板金属冲压成形快速模拟算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在汽车开发过程中,车身模具的开发周期在整个研发周期中占有重要比重。为了缩短模具的开发周期,板料成形的模拟软件被普遍应用到模具开发过程中。板料成形的模拟算法按照理论基础可以分为两种:一类是基于增量理论;另一种是基于全量理论。前者计算精度较高,但计算时间过长;后者以一步逆成形算法为代表,计算速度很快,但计算精度较低。因此,本文在大变形弹塑性理论基础上,提出改进型梯度法对一步逆成形算法的求解过程做改进研究;并深化研究,将一步正成形思想发展完善成具有一定工程实用性的仿真模拟算法,最后提出兼顾计算精度和计算效率的基于拟全量理论的多步正成形算法。研究内容简述如下:
     (1)、在一步逆成形算法框架下,提出一种改进型梯度法用于Newton-Raphson迭代计算,取代以往基于方程组求解的迭代算法。该方法从有限元分析中由单元形状改变量引起的单元失衡力入手,不断优化节点位置坐标来降低整个板料的失衡力。在每个迭代步上,先计算由扰动小量引起的节点失衡力梯度,再利用值域归一法计算节点坐标修改量,最后沿失衡力梯度下降方向,以修改量为步长修改初始坯料上节点坐标。为了避免不相关节点处失衡力向量的重复计算,将摄动方法的局部修正思想引入到迭代求解过程中。
     (2)、以一步逆成形算法理论为基础,初步完成具有一定工程实用性的的一步正成形模拟算法。先利用基于映射关系和面积坐标的二次映射法,初步得到一步正成形的空间初始解。再基于全量理论,利用针对空间坐标修改方案的改进型梯度方法,对初始解做失衡力平衡迭代修正,迭代过程中利用接触判断与修正方法保证被修改后的节点始终贴合在模具表面上。较比一步逆成形算法来说,一步正成形算法的求解过程更加符合零件的成形过程,已知初始平板料的厚度来推导成形后最终构形的厚度,可以有效的计算出规则的初始坯料在成形后的形状。由于一步成形正算法解决了一步成形逆算法的一些根本的缺陷,使求解精度得以提高。
     (3)、在基于全量理论的一步正成形算法基础上,引入增量理论思想,提出多步正成形算法。通过在初始板料和最终构形之间增加若干个中间步构形,来引入加载历史的影响,进一步提高了模拟精度;构建出中间构形基准面,并以基准面为基础提出简化修正计算方案,简化了计算过程。
     (4)、设计了方盒件多行程实验方案,采用电腐蚀方法在初始坯料上刻上圆形网格,进行了10mm,20mm,30mm,40mm,50mm五个不同行程的方盒件成形实验。利用光学方法测量网格变形量并推算出网格应变量,使用超声测厚仪测量板料不同行程的厚度变化量。通过几种不同算法在计算精度和计算效率上的对比,证明了多步正成形算法的有效性。最后,应用多步正成形算法模拟实际汽车冲压件,从多步正算法的模拟结果、Dynaform增量法的模拟结果和试验件测量结果对比来看,多步正成形能够高效、准确地预示出成形结果。同时也证明了多步正成形算法具有实际应用性。
In the process of automobile development, the cycle of development of autobodydies is important in the total cycle of development. The simulation software for metalsheet forming is universally applied in the process of the development of dies, inorder to shorten the cycle of development of dies. The simulation method for metalsheet forming can be divided into two kinds according to theoretical basis: One kindis based on incremental theory; another is based on deformation theory. Thecalculation accuracy of the former is higher, but the computation time is too long;Thelatter is represented by one step forming inverse algorithm, computing speed quickly,but poor precision. Therefore, the improvement research is done on the solutionprocesses of one step forming inverse algorithm using the modified gradient methodbased on large deformation elastoplastic theory; to deepen the study, the idea of onestep forming positive algorithm based on deformation theory is developed to be asimulation algorithm which has certain engineering practicability, and finallymulti-step forming positive algorithm which gives considerations to both calculationaccuracy and computational efficiency is proposed. The research content is briefly asfollows:
     1、In the frame of one step forming inverse algorithm, the improved gradient methodis proposed for iterative computations, and replacing the previous iteration algorithmbased on solving the equations. This method commences from the elementunbalanced force which generated from variations of element shape in the finiteelement analysis. The norm of the unbalanced force is defined to measure theunbalanced force situation in the blank. On each iteration step, firstly the unbalancedforce gradients generated from small disturbances can be calculated. Secondly theintelligence modifier optimization method is used to calculate the node coordinatesmodifier. Finally along the unbalanced force gradient descent direction, thecoordinates of the node on the initial blank is modified. To avoid the repeated computation of the unbalanced force vector on irrelevant nodes, the idea of localmodification from perturbation theory is introduced into the iteration process.
     2、On the basis of one step forming inverse algorithm, one step forming positivealgorithm is accomplished to simulate the sheet metal forming process. The spaceinitial solution of one step forming positive algorithm is obtained preliminary usingmapping relationships and area coordinates. Then, based on deformation theory theiterative solutions are carried out in three-dimensional coordinate system by using theimproved gradient method. During iterative process the contact process is introducedto ensure that the nodes on the spatial initial solution are not separated from diesurface. Compared to the inverse approach, the simulation process of the positiveapproach is more coincident with the forming process. The thickness of the initialblank is known, and the thickness of the final shape can be derived. The stampedshape of regular sheet can be calculated effectively. As one step forming positivealgorithm can solve some fundamental flaws of one step forming inverse algorithm,the precision is improved.
     3、On the basis of one step forming positive algorithm which is based on deformationtheory, introducing idea of incremental theory, the multi step forming positivealgorithm is proposed based on quasi-deformation theory. The influence of theloading history is considered by adding several intermediate shapes between theinitial blank and the final shape, and the simulation accuracy is further improved. Thebenchmark surfaces of the intermediate shapes can be built, in the basis of which theproject for the simplification of modified calculation is proposed, and the computationtime is reduced.
     4、The multi-step experimental scheme of square box is designed. The circularelements are marked on the flat blank using electric corrosion method, Five squarebox experiment samples of different steps including10mm,20mm,30mm,40mm,50mm areachieved. The deformation of element is measured by the method of opticalmeasurement, and then the strain of element can be calculated. The thickness of blankin different steps is measured using ultrasonic thickness gauge. Through thecomparison among several different algorithms on calculation precision and calculation efficiency, the multi-step forming positive algorithm is proved valid.Finally, the multi-step forming positive algorithm is applied to simulate the actualautomobile stamping parts. From the comparison among the simulation results ofmulti-step forming positive algorithm, the Dynaform incremental method and theresults of experimental measurement, it is observed that the multi-step formingpositive algorithm can also predict the forming results. Meanwhile, it is proved themulti-step forming positive algorithm can be commonly used.
引文
[1]梁炳文,胡适光板料塑性成形理论[M]北京:机械工业出版社,1986.
    [2]钟志华,李光耀.薄板冲压成形过程的计算机仿真与应用[M].北京:北京理工大学出版社,1998.
    [3]汪大年.金属塑性成形原理[M].北京:机械工业出版社,1982.
    [4]陈文亮.板材成形CAE分析教程[M].北京:机械工业出版社,2005.
    [5]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [6]徐秉业.塑性力学[M].北京:高等教育出版社,1989.
    [7]黄天泽,黄金陵.汽车车身结构与设计[M].北京:机械工业出版社,1992.
    [8]张冬娟.板料冲压成形回弹理论及有限元数值模拟研究[D].上海:上海交通大学,2007.
    [9]崔令江.汽车覆盖件冲压成形技术[M].北京:机械工业出版社,2003.
    [10]申国哲.金属板材成形的动力半显式算法及其工程应用[D].吉林:吉林大学,2003.
    [11]徐芝纶.弹性力学[M].北京:高等教育出版社,2006.
    [12]冯国忱.非线性方程组迭代解法[M].上海:上海科学技术出版社,1989.
    [13]徐涛.数值计算方法[M].长春:吉林科学技术出版社,1998.
    [14]Per Nordlund. Adaptivity and wrinkle indication in sheet metal-forming[J].Computer Methods in Applied Mechanics and Engineering,1998,161(1):127-143.
    [15]Joao Pedro de Magalhaes Correia, Gerard Ferron. Wrinkling predictions in thedeep-drawing process of anisotropic metal sheets[J]. Journal of Materials ProcessingTechnology,2002,128(1-3):178-190.
    [16]Shijian Yuan, Xiaosong Wang, Gang Liu, Z.R. Wang. Control and use ofwrinkles in tube hydroforming[J].Journal of Materials ProcessingTechnology,2007,182(1-3):6-11.
    [17]N. Boudeau, J. C. Gelin. Post-processing of finite element results and predictionof the localized necking in sheet metal forming[J]. Journal of Materials ProcessingTechnology,1996,60(1-4):325-330.
    [18]G. Ingarao, R. Di Lorenzo, F. Micari. Springback Determination By SpringbackIndex Approach[J].Materials&Design,2009,30(10):4421-4433.
    [19]A.Fazli, B.Arezoo. A comparison of numerical iteration based algorithms inblank optimization[J]. Finite Elements in Analysis and Design,2012,50:207-216.
    [20]F.Lan, J.Chen, J.Lin. A method of constructing smooth tool surfaces for FEprediction of springback in sheet metal forming[J]. Journal of Materials ProcessingTechnology,2006,177(1-3):382–385.
    [21]G.Sun,M.Z.Li,X.P.Yan,P.P.Zhong. Study of blank-holder technology onmulti-point forming of thin sheet metal[J]. Journal of Materials ProcessingTechnology,2007,187-188:517-520.
    [22] M. Azaouzi, N. Lebaal, G. Rauchs, S. Belouettar. Optimal design of multi-stepstamping tools based on response surface method[J].Simulation Modelling Practiceand Theory,2012,24:1-14.
    [23]X.Y.Cui,G.Y.Li. Metal forming analysis using the edge-based smoothed finiteelement method[J].Finite Elements in Analysis and Design,2013,63:33-41.
    [24]Peng.WANG, Xiang-huai.DONG, Li-jun,FU. Simulation of bulk metal formingprocesses using one-step finite element approach based on deformation theory ofplasticity[J]. Transactions of Nonferrous Metals Society of China,2010,20(2):276-282.
    [25]Hyunbo Shim. Determination of optimal shapes for the stampings of arbitraryshape[J]. Journal of Materials Processing Technology,2002,121(1):116-122.
    [26]J.W. Yoon, D.Y. Yang, K. Chung, F. Barlat. A general elasto-plastic finiteelement formulation based on incremental deformation theory for planar anisotropyand its application to sheet metal forming[J]. International Journal of Plasticity,1999,15(1):35-67.
    [27]Wei Gan, R.H.Wagoner. Die design method for sheet springback[J].InternationalJournal of Mechanical Sciences,2004,46(7):1097-1113.
    [28]Reza Azizi, Ahmad Assempour. Applications of linear inverse finite elementmethod in prediction of the optimum blank in sheet metal forming[J]. Materials andDesign,2008,29(10):1965-1972.
    [29]Li Jun-chao, Li Chong, Zhou Tong-gui. Thickness distribution and mechanicalproperty of sheet metal incremental forming based on numerical simulation[J].Transactions of Nonferrous Metals Society of China,2012,22:54-60.
    [30]Wei Donglai, Cui Zhenshan, Chen Jun. Optimization and tolerance prediction ofsheet metal forming process using response surface model[J].Computational MaterialsScience,2008,42(2):228-233.
    [31]Riadh Bahloul. Optimisation of process parameters in flanging operation in orderto minimize stresses and Lemaitre’s damage[J]. Materials and Design,2011,32:108-120.
    [32]Hongsheng Liu, Yuying Yang, et al. The application of a ductile fracture criterionto the prediction of the forming limit of sheet metals[J]. Journal of MaterialsProcessing Technology.2009,209(16):5443-5447.
    [33]W. L. Xu, C. H. Ma, C. H. Li, W. J. Feng. Sensitivefactors in springbacksimulation for sheet metal forming[J]. Journal of Materials Processing Technology,2004,151(1-3):217-222.
    [34]Yong H.Kim, Jung-Min Lee, S.S.Hong. Optimal design of superplastic formingprocesses[J]. Journal of Materials Processing Technology,2001,112(2-3):166-173.
    [35]H. Ahmadian, S. Farughi. Development of super-convergent plane stress elementformulation using an inverse approach[J]. Finite Elements in Analysis and Design,2011,47(7):796-803.
    [36]T. Cwiekala, A. Brosius, A.E. Tekkaya. Accurate deep drawing simulation bycombining analytical approaches[J]. International Journal of Mechanical Sciences,2011,53(5):374-386.
    [37]Zhong-Yi Cai, Shao-Hui Wang, Xu-Dong Xu, Ming-Zhe Li. Numericalsimulation for the multi-point stretch forming process of sheet metal[J]. Journal ofMaterials Processing Technology,2009,209(1):396-407.
    [38]Morteza Nurcheshmeh, Daniel E. Green. Prediction of sheet forming limits withMarciniak and Kuczynski analysis using combined isotropic–nonlinear kinematichardening[J]. International Journal of Mechanical Sciences,2011,53(2):145-153.
    [39]Mohammad Habibi Parsa, Payam Pournia. Optimization of initial blank shapepredicted based on inverse finite element method[J]. Finite Elements in Analysis andDesign,2007,43(3):218-233.
    [40]Marco Schwarze, Ivaylo N. Vladimirov, Stefanie Reese. Sheet metal forming andspringback simulation by means of a new reduced integration solid-shell finiteelement technology[J]. Computer Methods in Applied Mechanics and Engineering,2011,200(5-8):454-476.
    [41]K.Z.Ding, Q.-H.Qin, M.Cardew-Hall. Substepping algorithms with stresscorrection for the simulation of sheet metal forming process[J]. International Journalof Mechanical Sciences,2007,49(11):1289-1308.
    [42]M. Azaouzi, S. Belouettar, G. Rauchs. A numerical method for the optimal blankshape design[J]. Materials and Design,2011,32(2):756-765.
    [43]Wang Hu, Li Enying, Li Guang Yao. Optimization of drawbead design in sheetmetal forming based on intelligent sampling by using response surface methodology[J]. Journal of Materials Processing Technology,2008,206(1-2):45-55.
    [44]Shiyong Yang, Kikuo Nezu. Application of an inverse FE approach in theconcurrent design of sheet stamping[J]. Journal of Materials Processing Technology,1998,79(1-3):86-93.
    [45]D.H Park, S.S Kang, S.B Park. A study on the improvement of formability forelliptical deep drawing processes[J]. Journal of Materials Processing Technology,2001,113(1-3):662-665.
    [46]Jong-Yop Kim, Naksoo Kim, Man-Sung Huh. Optimum blank design of anautomobile sub-frame[J]. Journal of Materials Processing Technology,2000,101,(1-3):31-43.
    [47]Hyunbo Shim, Kichan Son, Kwanghee Kim. Optimum blank shape design bysensitivity analysis[J]. Journal of Materials Processing Technology,2000,104(3):191-199.
    [48]Shiyong Yang, Kikuo Nezu. Application of an inverse FE approach in theconcurrent design of sheet stamping[J]. Journal of Materials Processing Technology,1998,79(1-3):86-93.
    [49]G. Rauchs, J. Bardon. Identification of elasto-viscoplastic material parameters byindentation testing and combined finite element modelling and numericaloptimization[J]. Finite Elements in Analysis and Design,2011,47(7):653-667.
    [50]Kyung Seok Oh, Kwang Hwan Oh, Jun Ho Jang, et al. Design and analysis ofnew test method for evaluation of sheet metal formability[J]. Journal of MaterialsProcessing Technology,2011,211(4):695-707.
    [51]Eduardo Bittencourt, Guillermo J. Creus. Finite element analysis ofthree-dimensional contact and impact in large deformation problems[J]. Computers&Structures,1998,69(2):219-234.
    [52]Sangdo Kim, Minho Park, Sangjin Kim, Daegyo Seo. Blank design andformability for non-circular deep drawing processes by the finite-element method[J].Journal of Materials Processing Technology,1998,75(1-3):94-99.
    [53]Reza Azizi. Different implementations of inverse finite element method in sheetmetal forming[J]. Materials and Design,2009,30(8):2975-2980.
    [54]R.J. Alves de Sousa, J.W. Yoon, R.P.R. Cardoso, et al. On the use of a reducedenhanced solid-shell(RESS) element for sheet forming simulations[J]. InternationalJournal of Plasticity,2007,23(3):490-515.
    [55]Mehmet Firat, Bilgin Kaftanoglu, Orhan Eser. Sheet metal forming analyses withan emphasis on the springback deformation[J]. Journal of Materials ProcessingTechnology,2008,196(1-3):135-148.
    [56]M.P.L. Parente, R.A.Fontes Valente, R.M. Natal Jorge. Sheet metal formingsimulation using EAS solid-shell finite elements[J]. Finite Elements in Analysis andDesign,2006,42(13):1137-1149.
    [57]D.M. Rodrigues, C. Leit o, L.F. Menezes. A multi-step analysis for determiningadmissible blank-holder forces in deep-drawing operations[J]. Materials and Design,2010,31(3):1475-1481.
    [58]Guangyong Sun, Guangyao Li, Zhihui Gong. Multiobjective robust optimizationmethod for drawbead design in sheet metal forming[J]. Materials and Design,2010,31(4):1917-1929.
    [59]T.Wang, M.J.Platts. A computer-aided blank design method for the peen formingprocess[J]. Journal of Materials Processing Technology,2002,122(2-3):374-380.
    [60] H. Naceur, A. Delaméziere, J. L. Batoz, et al. Some improvements on theoptimum process design in deep drawing using the inverse approach[J]. Journal ofMaterials Processing Technology,2004,146:250-262.
    [61]H. Naceur, Y. Q. Guo, J. L. Batoz, et al. Optimization of drawbead restrainingforces and drawbead design in sheet metal forming process[J]. Mechanical Sciences,2001,43(10):2407-2434.
    [62]Y. Q. Guo, J. L. Batoz, M. EI Mouatassim, et al. On the estimation of thicknessstrains in thin car panels by the inverse approach[C]. Proceedings ofNUMIFORM’92,Valbonne: Taylor&Francis, Inc,1992:1403-1408.
    [63]Y.Q.Guo, Y.M.Li, F.Bogard, K.Debray. An efficient pseudo-inverse approach fordamage modeling in the sheet forming process[J]. Journal of Materials ProcessingTechnology,2004,151(1-3):88-97.
    [64]H.Naceur, Y.Q.Guo, J.L.Batoz, C.Knopf-Lenoir. Optimization of drawbeadrestraining forces and drawbead design in sheet metal forming process[J].International Journal of Mechanical Sciences,2001,43(10):2407-2434.
    [65]Y.Q.Guo, W.Gati, H.Naceur, J.L.Batoz. An efficient DKT rotation free shellelement for springback simulation in sheet metal forming[J].Computers andStructures,2002,80(27-30):2299-2312.
    [66]H.Naceur, Y.Q.Guo, J.L.Batoz,. Blank optimization in sheet metal formingusing an evolutionary algorithm[J]. Journal of Materials Processing Technology,2004,151(1-3):183-191.
    [67]Y.Q. Guo, J.L. Batoz, H. Naceur, et al. Recent developments on the analysis andoptimum design of sheet metal forming parts using a simplified inverse approach[J].Computers and Structures,2000,78(1-3):133-148.
    [68]H. Naceur, S. Ben-Elechi, J.L. Batoz, C. Knopf-Lenoir. Response surfacemethodology for the rapid design of aluminum sheet metal forming parameters[J].Materials and Design,2008,29(4):781-790.
    [69]H. Naceur, A. Delaméziere, J.L. Batoz. Some improvements on the optimumprocess design in deep drawing using the inverse approach[J]. Journal of MaterialsProcessing Technology,2004,146(2):250-262.
    [70]M.S.Chebbah, H.Naceurb, A.Gakwaya. A fast algorithm for strain prediction intube hydroforming based on one-step inverse approach[J]. Journal of MaterialsProcessing Technology,2011,211(11):1898-1906.
    [71]Liu S D, Karima M. A one step finite element approach for production design ofsheet metal stampings[M]. Chenot JL, Wood RD, Zienkiewicz OC. Editors,NUMIFORM, Valbonne, France, Rotterdam: A.A. Balkema;1992:497-503.
    [72]M.G.Lee, K.Chung, R.H.Wagoner, Y.T.Keum. A numerical method for rapidestimation of drawbead restraining force based on non-linear, anisotropic constitutiveequations[J]. International Journal of Solids and Structures,2008,45(11-12):3375–3391.
    [73]Chung K, Barlat F, Brem J C, et al. Blank shape design for a planar anisotropicsheet based on ideal forming design theory and FEM analysis[J]. International Journalof Mechanical Sciences,1997,39(1):105-120.
    [74]Kwansoo Chung, Jeong-Whan Yoon, Owen Richmond. Ideal sheet forming withfrictional constrains[J]. International Journal of Plasticity,2000,16(6):595-610.
    [75]C. H. Lee, H. Huh. Three dimensional multi-step inverse analysis for theoptimum blank design in sheet metal forming processes[J]. Journal of MaterialsProcessing Technology,1998,80:76-82.
    [76]C. H. Lee, H. Huh. Blank design and strain estimates for sheet metal formingprocesses by a finite element inverse approach with initial guess of lineardeformation[J]. Journal of Materials Processing Technology,1998,82:145-155.
    [77]C. H. Lee, H. Huh. Blank design and strain prediction of automobile stampingparts by an inverse finite element approach[J]. Journal of Materials ProcessingTechnology,1997,63:645-650.
    [78]J.H. Yoon, H. Huh. Efficiency enhancement in sheet metal forming analysiswith a mesh regularization method[J]. Journal of Materials Processing Technology,2003,140(1-3):616-621.
    [79]S.B. Kim, H. Huh, H.H. Bok, M.B. Moon. Forming limit diagram of auto-bodysteel sheets for high-speed sheet metal forming[J]. Journal of Materials ProcessingTechnology,2011,211(5):851-862.
    [80]S.H.Kim, H.Huh. Design sensitivity analysis of sheet metal forming processeswith a direct differentiation method[J]. Journal of Materials Processing Technology,2002,130-131:504-510.
    [81]Seung Ho Kim, Se Ho Kim, Hoon Huh. Finite element inverse analysis for thedesign of intermediate dies in multi-stage deep-drawing processes with large aspectratio[J]. Journal of Materials Processing Technology,2001,113(1-3):779-785.
    [82]S.H.Kim, H.Huh. Construction of sliding constraint surfaces and initial guessshapes for intermediate steps in multi-step finite element inverse analysis[J]. Journalof Materials Processing Technology,2002,130-131:482-489.
    [83]Se Ho Kim, Seung Ho Kim, Hoon Huh. Tool design in a multi-stage drawing andironing process of a rectangular cup with a large aspect ratio using finite elementanalysis[J]. International Journal of Machine Tools&Manufacture,2002,42(7):863-875.
    [84]徐国艳,施法中,有限元反向法计算筒形件毛料形状[J].塑性工程学报,2002,9(2):42-45。
    [85]徐国艳,施法中,板料冲压成形盒形件的毛料计算[J].中国机械工程,2003,14(9):788-790。
    [86]徐国艳,施法中,反向法在冲压件成形设计初期阶段的应用,塑性工程学报,2003,10(1):40-43。
    [87]沈启彧,卫原平,王玉国,赵春林,阮雪榆,金属板料成形的快速有限元分析[J].计算力学学报,2000,17(2):242-245。
    [88]沈启彧,卫原平,王玉国,阮雪榆,金属板料成形的一步有限元模拟方法,上海交通大学学报[J].2000,34(10):1404-1405。
    [89]王烨,沈启彧,卫原平,王玉国,张永清,反向方法在板料成形毛坯设计中的应用研究[J].锻压技术,2001,1:18-24。
    [90]Ye Wang, Qiyu Shen, Yuguo Wang, Yongqing Zhang. Research on applyingone-step simulation to blank design in sheet metal forming[J]. Journal of MaterialsProcessing Technology,2002,120(1-3):111-114.
    [91]LAN Jian, DONG Xianghuai, LI Zhigang. Inverse finite element approach andits application in sheet metal forming[J].Journal of Materials Processing Technology,2005,17(3):624-631.
    [92]TANG Bingtao, ZHAO Zhen, CHEN Jun, et al. Development of multistage sheetmetal forming simulation based on multi-step inverse analysis approach[J]. ChineseJournal of Mechanical Engineering,2006,42(12):211-217.
    [93]TANG Bingtao, ZHAO Zhen, LU Xiaoyang, Developments of multistep inversefinite element method and its application in formability prediction of multistage sheetmetal forming[J]. Journal of Manufacturing Science and Engineering,2010,132(4):041013-041019.
    [94]B.T. Tang, Z. Zhao, X.Y. Lu. Fast thickness prediction and blank design in sheetmetal forming based on an enhanced inverse analysis method[J]. International Journalof Mechanical Sciences,2007,49(9):1018-1028.
    [95]Y.Huang, Z.Y.Lo, R.Du. Minimization of the thickness variation in multi-stepsheet metal stamping[J]. Journal of Materials Processing Technology,2006,177(1-3):84-86.
    [96]W. Chen, Z.J. Liu, B. Hou, R.X. Du. Study on multi-stage sheet metal formingfor automobile structure-pieces[J]. Journal of Materials Processing Technology,2007,187-188:113-117.
    [97]Ying Huang, Yi-Ping Chen, Ru-Xu Du. A new approach to solve key issues inmulti-step inverse finite-element method in sheet metal stamping[J]. InternationalJournal of Mechanical Sciences,2006,48(6):591-600.
    [98]李宝军,张向奎,祝雪峰,靳春宁,周平,胡平.基于弹塑性变形的快速展平算法与网格参数化[J].计算机辅助设计与图形学学报,2010,22(8):1266-1271.
    [99]王金武,胡平,付争春,许言午.汽车覆盖件破裂试验及基于广义成形技术的仿真[J].农业机械学报,2010,40(11):227-231.
    [100]柳玉起,胡平,曹颖,李运兴.汽车覆盖件成形过程起皱模拟的数值方法[J].汽车工程,1997,19(2):25-29.
    [101]王金武,胡平,付争春,许言午.汽车覆盖件回弹试验及基于广义成形技术的回弹缺陷CAE分析方法[J].塑性工程学报,2010.17(1):41-45.
    [102]柳玉起,胡平,郭威,李运兴.板材成形局部塑性失稳与起趋的数值模拟[J].机械工程学报,1997,33(2):88-92.
    [103]周平,胡平,张健伟,张向奎.基于节点切平面解耦列式的一步逆成形法[J].机械工程学报,2010,46(22):24-30.
    [104]申国哲,胡平,王锦程.改进的速度迭代弹塑性大变形动力半显式算法[J].固体力学学报,2003,24(4):463-468.
    [105]范蓉,郑国君,胡平.基于背景网格技术的冲压成形仿真工具自动装配算法[J].机械工程学报,2011,47(2):31-35.
    [106]周平,郭威,申国哲,胡平.薄板成形模拟中切边回弹算法[J].吉林大学学报(工学版),2010,40(4):931-936.
    [107]Baojun Li, Xiangkui Zhang, Ping Zhou, Ping Hu. Mesh parameterization basedon one-step inverse forming[J]. Computer-Aided Design,2010,42(7):633-640.
    [108]Yi Dong Bao, Hoon Huh. Optimum design of trimming line by one-stepanalysis for auto body parts[J]. Journal of Materials ProcessingTechnology,2007,187-188:108-112.
    [109]鲍益东,胡斯博,张向奎,胡平.弯曲型件冲压回弹的快速模拟[J].塑性工程学报,2006,13(4):25-29.
    [110]鲍益东,杜国康,陈文亮,王志国.冲压成形模拟中有限元方程组求解算法[J].南京航空航天大学学报,2009,41(5):606-610.
    [111]鲍益东,那景新,胡平.汽车覆盖件成形模面快速等距算法[J].机械工程学报,2004,40(8):166-169.
    [112]张剑,陈文亮,鲍益东.基于响应面近似模型的拉延筋优化[J].南京航空航天大学学报,2012,44:97-100.
    [113]彭威,陈文亮,鲍益东.基于线弹性反向变形有限元法的网格参数化[J].机械科学与技术,2012,31(9):1463-1467.
    [114]洪晴,黄翔,李泷杲,鲍益东.钣金不可展曲面展开有限元逆算法的研究与实现[J].机械制造与研究,2011,40(2):37-39.
    [115]刘玉琳,陈文亮,鲍益东,王小平.覆盖件模面设计的三维零件轮廓曲线匹配算法[J].农业机械学报,2012,43(7):212-216.
    [116]刘玉琳,陈文亮,鲍益东,王小平.基于自适应响应面的多边形坯料形状优化设计[J].江苏大学学报(自然科学版),2012,33(3):322-327.
    [117]鲍益东,王秋菊,陈文亮.三维复杂零件修边线快速预示方法[J].机械工程学报,2011,47(24):38-43.
    [118]张向奎,鲍益东,胡平,胡斯博,郎志奎,王宇.板材三维曲面翻边的逆成形预示与修边线确定[J].力学学报,2007,39(4):486-494.
    [119]那景新,韩召良,陈伟,闫亚坤.冲压工艺对车身构件强度的影响[J].吉林大学学报(工学版),2011,41(6):1537-1541.
    [120]那景新,高华,张丽,胡平.一步成形模拟方法中松弛因子选取算法[J].吉林大学学报(工学版),2005,35(3):292-296.
    [121]那景新,闫亚坤,麻文焱.翘曲修正曲面展开四节点单元在某汽车油底壳快速成形模拟中的应用[J].中国机械工程,2006,17(2):216-219.
    [122]那景新,闫亚坤,庄蔚敏.用厚度阈值法改善深拉延冲压件坯料形状预测精度[J].吉林大学学报(工学版),2006,36(2):20-23.
    [123]那景新,崔岸,甘维银,胡平.局部减缩积分曲面展开单元在某汽车翼子板一步成形模拟中的应用[J].吉林大学学报(工学版),2006,36(1):57-62.
    [124]Jingxin Na, Jian Jiao, Yakun Yan, et al. A membrane element model withbending modification for one step inverse method[J]. Acta Mechanica Solida Sinica,2011,24(3):282-288.
    [125]李威.一步成形逆有限元法的改进以及正算法的研究[D].长春:吉林大学汽车工程学院,2005.
    [126]张望.一步正成形模拟中初始场预示算法研究[D].长春:吉林大学汽车工程学院,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700