):67-75.
    [121]Zhang X, Knackstedt M A. Direct simulation of electrical and hydraulic tortuosity in porous solids[J]. Geophysical research letters,1995,22(17):2333-2336.
    [122]Dorrie H.100 Great problems of elementary mathematics[M]. Dover Publications,1965.
    [123]Zhang C, Chen T. Efficient feature extraction for 2D/3D objects in mesh representation[C]//Image Processing,2001. Proceedings.2001 International Conference on. IEEE,2001,3:935-938.
    [124]张顺燕.数学的源与流[M].高等教育出版社,2000.
    [125]Hollister S J, Lin C Y, Saito E, et al. Engineering craniofacial scaffolds[J]. Orthodontics & craniofacial research,2005,8(3):162-173.
    [126]Bends(?)e M P, Kikuchi N. Generating optimal topologies in structural design using a homogenization method[J]. Computer methods in applied mechanics and engineering, 1988,71(2):197-224.
    [127]Bends(?)e M P. Optimal shape design as a material distribution problem[J]. Structural optimization,1989,1(4):193-202.
    [128]荣见华.渐进结构优化方法及其应用研究[D][D].国防科学技术大学,2006.
    [129]Allaire G, Jouve F, Toader A M. A level-set method for shape optimization[J]. Comptes Rendus Mathematique,2012,334(12):1125-1130.
    [130]Yu P, Wang D, Tan G, et al. Xiaojing Zhu Rapid prototyped three-dimensional microporous titanium scaffold with citrate functionalized apatite coating for repairing osteoporotic bone[J]. Materials Science and Engineering C, accepted.
    [131]Murr L E, Quinones S A, Gaytan S M, et al. Microstructure and mechanical behavior of Ti-6A1-4V produced by rapid-layer manufacturing, for biomedical applications [J]. Journal of the mechanical behavior of biomedical materials,2009,2(1):20-32.
    [132]Chlebus E, Kuznicka B, Kurzynowski T, et al. Microstructure and mechanical behaviour of Ti—6A1—7Nb alloy produced by selective laser melting[J]. Materials Characterization,2011,62(5):488-495.
    [133]Kim S H, Na S W. Response surface method using vector projected sampling points[J]. Structural Safety,1997,19(1):3-19.
    [134]隋允康,张桂明.曲线寻优的收敛性和近似解析解法[J].大连理工大学学报,1995,35(3):290-295.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700