云南省小麦条锈菌群体遗传结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦条锈病(Puccinia striiformis West. f. sp. tritici Eriks.)是严重威胁我国小麦安全生产的重大流行性病害,云南是条锈病的重发区,是我国条锈菌能顺利越冬越夏面积最大的省份及毒性最复杂的地区,云南具有我国小麦条锈病初菌源地的重要特征及远距离传播的充要条件,在明确云南小麦条锈菌与其它流行区的关系之前,系统认识其群体结构十分重要,这有助于揭示条锈菌起源、进化及传播。根据病菌群体毒性状况开展对应的寄主群体抗性评价及抗病基因研究,能为合理利用小麦品种及实施抗病基因布局提供依据。本研究主要取得如下结果:
     1.条锈病发生时间序列调查由云南小麦条锈病始发期及盛发期自西南向东北逐步推迟的规律,揭示了条锈病在云南自西南向东北传播的方向,由地麦先发病田麦后发病的规律,揭示了条锈病越冬初菌源是从高海拔向低海拔传播,但复杂的小环境有时会掩盖传播走向。
     2.条锈菌生理小种研究通过2008-2011年云南省小麦条锈菌生理小种的研究表明,条锈菌群体正经历从以CY32、CY33、Hy-8和Hy-6等为优势小种的极不均衡的群体结构,到优势小种频率越来越低,越来越不明显的趋于均衡的群体结构,由较为简单的群体发展为越来越复杂的群体。条锈菌群体毒性的发展,迫切要求调整鉴别寄主,进行毒性研究方法的变革。采用单基因系或近等基因系作鉴别寄主,进行毒性基因及其频率分析,取代现行的生理小种监测方法势在必行。
     3.条锈菌SNP引物开发在国际国内首次开发出小麦条锈菌3个看家基因即促分裂原活化蛋白激酶1基因(Mapk1)、细胞周期依赖性蛋白激酶2基因(Cdc2)和延伸因子1α基因(Ef-1α)的单核苷酸多态性(SNP)引物。基于云、贵、川、陕、甘5省149个条锈菌系SNP分析,多态性好,可用于条锈菌群体结构的SNP分析。
     4.条锈菌分子群体遗传结构研究采用Mapk1、Cdc2和Ef-1α的连接基因,对条锈菌2008年及2011年群体共297个菌系进行SNP分析。结果表明:条锈菌群体有丰富的单倍型,云南和陇南群体有高频率的共享单倍型,分别有多个自有的单倍型。云南群体内有较大的遗传分化和较低的基因流、较高的遗传变异率。陇南群体有较高的遗传多样性及重组事件。两年的结果一致支持祖先单倍型来源于云南,云南有比陇南更古老、更年轻的基因型,更久远的进化历史,更高的异质性和进化效率。且云南、陇南两地间存在高强度的基因流等分子遗传学证据,结合寄主与病菌的协同进化及云南各地条锈病盛发期高空气流轨迹等分析,从多角度取得了云南小麦条锈菌直接传播到陇南的证据。
     5.小麦品种抗条锈性评价及抗条锈基因推导采用近年来优势小种CY31、CY32、CY33及多小种混合菌系系统评价了云南125个小麦品种或材料的成株期抗条锈性。结果表明:66.4%的品种对条锈病表现不同程度的抗性,从免疫到中抗,32%的品种表现良好的慢锈性,高感品种只占1.6%。采用25个国内外条锈菌鉴别菌系,对52个云南小麦生产品种进行基因推导的结果表明:云南小麦品种抗条锈基因并不丰富,只推导出10个可能的抗条锈基因。而且分布也不均衡,只有Yr9出现频率较高,为25%;Yr2+YrA、Yr6、Yr7、Yr8、Yr17、Yr21、Yr26和Yr27,出现频率均低;22个品种无法推导出抗病基因。
Wheat stripe (yellow) rust is one of the most important epidemics which threaten wheat securityseverely. Yunnan is a district where stripe rust breaks out constantly. It is a province where there islargest over-summering and over-wintering areas for Puccinia striiformis f. sp. tritici (Pst), and is one ofthe rare regions where the pathogen is very complex in China. Yunnan has the important characteristicsof the origin of Pst in China and the sufficient and prerequisite conditions for long distance dispersal ofthe pathogen. It's very important to know the population genetic structure of Pst in Yunnan beforeanswering the relationship of pathogen between Yunnan and other epidemic regions, because it canreveal the origin, evolution and migration of pathogen. Study on the host population resistance andresistance genes based on the results of pathogen virulence monitoring can provide information forrational utilization of varieties and resistance genes deployment in the field. This study obtained themain results as follows:
     1. Survey on the time course of the stripe rust occurrence and epidemic The step by stepoccurrence, generally directed from southwest to northeast for the beginning and the peak periods of thestripe rust, revealed the direction of dispersal for wheat stripe rust is from southwest to northeast inYunnan Province. The sequential occurrence from fields rotated with dryland farming to fields rotatedwith paddy rice revealed that the primary source of the pathogen was from high altitude areas for thepathogen overwintering. The complicated subenvironment may hide the direction of the dispersal.
     2. Monitoring of Pst physiological races The monitoring results of Pst during the period of2008–2011years indicated that Pst population was undergoing changes from the population structure withprevailing races, such as CY32, CY33, Hy-8, Hy-6, etc., to a more balanced structure, in whichfrequencies of dominant races lowered year after year and the population became more and morecomplicated in terms of races. The development of Pst virulence in the populations calls for theadjustment of the differential hosts and the reform of the virulence analysis method. It is urgent to use aset of single gene lines or near-isogenic lines (NILs) as differentials to analyse the virulence genes andtheir frequencies of the pathogen to replace physiological races identification method.
     3. Development of Pst SNP primers SNP primers had been developed of Pst house-keeping genesMapk1, Cdc2and Ef-1α for the first time in the world. The primers have good polymorphism based on149isolates from5provinces. It can be used to analyses Pst population structure.
     4. Molecular population genetic structure of Pst Concatenated genes Mapk1, Cdc2and Ef-1α wereused to analyse the SNP of Pst populations with297isolates altogether collected in2008and2011. Theresults indicated that Pst population had rich haplotypes. Yunnan and South Gansu population had highfrequencies of shared haplotypes. The two populations had several private haplotypes, respectively.There is great genetic differentiation, lower gene flow and higher population mutation rate withinYunnan population. There was higher genetic diversity and higher recombination events in South Gansu.The ancestral haplotype was discovered in Yunnan population from the results of both years. Yunnan has more ancient and younger haplotypes, longer evolution time, higher heterogenicity and evolutionefficiency than South Gansu. Inaddition, strong gene flow existed between Yunnan and South Gansu.Besides the molecular evidence, we also analyzed the relationship of coevolution between the pathogenand its host wheat, and the migration trajectory of Pst in upper airflow during the peak period of the rustpathogen. These provide us the evidences that Pst pathogen of Yunnan can migrate to South Gansudirectly from different perspectives.
     5. Resistance assessment of wheat cultivars and gene postulation Adult resistance of125wheatcultivars were assessed by inoculating the main dominant races CY31, CY32, CY33and mixture ofmany races in recent years, respectively. The results indicated that there were66.4%cultivars showeddifferent degrees of resistance from immune to mid-resistance and32%cultivars showed slow-rusting.Only1.6%cultivars showed high-susceptibility. Seedlings of52commercial wheat cultivars fromYunnan were inoculated with25differential isolates of Pst from foreign and home to postulateresistance genes to yellow rust. The results indicated that resistance gene is not rich in cultivars fromYunnan. Only10probable resistance genes were characterized in these cultivars. Yr9among them hadhigh virulence frequency,25%. Genes/combinations Yr2+YrA, Yr6, Yr7, Yr8, Yr17, Yr21, Yr26andYr27, had lower frequency. Twenty-two cultivars could not been characterized in this study.
引文
1.白玉. DNA分子标记技术及其应用[J].安徽农业科学,2007,(24):7422-7424.
    2.曹丽华,康振生,郑文明,等.小麦条锈菌条中31号生理小种SCAR检测标记的建立[J].菌物学报,2005,(1):98-103.
    3.曹世勤,张勃,李明菊,等.甘肃省50个主要小麦品种(系)苗期抗条锈基因推导及成株期抗病性分析[J].作物学报,2011,37(8):1360-1371.
    4.曹学仁,周益林,段霞瑜,等.我国主要麦区101个小麦品种(系)的抗白粉病基因推导[J].麦类作物学报,2010,(5):948-953.
    5.曹亚萍.小麦的起源、进化与中国小麦遗传资源[J].小麦研究,2008,29(3):1-10.
    6.曹远银,姚平,朱桂清,等.中国小麦生产品种抗秆锈病基因推导[J].中国农业科学,1996,(6):90-91.
    7.曹远银,朱桂清,姚平,等. RFLP区分中国小麦秆锈菌不同小种及致病型的应用研究[J].沈阳农业大学学报,1999,(3):227-230.
    8.陈长卿.中国小麦条锈菌分子群体遗传结构研究[D].西北农林科技大学博士论文,2008.
    9.陈万权,胡长程.我国28个小麦品种抗叶锈基因的推导[J].作物学报,1993,(3):268-275.
    10.陈万权,王剑雄.76个小麦种质资源抗叶锈及秆锈基因初步分析[J].作物学报,1997,(6):655-663.
    11.单卫星,陈受宜,惠东威,等.我国小麦条锈菌模式菌系的DNA指纹分析[J].科学通报,1996,(15):1427-1430.
    12.单卫星,陈受宜,吴立人,等.中国小麦条锈菌的流行小种的RAPD分析[J].中国农业科学,1995,28(5):1-7.
    13.杜雪,李国勤,卢立志. SNP分子标记研究进展[A].全国生物遗传多样性高峰论坛[C],中国云南昆明,2012,2.
    14.段渝主.南方丝绸之路研究论集[M].四川出版集团,巴蜀书社,2008.
    15.高军,刘大群. AFLP技术在植物病原真菌种群遗传上的应用[J].河北农业大学学报,2002,(S1):155-159.
    16.甘丽萍,王生荣. RAPD标记在植物病原真菌遗传多样性及生理分化研究中的应用[J].甘肃农业大学学报,2004,(1):72-76.
    17.关强,张月学,徐香玲,等. DNA分子标记的研究进展及几种新型分子标记技术[J].黑龙江农业科学,2008,(1):102-104.
    18.郭爱国,刘颖超,王焕如,等.十八个小麦品种(系)抗叶锈基因的推导[J].华北农学报,1991,(S1):109-114.
    19.韩冰,曹远银,蔺瑞明,等.分子标记技术在小麦条锈菌研究中的应用[J].中国科技信息,2006a,(7):126-128.
    20.韩冰,蔺瑞明,曹远银,等.小麦条锈菌DNA提取方法的比较研究[J].中国农学通报,2006b,(4):81-83.
    21.惠东威,陈受宜. RAPD技术及其应用[J].生物工程进展,1992,(6):1-5+27.
    22.何中虎,兰彩霞,陈新民,等.小麦条锈病和白粉病成株抗性研究进展与展望[J].中国农业科学,2011b,44(11):2193-2215.
    23.何中虎,夏先春,陈新民,等.中国小麦育种进展与展望[J].作物学报,2011a,37(2):202-215.
    24.何中虎,夏先春,罗晶,等.国际小麦育种研究趋势分析[J].麦类作物学报,2006,(2):154-156.
    25.黄丽丽,欣丽,康振生,等.紫外线诱导小麦条锈菌毒性突变及突变体的RAPD分析[J].菌物学报,2005,24(3):400-406.
    26.贾举庆,雷孟平,刘成,等.小麦抗条锈基因Yr17的新SCAR标记的建立与应用[J].麦类作物学报,2010,(1):11-16.
    27.贾瑞祥.中国小麦条锈菌主要流行小种DNA多态性分析[D].中国农业大学硕士论文,2005.
    28.姜玉英,金星,谈孝凤,等.黔西部小麦条锈病菌越夏考察初报[J].植物保护,2007,(1):133-134.
    29.金善宝.中国小麦学[M].北京:中国农业出版社,1996,955.
    30.康振生,曹丽华,郑文明,等.小麦条锈菌条中29号生理小种SCAR检测标记的建立[J].西北农林科技大学学报(自然科学版),2005,(5):53-56.
    31.李川,刘海英,范永山,等.植物病原真菌群体遗传学研究进展[J].河北农业大学学报,2003,(S1):177-179.
    32.李峰奇,韩德俊,魏国荣,等.黄淮麦区126个小麦品种(系)抗条锈病基因的分子检测[J].中国农业科学,2008,(10):3060-3069.
    33.李峰奇,韩德俊,魏国荣,等.黄淮麦区小麦品种Lr37-Yr17-Sr38基因簇的分子检测[J].西北农林科技大学学报(自然科学版),2009,(3):151-158.
    34.李明菊.云南省小麦条锈病流行体系的研究现状[J].植物保护,2004,(3):30-33.
    35.李裕.中国小麦起源与远古中外文化交流[J].中国文化研究,1997,(3):51-58.
    36.李振岐,康振生.我国小麦抗条锈病育种研究进展[A].小麦遗传育种国际学术讨论会[C],中国河南郑州,2001,7.
    37.李振岐,曾士迈.中国小麦锈病[M].北京:中国农业出版社,2002.
    38.刘婷岚.云贵川小麦条锈菌群体毒性及DNA多态性分析[D].四川农业大学硕士论文,2011.
    39.刘太国,王保通,贾秋珍,等.2010-2011年度我国小麦条锈菌生理专化研究[J].麦类作物学报,2012,32(185):574-578.
    40.刘学敏,杨建华,吕军,等. RAPD技术在检测植物病原真菌遗传多样性中的应用[J].东北农业大学学报,1997,(1):99-102.
    41.陆宁海,詹刚明,王建锋,等.我国小麦条锈菌体细胞遗传重组的分子证据[J].植物病理学报,2009.39,(6):561-568.
    42.陆师义,范桂芳,謝淑敏,等.小麦条绣病研究——Ⅰ.小麦条锈菌的专化性研究[J].植物病理学报,1956,(2):153-166+213-214.
    43.马占鸿,石守定,姜玉英,等.基于GIS的中国小麦条锈病菌越夏区气候区划[J].植物病理学报,2004,(5):455-462.
    44.马占鸿,石守定,王海光,等.我国小麦条锈病菌既越冬又越夏地区的气候区划[J].西北农林科技大学学报(自然科学版),2005,(S1):11-13.
    45.牛永春,乔奇,吴立人.豫鲁皖三省重要小麦品种抗条锈基因推导[J].植物病理学报,2000,(2):122-128.
    46.邱永春,张书绅,刘永丽.北方麦区120个小麦品种抗秆锈病基因的推导[J].沈阳农业大学学报,1999,(3):231-234.
    47.曲若竹,侯林,吕红丽,等.群体遗传结构中的基因流[J].遗传,2004,(3):377-382.
    48.全国农业技术推广服务中心,西北农林科技大学. GB/T15795-2011.小麦条锈病测报技术规范.In.:国家质检总局,2011.
    49.商鸿生,井金学,李振岐.紫外线诱导小麦条锈菌毒性突变的研究[J].植物病理学报,1994,24(4):47-351.
    50.沈丽,罗林明,陈万权,等.四川省小麦条锈病流行区划及菌源传播路径分析[J].植物保护学报,2008,(3):220-226.
    51.石守定.基于GIS的小麦条锈病菌越夏越冬气候区划及时空动态分析[D].中国农业大学硕士论文,2004.
    52.石守定,马占鸿,王海光,等.应用GIS和地统计学研究小麦条锈病菌越冬范围[J].植物保护学报,2005,(1):29-32.
    53.唐立群,肖层林,王伟平. SNP分子标记的研究及其应用进展[J].中国农学通报,2012,28(12):154-158.
    54.万安民.小麦条锈病的发生状况和研究现状[J].世界农业,2000,(5):39-40.
    55.万安民.小麦条锈菌鉴别寄主和小种命名现状[J].植物病理学报,2003,(6):481-486.
    56.万安民,牛永春,徐世昌,等.持久抗条锈病小麦品种抗性特点及其在我国的利用价值[J].作物学报,2000,(6):751-5.
    57.万安民,吴立人,金社林,等.中国小麦条锈菌条中32号的命名及其特性[J].植物保护学报,2003a,(4):347-352.
    58.万安民,吴立人,贾秋珍,等.1997~2001年我国小麦条锈菌生理小种变化动态[J].植物病理学报,2003b,(3):261-266.
    59.汪可宁,洪锡午,司权民,等.我国小麦条锈菌生理专化研究[J].植物保护学报,1963,(1):23-36.
    60.汪可宁.1982、1983年我国小麦条锈菌生理小种鉴定结果简报[J].植物保护,1984,(2):4-5.
    61.王凤乐,吴立人,万安民,等.陕甘川重要小麦品种抗条锈基因分析[J].作物学报,1994a,(5):589-594.
    62.王凤乐,吴立人,谢水仙,等.我国小麦重要抗源材料抗条锈基因推导及其成株抗病性分析[J].植物病理学报,1994b,(2):175-180.
    63.王凤乐,吴立人,谢水仙.小麦抗锈基因分析方法[J].世界农业,1993,(1):36-38.
    64.王海光,杨小冰,马占鸿.基于HYSPLIT-4模式的小麦条锈病菌远程传播研究[J].中国农业大学学报,2010,(5):55-64.
    65.王云生,黄宏文,王瑛.植物分子群体遗传学研究动态[J].遗传,2007,(10):1191-1198.
    66.王志林,赵树进,吴新荣.分子标记技术及其发展[J].生命的化学,2002,(1):39-42.
    67.王中强,邱少富,王勇,等.多位点序列分型技术及其研究进展[J].军事医学科学院院刊,2010,(1):76-79.
    68.魏国荣,韩德俊,赵杰,等.小麦成株期抗条锈病种质筛选与评价[J].麦类作物学报,2011,31(178):376-381.
    69.吴立人.1989、1990年小麦条锈菌生理小种监测结果简报[J].植物保护,1991a,(3):22-23.
    70.吴立人.1990年小麦条锈菌生理小种监测结果总结[J].植物病理学报,1991b,(4):28.
    71.吴立人,袁文焕,宋位中.1991年小麦条锈菌生理小种监测结果简报[J].植物病理学报,1993,(1):50.
    72.吴立人,杨华安,陶碧华,等.小麦条锈菌新小种流行预测研究[J].中国农业科学,1991,(5):59-63.
    73.吴谡琦,张进兴,洪旭光,等.分子标记技术的进展及其应用[J].高技术通讯,2001,(4):99-103.
    74.吴志浩,张贵友.浅析溯祖理论[J].生物学通报,2003,(10):14-16.
    75.夏先全,姚革,刘正德,等.四川省常规小麦品种抗条锈基因推导初报[J].西南农业学报,2005,(4):422-426.
    76.肖悦岩,吴立人,胡家怀,等.小麦条锈菌生理小种动态预测[J].植物保护学报,2007,(3):257-262.
    77.谢水仙,陈万权,陈扬林,等.陇南和阿坝地区小麦条锈菌传播的研究[J].植物病理学报,1992,(2):137-143.
    78.谢水仙,汪可宁,陈扬林,等.我国小麦条锈病菌传播与高空气流关系的初步研究[J].植物病理学报,1993,23(3):203-209.
    79.谢水仙,万安民,吴立人,等.甘肃陇南小麦秋苗条锈病传播的研究[J].植物保护,1994,(5):6-8.
    80.修启鹤.小议云南冬夏季风风向差异[J].地理教育,2001,(2):40.
    81.徐乃瑜.小麦的分类、起源与进化[J].武汉植物学研究,1988,(2):187-194.
    82.杨金华,于亚雄,程耿,等.云南铁壳麦研究进展[J].植物遗传资源学报,2005,(4):478-481.
    83.杨世诚,冉云.云南省小麦条锈病综合防治途径初探[J].云南农业科技,1982,(1):9-16.
    84.杨世诚,冉云.云南省小麦条锈菌越夏规律的调查研究[J].中国农业科学,1986,(2):72-77.
    85.袁军海,刘太国,陈万权.中国47个小麦新品种(系)苗期抗叶锈基因推导[J].中国农业科学,2007,(9):1925-1935.
    86.曾士迈,张美蓉.小麦条锈病大区流行的模型模拟[J].北京农业大学学报,1990,(S1):151-162.
    87.詹刚明,王建锋,王晓杰,等.中国小麦条锈菌生理小种演化及遗传重组[J].中国农业科学,2011,(9):1815-1822.
    88.章振羽,姬红丽,沈丽,等.四川58个小麦品种苗期抗条锈基因推导及成株期抗性表现[J].植物保护学报,2012,(1):13-23.
    89.赵杰,张宏昌,姚娟妮,等.中国小麦条锈菌转主寄主小檗的鉴定[J].菌物学报,2011,(6):895-900.
    90.郑殿升.谈谈中国小麦的起源[J].种子世界,1988,(5):15-16.
    91.郑文明,康振生,蒋士君,等.小麦条锈菌分子生态学研究进展[J].应用生态学报,2008,(3):681-685.
    92.郑文明,刘峰,康振生,等.中国小麦条锈菌主要流行菌系的AFLP指纹分析[J].自然科学进展,2000,(6):54-59.
    93.中国农业科学院植物保护研究所. NY/T1443.1-2007.小麦抗病虫性评价技术规范第1部分:小麦抗条锈病评价技术规范. In.:行业标准-农业.,2007.
    94.周金玉,李明菊,吕建平.中国小麦条锈病初菌源基地的推论[A].(中国植物保护学会2006年学术年会)科技创新与绿色植保[C].北京:中国农业科技出版社,2006,141-146.
    95.周阳,何中虎,张改生,等.1BL/1RS易位系在我国小麦育种中的应用[J].作物学报,2004,(6):531-535.
    96.周益林,段霞瑜,陈刚,等.40个小麦优良品种资源的抗白粉病基因推导[J].植物病理学报,2002,(4):301-305+318.
    97.朱小琼.中国核果及仁果褐腐病菌的种类鉴定及分子系统发育[D].中国农业大学博士学位论文,2010.
    98.祝雯,詹家绥.植物病原物的群体遗传学[J].遗传,2012,(2):157-166.
    99.庄巧生.中国小麦品种改良及系谱分析[M].北京:中国农业出版社,2003,83-94.
    100. Allison C, and Isenbeck K. Biologische specialisierung von Puccinia glumarum tritici Erikss. undHenn[J]. Phytopathology,1930,(Z2):87-98.
    101. Amin K P, Colin R W, Harbans S B, et al. Evaluation of seedling and adult plant resistance inEuropean wheat cultivars to Australian isolates of Puccinia striiformis f. sp. tritici [J]. Euphytica,2008,163:283-301.
    102. Aylor D L, Price E W, and Carbone I. SNAP: Combine and Map modules for multilocuspopulation genetic analysis[J]. Bioinformatics,2006,22:1399-1401.
    103. Bahri B, Leconte M, De Vallavieille-Pope C, et al. Cost of virulence: Case of Puccinia striiformis f.sp. tritici[J]. Phytopathology,2007,97: S6-S7.
    104. Beaty T H, Fallin M D, Hetmanski J B, et al. Haplotype diversity in11candidate genes across fourpopulations[J]. Genetics,2005,171:259-267.
    105. Broders K D, Woeste K E, San Miguel P J, et al. Discovery of single-nucleotide polymorphisms(SNPs) in the uncharacterized genome of the ascomycete Ophiognomoniaclavigignenti-juglandacearum from454sequence data[J]. Molecular Ecology Resources,2011,11:693-702.
    106. Brown J K M,&Hovm ller M S. Aerial dispersal of pathogens on the global and continentalscales and its impact on plant disease[J]. Science,2002,297:537-541.
    107. Carbone I, and Kohn L M. A method for designing primer sets for speciation studies in filamentousascomycetes [J]. Mycologia,1999,91:553-556.
    108. Chen W Q, Wu L R, Liu T G, et al.. Race Dynamics, Diversity, and Virulence Evolution inPuccinia striiformis f. sp. tritici, the Causal Agent of Wheat Stripe Rust in China from2003to2007[J]. Plant Disease,2009,93:1093-1101.
    109. Chen X M, Line R F, Leung H. Relationship between virulence variation and DNA polymorphismin Puccinia striiformis[J]. Phytopathology,1993,83:1489-1497.
    110. Chen X M, Line R F, and Leung H. Virulence and polymorphic DNA relationships of Puccniastriiformis. f. sp. hordei to other rusts[J]. Phytopathology,1995,85(11):1335-1342.
    111. Chen X M, Moore M, Milus E A, et al.. Wheat stripe rust epidemics and races of Pucciniastriiformis f. sp. tritici in the United States in2000[J]. Plant Disease,2002,86:39-46.
    112. De Vallavieille-Pope C, Ali S, Leconte M, et al. Virulence Dynamics and Regional Structuring ofPuccinia striiformis f. sp tritici in France Between1984and2009[J]. Plant Disease,2012,96:131-40.
    113. Duan X Y, Tellier A,Wan A M, et al. Puccinia striiformis f. sp. tritici presents high diversity andrecombination in the oversummering zone of Gansu, China[J]. Mycology,2010,102:44-53.
    114. Dubin H J, Johnson R, Stubbs R W. Postulated genes for resistance to stripe rust in selectedCIMMYT and related wheat [J]. Plant Disease,1989,73(6):472-475.
    115. Enjalbert J, Duan X, Giraud T, et al. Isolation of twelve microsatellite loci, using an enrichmentprotocol, in the phytopathogenic fungus Puccinia striiformis f. sp. tritici[J]. Molecular EcologyNotes,2002,2:563-565.
    116. Eriksson J. Uber die Spezialisierung des Parasitismus beiden Getreiderostpilzen[J]. BerichtederDeutschen Botanischen Gesellschaft,1894,12:292-331.
    117. Eriksson, J, and Henning, E. Die Getreideroste. Nortstedt&S ner, Stockholm.1896.
    118. Excoffier L, Laval G, and Schneider S. Arlequin ver.3.0: An integrated software package forpopulation genetics data analysis[J]. Evolutionary Bioinformatics. Online,2005,1:47-50.
    119. Fang C T. Physiologic specialization of Puccinia glumarum Erikss and Henn. In China[J].Phytopathology,1944,34:1020-1024.
    120. Feng J, Zhang Z Y, Lin R M, et al. Postulation of Seedling Resistance Genes in20Wheat Cultivarsto Yellow Rust (Puccinia striiformis f. sp. tritici). Agricultural Sciences in China,2009,8:1429-1439.
    121. Flor H H. Current status of the gene-for-gene concept[J]. Annual Review Phytopathology,1971,275-296.
    122. Frank S A. Coevolutionary geneticsof plants and pathogens[J]. Evolutionary Ecology,1993,7,(1):45-75.
    123. Fu Y X, and Li W H. Statistical tests of neutrality of mutations[J]. Genetics,1993,133:693-709.
    124. Fu Y X. Statistical tests of neutrality of mutations against population growth, hitchhiking, andbackground selection[J]. Genetics,1997,147:915-925.
    125. Fuchs E. Physiologische Rassen bei Gelbrost (Puccinia glumarum (Schm.) Erikss. et Henn.) aufweizen. Nachrbl. Dtsch. Pflanzenschutzd[J]. Braunschw,1960,12:49-63.
    126. Fuckel L. Enumeratio fungorum Nassovia. Jahrb. Ver. Naturk. Herzogth[J]. Nassau,1860,15:9.
    127. Gassner G,&Straib W. Experimentelle Unterschungen über das Verhalten der Weizen-sortengegen Puccinia glumarum[J]. Phytopathology,1929, z1:215-275.
    128. Gassner G,&Straib W. Weitere Untersuchungen über biologische Rassen und über dieSpezialisierungsverh ltnisse des Gelbrosts Puccinnia glumarum (Schm.,Erikss. Und Henn.)Arabian Biology Abstract.(Anst-Rerchsamst). Berlin,1932,21:121-145.
    129. Gassner G, and Straib W. Die Bestimmung der Biologischen Rassen des Weizengelbrostes[Puccinia glumarum tritici (Schmidt). Erikss. u. Henn.][J]. Arabian Biology Reichsanst.Land-Forstwirtsch.1932,20:141-163.
    130. Hartl D L and Clark A G. Principles of Population Genetics,3rded. Sinauer Associates, Inc.,Sunderland, M A.1997.
    131. Hassebrauk, K. Nomenklatur, geographische Verbreitung und Wirtsbereich des Gelbrostes,Puccinia striiformis West [J]. Mitt. Biology Bundesanst. Land-Forstwirtsch. Berlin-Dahl.1965,116:1-75.
    132. Helyar S J, Hemmer-Hansen J, Bekkevold D, et al. Application of SNPs for population genetics ofnonmodel organisms: new opportunities and challenges[J]. Molecular Ecology Resources,2011,11(S1):123-136.
    133. Hovm ller M S. Sources of seedling and adult plant resistance to Puccinia striiformis f. sp. triticiin European Wheats [J]. Plant Breeding,2007,126:225-233.
    134. Hovmoller M S, Justesen A F, Brown J K M. Clonality and long-distance migration of Pucciniastriiformis f. sp. tritici in north-west Europe[J]. Plant Pathology,2002,51:24-32.
    135. Hungerford C W, and Owens C E. Specialized varieties of Puccinia glumarum and hosts forvariety tritici[J]. Journal of Agricultural Resourses (Washington D C),1923,25:363-401.
    136. Hylander N, J rstad I, and Nanfeldt J A. Enumeratio uredionearum Scandinavicarum[J]. OperaBotanica,1953,1:1-102.
    137.2013-4-22取自http://baike.baidu.com/view/955108.htm
    138.2013-4-17取自http://baike.baidu.com/view/996084.htm
    139.2012-3-6取自http://www.ncbi.nlm.nih.gov/nucleotide
    140.2013-3-20取自http://image.baidu.com
    141.2013-3-25取自http://baike.baidu.com/view/41483.htm
    142. Hu X P, Li J J, Wang Y T, et al.. Race Composition of Puccinia striiformis f. sp. tritici in Tibet,China[J]. Plant Disease,2012,96:1615-1620.
    143. Hudson R R, Kreitman M, Aguade M. A test of neutral molecular evolution based on nucleotidedata[J]. Genetics,1987,116(1):153-159.
    144. Inuma T, Khodaparast S A, and Takamatsu S. Multilocus phylogenetic analyses within Blumeriagraminis, a powdery mildew fungus of cereals[J]. Molecular Phylogenetics Evolution,2007,44:741-751.
    145. Jin Y, Szabo L J, and Carson M. Century-old mystery of Puccinia striiformis life history solvedwith the identification of Berberis an an alternate host [J]. Phytopathology,2010,100(5):432-435.
    146. Jin Y. Role of Berberis spp. as alternate hosts in generating new races of Puccinia graminis and P.Striiformis[J]. Euphytica,2011,179(1):105-108.
    147. Johnson R, Priestley R H, Taylor E C. Occurrence of virulence in Puccinia striiformis for compairwheat in England[J]. Cereal Rust Bulletin,1978,6:11-13.
    148. Johnson R, Stubbs R W, Fuchs E, Chamberlain N H. Nomenclature for physiologic races ofPuccinia striiformis infecting wheat[J]. Transactions British Mycological Society,1972,58(3):475-480.
    149. Justesen A F, Ridout C J,&Hovmoller M S. The recent history of Puccinia striiformis f. sp. triticiin Denmark as revealed by disease incidence and AFLP markers[J]. Plant Pathology,2002,51:13-23.
    150. Kerry O D, Todd J W, Dereje A, et al. Multilocus genotyping and molecular phylogenetics resolvea novel head blight pathogen within the Fusarium graminearum species complex from Ethiopia[J].Fungal Genetics and Biology,2008,45:1514-1522.
    151. Kimura M. The Neutral Theory of Molecular Evolution[M]. Cambridge: Cambridge UniversityPress,1983.
    152. Kimura M. Theoretical foundation of population genetics at the molecular level [J]. Theory ofPopulation Biology,1971,2(2):174-08.
    153. Kingman J F C. On the genealogy of large populations [J]. Journal of Applied Probability,1982,19A:27-43.
    154. Kingman J F C. The coalescent[J]. Stochastic Processes and Their Applications,1982,13(3):235-248.
    155. Kolmer J A. Tracking wheat rust on a continental scale [J]. Current Opinion Plant Biology,2005,8(4):441-449.
    156. Line, R.F. Stripe rust of wheat and barley in North America: a retrospective historical review [J].Annual Review Phytopathology,2002,40:75-118.
    157. Little R. Master of Science Thesis[D]. University of Southampton.1965.
    158. Liu M, Hambleton S. Taxonomic study of stripe rust, Puccinia striiformis sensu lato, based onmolecular and morphological evidence[J]. Fungal Biology,2010,114(10):881-899.
    159. Liu X F, Huang C, Sun Z Y, et al. Analysis of population structure of Puccinia striiformis inYunnan Province of China by using AFLP[J]. European Journal Plant Pathology,2011,129:43-55.
    160. Lu N H, Zheng W M, Wang J F, et al. SSR Analysis of Population Genetic Diversity of Pucciniastriiformis f. sp. tritici in Longnan Region of Gansu, China[J]. Scientia Agricultural Sinica,2009,42(8):2763-2770.
    161. Lynch M. Estimation of relatedness by DNA fingerprinting[J]. Molecular Biology Evolution,1988,5:584-599.
    162. Ma J X, Zhou R H, Dong Y S, et al. Molecular mapping and detection of the yellow rust resistancegene Yr26in wheat transferred from Triticum turgidum L. using microsatellite markers [J].Euphytica,2001,120:219-226.
    163. Mboup M, Leconte M, Gautier A, et al. Evidence of genetic recombination in wheat yellow rustpopulations of a Chinese oversummering area[J]. Fungal Genetics and Biology,2009,46:299-307.
    164. McIntosh R A. A catalogue of gene symbols for wheat [C]. Sakamoto S(ed). Proceedings of SixthInternational Wheat Genetics Symposium, Kyoto, Japan,1983,1197-1255.
    165. Milus E A, Kristensen K,&Hovm ller M S. Evidence for increased aggressiveness in a recentwidespread strain of Puccinia striiformis f. sp. tritici causing stripe rust of wheat [J].Phytopathology,2009,99:89-94.
    166. Niklaus J, Grünwald, and Erica M. Goss. Evolution and Population Genetics of Exotic andRe-Emerging Pathogens: Novel Tools and Approaches[J]. Annual Review Phytopathology,2011,49:249-267.
    167. Ochoa J B, Danial D L, Paucar B. Virulence of wheat yellow rust races and resistance genes ofwheat cultivars in Ecuador [J]. Euphytica,2007,153:287-293.
    168. Parks R, Carbone I, Murphy J P, et al. Population genetic analysis of an Eastern U.S. wheatpowdery mildew population reveals geographic subdivision and recent common ancestry with U.K.and Israeli populations[J]. Phytopathology,2009,99(7):840-849.
    169. Patrícia H B, Scott V E. Multilocus phylegeography and phylogenetics using sequence-basedMarker[J]. Genetics,2009,135:439-455.
    170. Prashar M, Bhardwaj S C, Jain S K, et al. Pathotypic evolution in Puccinia striiformis in Indiaduring1995-2004[J]. Australian Journal Agricultural Resourses,2007,58:602-604.
    171. Price E W, and Carbone I. SNAP: Workbench management tool for evolutionary populationgenetic analysis [J]. Bioinformatics,2004,21:402-404.
    172. Rajaram S, Mann C E, Ortiz-Ferrera G, et al. Adaptation, stability and high yield potential ofcertain1B/1R CIMMYT wheats. Proceedings of Sixth International Wheat Genetics Symposium,Kyoto, Japan.1983,613-621.
    173. Rosenberg N A, and Nordborg M. Genealogical trees, coalescent theory and the analysis of geneticpolymorphisms[J]. Natural Review Genetics,2002,3:380-390.
    174. Rozas J, Sanchez-Delbarrio J C, Messeguer X, et al. DnaSP, DNA polymorphism analyses by thecoalescent and other methods [J]. Bioinformatics,2003,19:2496-2497.
    175. Parks R, Carbone I, Murphy J P, et al. Population Genetic Analysis of an Eastern U.S. WheatPowdery Mildew Population Reveals Geographic Subdivision and Recent Common Ancestry withU.K. and Israeli Populations[J]. Phytopathology,2009,99(7):840-849.
    176. Schmidt J K. Allgemeine konomisch-technische Flora oder Abbildungen und Beschreibungenaller in bezug auf konomie und Technologie, merkwürdigen Gew chse[J]. Jena, Germany,1827,I:27.
    177. Sharma S, Louwers J M, Karki C B, et al. Postulation of resistance genes to yellow rust in wildemmer wheat derivatives and advanced wheat lines from Nepal [J]. Euphytica,1995,81:271-277.
    178. Sharma-Poudyal D, Chen X. Virulence diversity of international collections of the wheat stripe rustpathogen, Puccinia striiformis f. sp. tritici [J]. Phytopathology,2011,101(6): S164.
    179. Shewry P R. Wheat[J]. Journal of Experimental Botany,2009,60:1537-1553.
    180. SNAP Clade and Matrix, Version2. Distributed over the Internet. Department of Plant Pathology,North Carolina State University, Raleigh.
    181. Steele K A, Humpphreys E, Welling C R, et al. Support for a stepwise mutation model forpathogen evolution in Australasian Puccinia striiformis f. sp. tritici by the use of molecularmarkers[J]. Plant Pathology,2001,50:174-180.
    182. Stubbs R W. Disease, distribution, epidemiology, and control. Stripe rust. In Cereal rusts. Vol.II[M]. Edited by A P Roelfs and W R Bushnell. New York: Academic Press,1985,61-101.
    183. Tajima F. Evolutionary relationship of DNA sequences in the infinite populations[J]. Genetics,1983,105(2):437-460.
    184. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism[J].Genetics,1989,123(3):585-595.
    185. Wan A M, Chen X M, He Z H. Wheat stripe rust in China [J]. Australian Journal of AgriculturalResearch,2007,58(6):605-619.
    186. Watterson G A. On the number of segregating sites in genetical models without recombination[J].Theory Population Biology,1975,7(2):256-276.
    187. Wellings C R. Specialization of the Wheat Stripe Rust Pathogen (Puccinia striiformis f. sp. tritici)in Australia and New-Zealand in1990and1991[J]. Australian Plant Pathology,1995,24:202-208.
    188. Westendorp G D. Quatrième notice sur quelques Crypto-games récemment découvertes enBelgique[J]. Bulletin Academie Royale Science Belgique,854,21:229-246.
    189. Wright S I, Gaut B S. Molecular population genetics and the search for adaptive evolution inplants[J]. Molecular Biology Evolution,2005,22(3):506-519.
    190. Zadoks J C. Yellow rust on wheat: studies in epidemiology and physiologic specialization [J].Tijdschrift over Plantenziekten,1961,67(3):69-256.
    191. Zeller F J. IB/IR wheat rye chromosome substitutions and translocation[C]. Proceeding of fourthInternational Genetics Symposium, Columbia, America.1973,209-222.
    192. Zeng S M,&Luo Y. Systems analysis of wheat stripe rust epidemics in China [J]. EuropeanJournal of Plant Pathology,2008,121:425-438.
    193. Zeng S M, Luo Y. Long-distance spread and interregional epidemics of wheat stripe rust in China[J]. Plant Disease,2006,90:980-988.
    194. Zhan G M, Zhuang H, Wang F P, et al. Population genetic diversity of Puccinia striiformis f. sp.tritici on different wheat varieties in Tianshui, Gansu province [J]. World Journal of Microbiologyand Biotechnology,2013,29(1):173-181.
    195. Zhao J, Wang L, Wang Z, et al. Identification of Eighteen Berberis Species as Alternate Hostsof Puccinia striiformis f. sp. tritici and Virulence Variation in the Pathogen Isolates from NaturalInfection of Barberry Plants in China[J]. Phytopathology,2013Mar20.[Epub ahead of print]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700