三轴试验土样全表面变形测量方法及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土力学是一门重视实践的学科,其发展与试验测试技术的发展密切相关。作为最重要及常用的土工试验方式,三轴试验对土力学的发展起了非常重要的作用。计算机辅助测量技术在土工三轴试验中的成功应用,克服了传统变形测量技术存在的缺陷和不足,为土工三轴试验提供了一种更为准确有效的变形测量手段。
     论文的第一部分是土工三轴试验土样全表面变形数字图像测量的实现。首先研制了具有完全自主知识产权的新型多功能土工三轴试验仪;进一步地,改进了适用于图像测量的三轴压力室,采用在压力室内安装平面反光镜的方法,实现了用一部数字图像摄像机在线实时测量土样的全表面变形。在此基础上,开发了包括图像畸变修正、物距修正、数据归一化处理以及应变计算等功能在内的测量数据处理程序,并最终输出显示土样全表面变形场及应变场。
     在上述工作基础上,从系统误差和随机误差两方面分析了数字图像测量系统各可能的误差来源,并从系统误差修正和试验环境改善两方面着手消除或减小了误差。设计了标准图像测量平台用以检定图像畸变;在确定照明系统照度不稳定是影响测量精度的主要因素后,通过采用稳压电源及采取遮光措施改善了测量环境。实现了应变测量精度检定,以静态应变测试仪所测得的试样应变为“真值”,将图像测量系统所测得的应变值与该应变“真值”作比较,通过大量试验数据统计出了图像测量系统的测量误差,进而确定了图像测量系统的实际测量精度及最小分辨能力。
     论文的第二部分是土工三轴试验土样全表面变形测量方法在土工三轴试验中的应用,主要内容包括以下两部分:
     (1)三轴试样局部变形数据应用研究:定义了三轴试样局部应变不均匀系数,用以表征试样不同局部区域变形的不均匀程度。通过对比常规三轴试验与端部润滑三轴试验试样不同局部的应变不均匀系数,量化了三轴试样端部约束的影响范围,对尺寸为80mm﹡39.1mm的试样,提出应用试样中部35mm范围土体变形数据整理试验参数可有效地消除端部约束的影响。并通过对比由不同数据整理所得邓肯-张模型参数进一步地验证了这一结论。
     (2)三轴试样剪切破坏形态研究:基于粉砂及粉煤灰试样三轴排水剪切试验,通过对试样变形图片、偏差应力-轴向应变曲线、试样全表面轴向应变场、局部应变数据的对比分析,研究了试样剪切变形发展过程及剪切破坏形态。与试样整体应变数据及变形图片相比,局部应变数据对试样的不均匀变形有着更“敏锐”的反映,而从应变场图中可更清晰、直观地判断局部大应变的形成及发展过程。密砂试样剪切带的发展始于试样达到峰值强度前,在试样达到峰值强度后剪切带完全形成并不断扩大;与之相对,松砂试样剪切带开展得较晚,通常在试样达到峰值强度后,且一旦形成便立即迅速发展。当试样存在初始缺陷时,剪切破坏倾向于从初始缺陷处发生并发展,最终贯穿联通各初始缺陷位置。当试样发生整体破坏,即没有明显可见的单一剪切带发生时,亦可从应变场图及局部应变数据观测试样变形趋势及变形形态。
As a subject with great concern to practice, development of soil mechanics is firmly relied on the improvement of soil testing technology. As one of the most important test species, triaxial test has been playing an essential role in the development of soil mechanics. The successful application for computer aided measurement technology in soil triaxial test overcame some defects and insufficiency of traditional deformation measurement technology, thus, provided a more accurate and effective deformation measurement method.
     In the first part of the dissertation, an automatic digital image processing method is presented for whole surface measurement of specimen deformation in triaxial tests. This method incorporates digital imaging techniques and computer-aided analysis to assess deformation throughout a triaxial test. A detailed description of hardware including development of multi-function triaxial apparatus for soil, design and manufacture of triaxial pressure cell as well as design of camera bracket and lighting resources is provided. Based on the analysis for imaging characteristics of cylinder sample in triaxial tests, data analysis methodology, including distortion correction, data separation, pixel equivalent normalization, data splicing, and strain field calculation is presented.
     Further more, possible sources for both system errors and random errors have been discussed. Calibrations have been made to get ride of system errors such as lens distortion. As for random errors, necessary improvements for experimental environment and data processing have been made. After all these measures taken, other error sources remained are not quantified separately, instead, accuracy of the entire system is examined. The accuracy of method is quantified through comparison of strain results obtained from both image processing technique and a static strain tester.
     The second part of this dissertation concentrates on the applications of this digital image processing method in measuring deformation of triaxial specimens. It includes:
     (1) Discussion on the application of local deformation data. Based on qualitative analysis of local deformation characteristics, strain non-uniformity coefficient is defined and calculated, thus, quantitative comparisons are then given out for local deformations along specimen height. The effectiveness for using of local deformation data (central35mm height for specimen of size80mm*39.1mm) in eliminating end restraint as well as the reasonability, veracity and superiority for application of local deformation data in calculation of strength and deformation parameters have been verified through the comparison of test results obtained from both traditional and end-lubricated triaxial tests, and also parameters of Duncan and Chang's model.
     (2) Study for deformation of specimen and formation of shear bands in triaxial tests of cohesionless soil. The development of shear deformation and failure patterns have been studied based on comparative analysis of specimen images, surface axial strain field maps, deviator stress-axial strain curves and local deformation data for triaxial tests on silt sand and fly ash. It is found that surface axial strain fields and local deformation data are more sensitive in analyzing local non-uniform deformations as compared with specimen images and overall deformation data, and, more clearly and intuitively judgment for the formation and development of shear bands can be obtained using strain field maps. It is found that for dense sand samples, shear zones occur before peak intensity, and, after gradual development, fully form after peak intensity. As for loose sand, shear zones occur after peak intensity and tend to develop rapidly after formation. When initial defects existing, shear failures tend to occur in positions of initial defects and eventually go through the initial defects. And, when entirely failure happens, the tendency of specimenns'deformation and failure mode can also be obtained from the analysis of surface axial strain field maps and local deformation data.
引文
[1]沈珠江.关于土力学发展前景的设想[J].岩土工程学报,1994,16(1):110-111.
    [2]Casagrande A. Characteristics of cohesionless soils affecting the stability of slopes and earth fills [J]. Journal of the Boston Society of Civil Engineers,1936,23(1):257-276.
    [3]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社.1996.
    [4]黄文熙.土的工程性质[M].北京:水利水电出版社.1983.
    [5]龚晓南.21世纪岩土工程发展展望[J].岩土工程学报,2000,22(2):238-242.
    [6]黄文熙.土的抗剪强度与本构关系学术讨论导言[J].岩土工程学报,1986,8(1):1-5.
    [7]陈愈炯,吴肖茗,胡中雄,等.发展水平报告之四:工程实践中土体抗剪强度的确定[J].岩土工程学报,1986,8(1):106-120.
    [8]刘祖德,陆士强,包承纲,等.发展水平报告之一:土的抗剪强度特性[J].岩土工程学报,1986,8(1):6-46.
    [9]濮家骝,李广信.发展水平报告之二:土的本构类系及其验证与应用[J].岩土工程学报,1986,8(1):47-82.
    [10]朱思哲,刘虔,包承纲,等.三轴试验原理与应用技术[M].北京:中国电力出版社,2003.
    [11]Yan L. Nonlinear load-deformation characteristics of bridge abutments and footings under cyclic loading [D]. Southern California:University of Southern California.2001.
    [12]Hither P Y, Michali A. Identifying Soil Parameters by Means of Laboratory and in situ Testing [J]. Computers and Geotechnics,1996,19(2): 153-170.
    [13]Pestana J M, Whittle A J, Salvati L A. Evaluation of a constitutive model for clays and sands:Part I-sand behaviour [J]. International Journal for Numerical and Analytical Methods in Geomechanics,2002,26: 1097-1121.
    [14]Lee S-D P. An end chronic strain rate-sensitive model for soils susceptible to dilatancy [D]. Cincinnati:University of Cincinnati. 1991.
    [15]Eko R M. Use of triaxial stress state framework to evaluate the mechanical behavior of an agricultural clay soil [J]. Soil and Tillage Research,2005,81(1):71-85.
    [16]Praastrup U, Jakobsen K P, Ibsen L B. Two theoretically consistent methods for analyzing triaxial tests [J]. Computers and Geotechnics, 1999,25:157-170.
    [17]Wong R C K. Strength of two structured soils in triaxial compression [J]. International Journal for Numerical and Analytical Methods in Geomechanics,2001,25:131-153.
    [18]Ramamurthy T. Shear strength response of some geological materials in triaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences,2001,38(5):683-697.
    [19]Liu X, Cheng X H, Scarpas A et al. Numerical modelling of nonlinear response of soil. Part 1:Constitutive model [J]. International Journal of Solids and Structures,2005,42(7):1849-1881.
    [20]中华人民共和国行业标准.土工试验规程(SL237-1999)[S].北京:中国水利水电出版社,1999.
    [21]陈春霖,张惠明.饱和砂土三轴试验中的若干问题[J].岩土工程学报,2000,22(6):59-63.
    [22]李广信.土的本构关系的试验与理论研究的发展[C].第二届全国青年岩土力学与工程会议,大连,1995.
    [23]雷胜友.重塑土在循环荷载作用下长期变形之数学模型[J].西安公路交通大学学报,1998,18(3):5-7,63.
    [24]朱俊高,卢海华.土体侧向变形性状的真三轴试验研究[J].河海大学学报,1995,23(6):28-33.
    [25]栾茂田,郭莹,李木国,等.土工静力—动力液压三轴—扭转多功能剪切仪研发及应用[J].大连理工大学学报,2003,43(5):670-675.
    [26]陈正汉,扈胜霞,孙树国,等.非饱和土固结仪和直剪仪的研制及应用[J].岩土工程学报,2004,26(2):161-166.
    [27]陈正汉,卢再华,等.非饱和土三轴仪的CT机配套及其应用[J].岩土工程学报,2001,23(4):387-392.
    [28]王助贫,邵龙潭.三轴试验土样的端部影响问题研究[J].岩土力学,2003,24(3):363-368.
    [29]王助贫.三轴试验土样变形的数字图像测量方法及其应用[D].大连:大连理工大学.2002.
    [30]邵龙潭,王助贫,刘永禄.三轴土样局部变形的数字图像测量方法[J].岩土工程学报,2002,24(2):159-163.
    [31]郭爱国,茜平一.三轴压缩试验中橡皮膜约束影响的校正[J].岩土力学,2002,(04):49-52.
    [32]Shockley, W. G., and Ahlvin, R. G., "Non-Uniform Conditions in Triaxial Test Specimens, " ASCE Research Conference on Shear Strength of Cohesive Soils, Boulder, CO, June,1960,341-357.
    [33]Scholey G K, Frost J D, DCF L P et al. A Review of Instrumentation for Measuring Small Strains During Triaxial Testing of Soil Specimens [J]. Geotechnical Testing Journal,1995,18 (2):137-156.
    [34]Bressani L A. External Measurement of Axial Strain in the Triaxial Test [J]. Geotechnical Testing Journal,1995,18(2):226-240.
    [35]Baldi G, Hight D W, Thomas G E. A reevaluation of conventional triaxial test methods [J]. Advanced Triaxial Testing of Soil and Rock,1988, ASTM STP 977:219-263.
    [36]Al-Shamrani M A, Dhowian A W. Experimental study of lateral restraint effects on the potential heave of expansive soils [J]. Engineering Geology,2003,69:63-81.
    [37]Ueng T, Tzou Y, Lee C. The effect of end restraint on volume change and partical breakage of sands in triaxial tests [J]. Advanced Trixial Testing of Soil and Rock,1988, ASTM STP 977:679-690.
    [38]Sheng D, Westerberg B, Mattsson H et al. Effects of end restraint and strain rate in triaxial tests [J]. Computers and Geotechnics,1997, 21(3):163-182.
    [39]Duncan J M, Dunlop P. The significance of cap and base restraint [J]. Journal of soil mechanics and foundations division, ASCE,1968,94(1): 271-290.
    [40]Zhang H, Garga V K. Quasi-steady state:a real behavior [J]. Can Geotech Journal,1997,34(5):749-761.
    [41]Rowe P W, Barden L. Importance of free ends in triaxial testing [J]. Journal of soil mechanics and foundations division, ASCE,1964,90(1): 1-27.
    [42]Zhang H. Steady state behavior of sands and limitations of the triaxial tests [D]. Ottawa:University of Ottawa,1997.
    [43]常素萍.浅淡影响三轴压缩试验结果的因素[J].岩土工程界,2004,6(11):69-72.
    [44]Morgan J R, Moore P J. Experimental techniques:Soil mechanics [J]. American:Elsevier publishing company,1968.
    [45]Goto S, Tatsuoka F. A simple gauge for local small strain measurements in the laboratory [J]. Soils and Foundations,1991,31(1):169-180.
    [46]Tatusoka F, Shibuya S, Goto S et al. Discussion on the use of hall effect semiconductons on geotechnical instrumentation [J]. Geotechnical Testing Journal, ASTM,1990,13(1):63-65.
    [47]孔宪京,韩国城,娄树莲,等.土工试验新技术研究[C].辽宁省第二届青年学术年会,大连,1995.
    [48]孔宪京,贾革续,邹德高,等.微小应变下堆石料的变形特性[J].岩土工程学&,2001,23(1):32-37.
    [49]Clayton C R I, Khatrush S A, Bica A V D et al. Use of Hall effect semiconductors in geotechnical instrumentation [J]. Geotechnical Testing Journal,1989,12(1):69-76.
    [50]Escario V, Uriel S. Optical methods of measuring the cross-section of samples in the triaxial test[C]. Proc.5th ICSMFE,1961,1,89-93.
    [51]David MCA technique for measuring radial deformation during repeated load triaxial testing [J]. Canadian Geotechnical Journal,1978,15: 426-429.
    [52]El-Ruwayih A A. Design, manufacture and performance of a lateral strain device [J]. Geotechnique,1976,26(1):215-216.
    [53]刘永禄.数字图像测量技术在岩土工程试验中的应用研究[D].大连:大连理工大学.2008.
    [54]Desrues J. Besuelle P. Lewis H. Strain localization in geomaterials [R]. The Relationship between Damages and Localization. Geological Society, London, Special Publications,2007,289:47-73.
    [55]陈正汉,孙树国,等.非饱和土与特殊土测试技术新进展[J].岩土工程学报,2006,28(2):147-169.
    [56]程展林,左永振,等.CT技术在岩土试验中的应用研究[J].长江科学院院报,2011,28(3):33-38.
    [57]包承纲.岩土工程试验研究中的若干新进展[J].岩土力学,2011,32(2):1-9.
    [58]Yudhbir, Abedinzadeh R. Quantification of particle shape and angularity using the image analyzer [J]. Geotechnical Testing Journal,1991,14(3): 296-308.
    [59]Werner A M, Lange D A. Quantitative image analysis of masonry mortar microstructure [J]. Journal of computing in civil engineering,1999, 13(2):110-115.
    [60]Shinoda M, Bathurst R J. Strain measurement of geogrids using a video-extensometer technique [J]. Geotechnical Testing Journal,2004, 27(5):456-462.
    [61]Rechenmacher A L, Finno R J. Digital Image Correlation to Evaluate Shear Banding in Dilative Sands [J]. Geotechnical Testing Journal,2004,27(1): 13-22.
    [62]Masad E, Muhunthan B, Shashidhar N et al. Internal structure characterization of asphalt concrete using image analysis [J]. Journal of computing in civil engineering,1999,13(2):88-95.
    [63]Macari E J, Parker J K, Costes N C. Digital image techniques for volume change measurements in triaxial tests [C]. Proceedings of the conference on digital image processing techniques and applications in civil engineering,1993.
    [64]Jerzy M B, Janusz K. Automatic image analysis in evaluation of aggregate shape [J]. Journal of computing in civil engineering,1999,13(2) 123-129.
    [65]Burns S E, Zhang M. Digital image analysis to assess microbubble behavior in porous media [J]. Journal of computing in civil engineering,1999, 13(1):43-48.
    [66]Batiste S N, Alshibli K A, Sture S et al. Shear Band Characterization of Triaxial Sand Specimens Using Computed Tomography [J]. Geotechnical Testing Journal,2004,27(6):568-579.
    [67]Mesut P, Sibel P, Horace M Y. Magnetic resonance imaging of hydrocarbon-contaminated porous media [J]. Journal of computing in civil engineering,1999,13(2):96-102.
    [68]Ali M G, Roman D H. Soil particle size distribution by mosaic imaging and watershed analysis [J]. Journal of computing in civil engineering, 1999,13(2):80-87.
    [69]Raschke S A, Hryciw R D. Grain-size distribution of granular soils by computer vision. Geotechnical Testing Journal [J],1997,20(4): 433-442.
    [70]刘红玫.黄土孔隙微结构的计算机图像处理分析方法[J].高原地震,1999,3:44-48.
    [71]Alshibli K A, Stein S. Sand shear band thickness measurements by digital imaging techniques [J]. Journal of computing in civil engineering,1999, 13(2):103-109.
    [72]Finno R J, Harrs W W, Mooney M A, Viggiani G. Strain localization and undrained steady state of sand [J]. Geotechnical Engineering, ASCE,1996, 122(6):462-473.
    [73]Finno R J, Alarcon M A, Mooney M A, Viggiani G. Shear bands in plane strain active tests of moist tamped and pluviated sands [C]. Proceedings of the 14th Conference on Soil Mechanics and Foundation Engineering,1997, 1:295-298.
    [74]Finno R J, Harrs W W, Mooney M A, Viggiani G. Shear bands in plane strain compression of loose sand [J].Geotechnique,1997,47(1):149-165.
    [75]Han C, Vardoulakis I. Plane-strain compression experiments on water-saturated fine-grained sand [J]. Geotechnique,1991,41(1): 49-78.
    [76]Desrues J. Viggiani G. Strain localization in sand:an overview of the experimental results obtained in Grenoble using stereophotogrammetry [J]. International Journal for Numerical and Analytical Methods in Geomechanics 2004,28:279-321.
    [77]Oda M, Kazama H. Microstructure of shear bands and its relation to the mechanism of dilatancy and failure of dense granular soils [J]. Geotechnique,1998,48(4):465-481.
    [78]Alshibli K A, Stein S. Sand shear band thickness measurements by digital imaging techniques [J]. Journal of computing in civil engineering,1999, 13(2):103-109.
    [79]Macari E J, Parker J K, Costes N C. Measurement of volume change in triaxial tests using digital imaging techniques [J]. Goetechnical Testing Journal,1997,20(1):103-109.
    [80]Alshibli K A, Al-Hamdan M Z. Estimating volume change of soil specimen from planar images [J]. Computer-Aided Civil and Infrastructure Engineering,2001,16(6):415-421.
    [81]孙益振.基于三轴试样局部变形测量的土体应力应变特性研究[D].大连:大连理工大学.2005.
    [82]董建军.基于数字图像测量的非饱和压实土应力-应变特性研究[D].大连:大连理工大学.2007.
    [83]董建军,邵龙潭,刘永禄.基于图像测量的非饱和土p_s平面屈服轨迹研究[J].水利水运工程学报,2007,3:6-11.
    [84]姚涛.基于三轴土样变形数字图像测量的黄土变形和强度研究[D].大连:大连理工大学.2008.
    [85]王春.土工三轴试验试样表面变形场的测量[D].大连:大连理工大学.2008.
    [86]程丽.三轴试样表面应变场测量的应用研究初步[D].大连:大连理工大学.2008.
    [87]唐云.含有掺杂物土的应力应变特性研究[D].大连:大连理工大学.2008.
    [88]邵龙潭,董建军,等.基于亚像素角点检测的试样变形图像测量方法[J].岩土力学,2008,29(5):1329-1333.
    [89]董建军,邵龙潭,等.基于图像测量方法的非饱和压实土三轴试样变形测量[J].岩土力学,2008,29(6):1618-1622.
    [90]姚涛,邵龙潭.三轴数字图像测量技术在黄土力学特性研究中应用[J].大连理工大学学报,2009,49(1):92-97.
    [91]Philippe J, Francoise G, Lyesse L, Laurent V. Automated digital image processing for volume change measurement in triaxial cells [J]. Geotechnical Testing Journal,2006,30(2):98-103.
    [92]Bagherieh A R, Habibagahi G, Ghahramani A. A novel approach to measure the volume change of triaxial soil samples based on image processing [J]. Journal of Applied Sciences,2008,8(13):2387-2395.
    [93]Roy E, Larry M, Seed H B et al. Discussion of "Importance of free ends in triaxial testing" [J]. Journal of the Soil Mechanics and Foundations Division, ASCE,1964,90(6):167-179.
    [94]Barden L, Richard J W. Use of free ends in triaxial testing of clays [J]. Journal of the Soil Mechanics and Foundations Division, ASCE,1965, 91(6):1-23.
    [95]Bishop A W, Green G E. The influence of end restraint on the compression strength of a cohesionless soil [J]. Geotechnique,1965,15(3):243-265.
    [96]Duncan J M, Dunlop P. The significance of cap and base restraint [J]. Journal of the Soil Mechanics and Foundations Division, ASCE,1968, 94(61):271-290.
    [97]Raju V S, Sadasivan S K, Venkataraman M. Use of lubricated and conventional end platens in triaxial tests on sands [J]. Soils and Foundations.1972,12(4):35-43.
    [98]Tatsuoka F, Molenkamp F, Torii T, Hino T. Behavior of lubrication layers of platens in elements tests [J]. Soils and Foundations,1984,24(1): 113-128.
    [99]Head K H. Manual of soil laboratory testing [M]. Vol.3:Effective Stress Tests. London,1986,743-1238.
    [100]Lee K L. End restraint effects on undrained static triaxial strength of sand [J]. Journal of the Geotechnical Engineering Division,1987, 104(6):687-704.
    [101]Lade P V, Wasif U. Effects of height-to-diameter ratio in triaxial specimens on the behavior of crossanisotropic sand [C]. In Advanced Triaxial Testing of Soil and Rock. ASTM STP 977, Philadelphia,1988, 706-714.
    [102]Goto S, Tatsuoka F. Effects of end conditions on triaxial compressive strength for cohesionless soil [C]. In Advanced Triaxial Testing of Soil and Rock. ASTM STP 977, Philadelphia,1988,692-705.
    [103]Ueng T S, Tzou Y M, Lee C J. The effect of end restraint of volume change and particle breakage of sands in triaxial tests [C]. In Advanced Triaxial Testing of Soil and Rock. ASTM STP 977, Philadelphia,1988, 679-691.
    [104]Airey D W. Finite element analysis of triaxial tests with different end drainage conditions [C]. In Proc of the 7th International Conference on Computer Methods and Advances in Geomechanics. Vol 1. Balkema, Rotterdam,1991,225-230.
    [105]Jeremic B, Yang Z, Sture S. Numerical assessment of the influence of end conditions on constitutive behavior of geomatericals [J]. Journal of Engineering Mechanics,2004,130(6):741-745.
    [106]沈珠江.土体渐进破坏问题研究的进展[J].河海大学学报,1999,27:1-4.
    [107]赵锡宏,等.损伤土力学[M].上海:同济大学出版社,2000.
    [108]赵锡宏,张启辉,等.土的剪切带试验与数值分析[M].北京:机械工业出版社,2003.
    [109]李国琛,耶那.塑性大应变微结构力学[M].北京:科学出版社,1993.
    [110]李国琛.韧性材料的剪切带状分叉[J].力学学报,1987,19(1):61-68.
    [111]李国琛.剪切带状分叉的力学条件[J].力学学报,1988,20(4):305-312.
    [112]Vardoulakis I, Goldscheider M, Gudehus G. Formation of shear bands in sand bodies as a bifurcation problem [J]. International Journal for Numerical and Analytical Methods in Geomechanics,1978,2:99-128.
    [113]Vardoulakis I. Bifurcation analysis of the triaxial test on sand samples [J]. Acta Mechanics,1979,32:35-54.
    [114]Vardoulakis I. Constitutive properties of dry sand observable in the triaxial test [J]. Acta Mechanics,1981,38:219-239.
    [115]Vardoulakis I. Rigid granular plasticity model and bifurcation in the triaxial test [J]. Acta Mechanics,1983,49:57-79.
    [116]Drescher A, Vardoulakis I.Geometric softening in triaxial tests on granular material [J]. Geotechnique,1982,32(4):291-303.
    [117]Hettler A, Vardoulakis I.Behaviour of dry sand tested in a large triaxial apparatus [J]. Geotechnique,1984,34(2):183-198.
    [118]Yatomi C, Yashima A et al. General theory of shear bands formation by a non-coaxial cam-clay model [J]. Soils and Foundations,1989,29(3): 41-53.
    [119]Iizuka A, Yatomi C et al. The effect of stress induced anisotropy on shear band foundation [J]. Archive of Applied Mechanics,1992,62: 104-114.
    [120]Tatsuoka F, Sakamoto M et al. Strength and deformation characteristics of sand in plane strain comoression at extremely low pressures [J]. Soils and Foundations,1986,26(1):65-84.
    [121]Tatsuoka F, Siddiquee MSA, Park C S, Sakamoto M et al. Modelling stress-strain relations of sand [J]. Soils and Foundations,1993,33(2): 60-81.
    [122]张启辉,李蓓,赵锡宏,董建国.上海粘性土剪切带形成的平面应变试验研究[J].大坝与土工研究,2000,24(5):40-43.
    [123]华承博.新型土工平面应变仪的开发与研制[D].大连:大连理工大学.2010.
    [124]闻邦椿.机械设计手册[M].北京:机械工业出版社,2010.
    [125]Stock C, Muhlmann U. Subpixel corner detection for tracking applications using CMOS camera technology [C].26th Workshop of the Austrian Association for Pattern Recognition, Austria,2002,191-199.
    [126]Shao L T, Liu Y L, Dong J J. Strain measurement of soil specimen in triaxial test with digital image processing technology [C].6th International Symposium on Test and Measurement 2005,4368-4371.
    [127]鞠鹏.三轴图样变形数字图像测量误差修正和数据处理[D].大连:大连理工大学.2010.
    [128]Zhang Z Y. A flexible new technique for camera calibration [R]. Micorsoft Research, USA,1998.
    [129]毛英泰,等.误差理论与精度分析[M].北京:国防工业出版社,1982.
    [130]费业泰.误差理论与数据处理[M].北京:机械工业出版社,2010.
    [131]师义民.数据统计[M].北京:科学出版社,2009.
    [132]邵龙潭.土力学研究与探索[M].北京:科学出版社,2011.
    [133]Gudehus(著),朱百里(译).土力学[M].上海:同济大学出版社,1986.
    [134]郭莹,郭承侃,陆尚谟.土力学[M].大连:大连理工大学出版社,2001.
    [135]松同元(著),罗汀,姚仰平(译).土力学[M].北京:中国水利水电出版社,2001.
    [136]杨九宏.地基基础工程[M].大连:大连理工大学出版社,1998.
    [137]殷宗泽.土工原理[M].北京:中国水利水电出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700