几个重要小麦品种(系)全生育期抗条锈病基因的遗传分析和分子作图
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦条锈病是由条锈菌(Puccinia striiformis f.sp.tritici)引起的世界性小麦病害之一。在美国,该病害在西部地区危害最严重,近年来在中南部地区的危害亦呈上升趋势。我国小麦条锈病主要发生在西北、西南、华北和黄淮海等地的冬麦区和春麦区。1950、1964、1990和2002年4次全国范围内大流行分别给我国小麦生产造成60、32、18和13亿公斤的产量损失。培育和种植抗病品种是防治该病最经济、有效和对环境安全的措施,但是目前仅有极少数全生育期抗条锈病基因对美国和中国的小麦条锈菌流行小种表现抗病性。因此,发掘新的、高品位的抗条锈病基因,利用其与其它有效抗条锈病基因聚合培育高水平的、持久抗病性品种,对于增加小麦抗条锈病基因丰富度,减轻病原菌选择压力,实现小麦条锈病的可持续控制具有重要意义。
     小麦品种PI 181434,来源于Afghanistan,从2004至2009年在美国华盛顿州东部和西部小麦条锈病田间自然诱发病圃中均表现高度抗病;Libellula和N.Strampelli均来源于Italy,在我国甘肃陇南小麦条锈病常发易变区大面积种植30余年抗病性至今依然很稳定;小麦-华山新麦草易位系H9020-1-6-8-3对我国目前小麦条锈菌流行小种均表现抗病。为了发掘和利用这几个重要小麦品种(系)的抗条锈病基因,本研究对其分别进行了遗传分析和分子标记。主要取得了以下结果:
     1.小麦品种PI 181434苗期对美国小麦条锈菌重要生理小种PST-17、PST-37、PST -43、PST-45、PST-78、PST-100和PST-127均表现高度抗病。AVS/PI 181434 F2和F3代遗传分析结果表明,PI 181434对PST-100和PST-127的抗病性由1对相同的显性基因控制。利用103个F2代单株构建作图群体,共筛选到8个与抗病基因连锁的多态性RGAP标记Xwgp111、Xwgp112、Xwgp113、Xwgp114、Xwgp115、Xwgp116、Xwgp117、Xwgp118和2个SSR标记Xwmc656、Xbarc6,遗传距离从4.8到32.1cM。应用21个中国春缺四体、2个3D端体和RGAP标记Xwgp114以及2个SSR标记Xwmc656、Xbarc6将PI 181434的全生育期抗条锈病基因定位于小麦3DL染色体。由于这是第一个定位于小麦3DL的抗条锈病基因,因此,已被命名为Yr45。Yr45侧翼的2个RGAP标记Xwgp115和Xwgp118在美国45个小麦基因型中的多态性分别为73.3%和82.2%。并且在8个含有Xwgp115和Xwgp118标记的小麦基因型中均鉴定出了SNPs。这些RGAP标记和SNPs标记将有助于将Yr45导入小麦品种或与其它抗病基因聚合培育持久抗病性品种。
     2.持久抗病性小麦品种Libellula苗期除对弱毒菌系CYR29-mut3表现抗病,对Su11-4表现中抗-中感外,对其余当前流行小种CYR29、CYR30、CYR31、CYR32、CYR33和Su11-11均表现感病。铭贤169/Libellula杂交F1、F2及BC1代遗传分析结果表明,Libellula苗期对CYR29-mut3的抗病性由1对隐性基因控制。基因显隐性及等位性分析表明,Libellula控制对CYR29-mut3抗病性的基因不同于已知抗病基因Yr3。
     N. Strampelli苗期对我国小麦条锈菌流行小种CYR29、CYR29-mut3、CYR30、CYR31、CYR33、Su11-4和Su11-11等表现抗病,对CYR32表现中抗-中感。N.Strampelli/铭贤169和N.Strampelli/中国春杂交F1、F2、F3及BC1代遗传分析结果表明,N.Strampelli对CYR29和CYR31的抗病性由2对隐性基因累加作用控制,对CYR29-mut3和CYR33的抗病性分别由1对不同的隐性基因控制,暂命名为YrN.S-1和YrN.S-2。利用中国春单体分析和SSR分子标记,将控制对CYR29-mut3抗病性的基因YrN.S-1和控制对CYR33抗病性的基因YrN.S-2分别定位于小麦5BL和1BL染色体。应用3个与抗病基因连锁的SSR标记Xgwm499、Xwmc415和Xwmc537构建了YrN.S-1的遗传连锁图,遗传距离分别为7.6、5.4和10.7cM;4个SSR标记Xcfa2147、Xgwm124、Xwmc719和Xwmc44构建了YrN.S-2的遗传连锁图,遗传距离分别为11.3、4.6、3.2和5.7 cM。对已知定位于小麦5BL和1BL染色体的抗条锈病基因抗病性检测及分子标记检测结果表明,YrN.S-1和YrN.S-2很可能是2个不同于这些已知基因的新基因,建议在小麦抗条锈病育种加以合理利用。
     3. H9020-1-6-8-3苗期对我国小麦条锈菌重要生理小种CYR25、CYR29、CYR29 -mut3、CYR30、CYR31、CYR32、CYR33、Su11-4、Su11-11均表现抗病。抗病基因供体亲本华山新麦草和受体亲本7182抗病性分析表明,H9020-1-6-8-3的抗条锈病基因来自华山新麦草。铭贤169/H9020-1-6-8-3杂交F2和F3代遗传分析结果表明,H9020-1-6-8-3对CYR33的抗病性由1对显性基因控制,暂命名为YrH9020。利用其中164个F2代抗感单株构建作图群体,从300对SSR引物中共筛选到3个与YrH9020连锁的SSR分子标记Xgwm 261、Xwmc503和Xgwm102,遗传距离分别为8.9、7.0和11.2cM,并将其定位于小麦2DS染色体。目前已知定位于2DS染色体的抗病基因仅有Yr16,抗病性及基因来源分析表明,YrH9020是1个不同于Yr16的新基因。目前,华山新麦草的抗条锈病基因还没有在小麦抗条锈病育种中得到广泛应用,本研究对于其抗条锈病遗传规律的明确以及分子标记的获得,必将有助于其在小麦抗条锈病育种的应用和进行分子标记辅助选择育种。
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is a major disease of wheat (Triticum aestivum L.) worldwide. In the US, the disease is most destructive in the western states and has become increasingly important in the south-central states in the past decade. In China, stripe rust is also the most important disease on winter and spring wheat in northwestern, southwestern, huabei and huanghuaihai regions. Estimated losses of 6.0, 3.2, 1.8 and 1.3 million metric tons of wheat occurred in 1950, 1964, 1990 and 2002 nationwide stripe rust epidemics, respectively. Growing resistant cultivars is the most effective approach to control the disease, but only few genes are available conferring effective all-stage resistance against the current populations of the pathogen worldwide. It is urgent to identify new genes for diversifying resistance genes and pyramiding genes for different types of resistance in order to achieve high-level and durable resistance for sustainable control of stripe rust.
     The common spring wheat genotype PI 181434, originally from Afghanistan, was resistant in germplasm screening nurseries planted in eastern and western Washington from 2004 to 2009. Wheat varieties Libellula and N. Strampelli, which were introduced to China from Italy in 1974, have been widely grown for more than 30 years in the Longnan region of Gansu Province, where stripe rust epidemics are frequent and severe. Although many virulence changes have occurred in the region over the past 35 years, the varieties are still resistant. The wheat-P. huashanica translocation line H9020-1-6-8-3 is also resistant to most of Chinese predominant PST races. The objectives of this study were to identify and map the gene(s) for all-stage resistance in these cultivars (lines) using genetic analysis and molecular markers. The main results gained are as follows:
     1. PI 181434 was resistant to all tested races of U.S. P. striiformis f. sp. tritici, PST-17, PST-37, PST-43, PST-45, PST-78, PST-100 and PST-127. The genetic study of F2 and F3 derived from AVS/ PI 181434 showed that PI 181434 has a single dominant gene conferring all-stage resistance to PST-100 and PST-127. A linkage map of 8 RGAP markers, Xwgp111, Xwgp112, Xwgp113, Xwgp114, Xwgp115, Xwgp116, Xwgp117, Xwgp118 and 2 SSR markers, Xwmc656 and Xbarc6, was constructed for the gene using the 103 F2 plants. The genetic distance rang from 4.8 to 32.1cM. Amplification of the complete set of nulli-tetrasomic lines and selected ditelosomic lines of Chinese Spring with an RGAP marker and the two SSR markers mapped the gene on chromosome 3DL. Because it is the first gene for stripe rust resistance mapped on 3DL, and different from all previously named Yr genes, the gene in PI 181434 was designated as Yr45. Polymorphism rates of the two closest flanking markers, Xwgp115 and Xwgp118, in 45 wheat genotypes were 73.3% and 82.2%, respectively. Single nucleotide polymorphisms (SNPs) were identified in the eight wheat genotypes sharing both flanking markers. The RGAP markers and potential SNP markers should be useful in incorporating the gene into wheat cultivars and pyramiding with other genes for durable resistance.
     2. In the seedling tests, Libellula was susceptible to most of prevalent races except resistant to CYR29-mut3 and moderately resistant to moderately susceptible to Su11-4. The resistance to CYR29-mut3 was controlled by one recessive gene. Gene property and allelic analysis showed that the gene is different from known resistance gene Yr3.
     N. Strampelli was resistant to CYR29, CYR29-mut3, CYR30, CYR31, CYR33, Su11-4, Su11-11, and moderately resistant to moderately susceptible to CYR32. The inheritance results of F1, F2, F3 and BC1 seedling progenies derived from the cross N. Strampelli /Mingxian 169 and N. Strampelli/ Chinese Spring indicated that there are two recessive genes conferring resistance to CYR29 and CYR31, and one confers resistance to CYR29-mut3 and another confers resistance to CYR33, temporarily designated as YrN.S-1 and YrN.S-2. Amplification of Chinese Spring monosomic analysis and SSR markers, the gene YrN.S-1 was located on chromosome 1BL and the gene YrN.S-2 was located on chromosome 5BL. Linkage maps were constructed with three SSR markers, Xgwm499, Xwmc415 and Xwmc537, for the gene YrN.S-1 with genetic distance ranging from 5.4 to 10.7cM and four SSR markers, Xcfa2147, Xgwm124, Xwmc719 and Xwmc44, for the gene YrN.S-2 with genetic distance ranging from 3.2 to 10.3cM. Resistance analysis and molecular tests between the previously named Yr genes located on chromosome 5BL, 1BL and YrN.S-1, YrN.S-2 suggested that both YrN.S-1 and YrN.S-2 are different from these known genes and likely two new stripe rust resistance genes. The markers could be useful in pyramiding these resistance genes with others to develop wheat cultivars with high-level and durable resistance to stripe rust.
     3. Seedlings tests under controlled greenhouse conditions showed that H9020-1-6-8-3 was resistant to Chinese stripe rust races, CYR25、CYR29、CYR29-mut3、CYR30、CYR31、CYR32、CYR33、Su11-4、Su11-11. Resistance analysis of the parents Psathyrostachys huashanica and common wheat 7182 suggested that the stripe rust resistance gene of H9020-1-6-8-3 was originating from Psathyrostachys huashanica. Genetic studies of F2 and F3 progenies derived from Mingxian169/H9020-1-6-8-3 indicated that a single dominant gene conferring resistance to CYR33, temporarily designated as YrH9020. The mapping population was constructed by 164 F2 individual plants. The linkage map was constructed with three SSR markers, Xgwm261、Xwmc503 and Xgwm102, for the gene YrH9020 with genetic distance rang from 7.0 to 11.2 cM. And the gene was located on chromosome 2DS by three SSR loci. To date, Yr16 was located on chromosome 2DS, which derived from common wheat (Triticum aestivum L.) and is an adult plant resistance gene, so YrH9020 is different from Yr16. The genes from Psathyrostachys huashanica haven’t been used widely in wheat resistant breeding. The demonstration of YrH9020 as a new gene and the availability of the flanking SSR markers identified in this study should accelerate its application in breeding programs.
引文
艾山江·阿布都拉,文玉香,唐顺学,李义文,庄家骏,贾旭,李洪杰. 1997.一个多抗小麦-中间偃麦草新种质的选育和细胞分子生物学鉴定.遗传学报, 24 (5) : 441~446
    陈吉宝,景蕊莲,员海燕,卫波,昌小平. 2005.小TaDREB1基因的单核苷酸多态性分析。中国农业科学, 38(12):2387~2394
    陈洁. 2009.小麦品种N.Strampelli和普通小麦-华山新麦草附加系的抗条锈病遗传分析. [硕士学位论文],陕西杨凌:西北农林科技大学
    陈佩度,王兆悌,王苏玲,黄俐,王裕中,刘大钧. 1995.将大赖草种质转移给普通小麦的研究, III抗赤霉病异附加系的选育.遗传学报, 22(3): 206~210
    陈淑阳,候文胜,张安静,傅杰,杨群慧. 1996.普通小麦-华山新麦草异附加系的选育及细胞遗传学研究.遗传学报,23(6):447~452
    陈晓红,牛永春,胡宝忠. 2004.用变性PAGE-银染法鉴定小麦抗条锈基因Yr5的RAPD标记.遗传学报, 31(3): 270~274
    董玉琛.小麦的基因源. 2000.麦类作物学报, 20(3): 78~81
    房体麟,程颖,李根桥,徐世昌,解超杰,尤明山,杨作民,孙其信,刘志勇. 2008.小麦条锈病抗源S2199抗病基因分子标记及其与Yr5的关系.作物学报,34(3): 355~360
    傅杰,周荣华,陈漱阳,杨群慧,赵继新. 2001.小簇麦新种质的品质、抗病性及分子细胞遗传学研究.西北农林科技大学学报(自然科学版), 29(1):1~8
    淦爱华,蔺瑞明,徐世昌,万安民,马占鸿. 2006.中国小麦条锈菌鉴别寄主丰产3号抗条锈性遗传分析.植物保护学报, 33(4):369~373
    关海涛,郭玉华,王悦冰,刘太国,蔺瑞明,徐世昌. 2005.小麦条锈菌生理小种国际鉴别寄主Spaldings Prolific中抗条锈病基因YrSpP的微卫星标记.中国农业科学, 38 (8) :1574~1577
    何名召,王丽敏,张增艳,徐世昌,王丽丽,辛志勇. 2007.硬粒小麦-粗山羊草人工合成小麦CI108抗条锈病新基因的鉴定、基因推导与分子标记定位.作物学报, 33 (7) :1045~1050
    侯璐,宋晓贺,路亚明,胡茂林,贺苗苗,井金学,王保通. 2009.小簇麦易位系V9128-3抗条锈病基因的遗传分析和SSR分子标记.植物病理学报, 39(1): 67~75
    胡茂林. 2008.小麦品种N.Strampelli和两个重要品种抗条锈基因的遗传分析. [硕士学位论文], 陕西杨凌:西北农林科技大学
    贾秋珍,金社林,曹世勤,骆惠生,金明安. 2007.小麦条锈菌生理小种条中32号及水源14致病类型在甘肃的流行与发展趋势.植物保护学报, 34(3):263~267
    井长勤,陈荣振,冯国华,刘东涛,张会云. 2005. 52个重要小麦品种抗条锈基因的推导。江苏农业学报, 21 (1) : 30~34
    井金学,傅杰,袁红旭,王美南,商鸿生,李振岐. 1999.三个小麦野生近缘种抗条锈性传递的初步研究.植物病理学报, 29(2): 147~150
    井金学,徐智斌,王殿波,王美南,姚秋燕,商鸿生,李振岐. 2007.小偃6号抗条锈性遗传分析. 中国农业科学,40(3): 499~504
    李春莲,陈耀锋,韩德俊,郭东伟,郭月霞. 2004.普通小麦抗条锈新种质——WT212的抗性及遗传分析.西北农林科技大学学报(自然科学版),32(10): 5~8
    李峰奇,韩德俊,魏国荣,曾庆东,黄丽丽,康振生. 2008.黄淮麦区126个小麦品种(系)抗条锈病基因的分子检测.中国农业科学, 41(10):3060-3069
    李俊,魏会廷,胡晓蓉,彭正松,杨武云. 2007.人工合成小麦衍生品种川麦47的抗条锈病SSR分子标记定位.农业生物技术学报, 15(2):318~322
    李丽,郑晓鹰,柳李旺. 2006.用SRAP标记分析黄瓜品种遗传多样性及鉴定品种.分子植物育种,4(5): 702~708
    李仕贵,王玉平,黎汉云,周开达,朱立煌. 2000.利用微卫星标记鉴定水稻的稻瘟病抗性.生物工程学报, 16(3): 325~327
    李振岐,曾士迈,主编. 2002.中国小麦锈病.北京:中国农业出版社:41~50, 164~173
    李振声,蓉珊,陈漱阳. 1985.小麦远缘杂交.北京:科学出版社:l~83
    林凤,徐世昌,张立军,苗青,翟强,李楠. 2005.小麦抗条锈病基因Yr2的SSR标记.麦类作物学报, 25 (1):17~19
    林忠旭,张献龙,聂以春,贺道华,吴茂清. 2003.棉花SRAP遗传连锁图构建.科学通报, 48 (15): 1676~1679
    刘红彦. 1999.小麦抗条锈基因分子标记的建立. [博士学位论文],陕西杨凌:西北农林科技大学
    刘金元,刘大钧,陈佩度,齐莉莉,程顺和,高德荣,吴荣林. 1997.分子标记育种新尝试—与Pm 2和Pm 4a基因紧密连锁RFLP标记在小麦抗白粉病育种中的应用.南京农业大学学报, 20(2):1~5
    刘金元,陶文静,刘大钧,陈佩度. 2000.与小麦白粉病抗性基因Pm21紧密连锁的RAPD标记的筛选研究.遗传学报, 27(2):139~145
    Lupton F G H著. 1998.北京农业大学遗传育种研究室译.小麦育种的理论基础.北京:北京农业大学出版社
    刘孝坤. 1988.小麦抗源对条锈病的抗性遗传研究初报.植物保护学报, 15(1):33~39
    刘亚萍,曹双河,王献平,徐智斌,张相岐,井金学. 2005.小麦抗条锈病基因Yr24的SSR标记. 植物病理学报35(5): 478~480
    刘志文,傅廷栋,刘雪平,涂金星,陈宝元. 2005.作物分子标记辅助选择的研究进展、影响因素及其发展策略.植物学通报, 22 (增刊): 82~90
    吕伟东,徐鹏彬,蒲训. 2007.偃麦草属种质资源在普通小麦育种中的应用现状简介.草业学报, 16(6):136~140
    马渐新,周荣华,董玉琛,贾继增. 1999.来自长穗僵麦草的抗小麦条锈病基因的定位.科学通报, 44(l):65~69
    赖世龙,谢水仙.2002.小麦持久抗性品种对中国条锈菌(系)抗病性的特点分析.植物保护学报,29(1):36~40
    牛永春,刘红彦,吴立人,徐世昌. 1998.小麦品种“Lee”中抗条锈病基因的RAPD标记.高技术通讯,12:11~14
    牛永春,乔奇,吴立人. 2000.豫鲁皖三省重要小麦品种抗条锈基因推导.植物病理学报,30(2): 122~128
    蒲宗君,陈国跃,陈华,郑科,魏育明,颜泽洪,杨武云,郑有良. 2009.小麦品系ICA56抗条锈病鉴定及其抗性基因SSR标记.植物病理学报, 39 (1): 61~66
    仝淑玫,蔺瑞明,何月秋,徐世昌. 2006.小麦抗源Holdfast和Flinor抗条锈病主效、微效基因的遗传分析.中国农业科学, 39(11):2243~224
    任志龙,王长有,张宏,蔡东明,王亚娟,王秋英,薛秀庄,吉万全. 2006.利用多种外源基因选育小麦抗病新种质和新品种。西北农林科技大学学报(自然科学版),34(11): 73~82
    邵映田,牛永春,朱立煌,翟文学,徐世昌,吴立人. 2001.小麦抗条锈基因Yr10的AFLP标记. 科学通报, 46(8): 669~672
    万安民,牛永春,徐世昌,吴立人.2000.持久抗条锈病小麦品种抗性特点及其在我国的利用价值.作物学报, 26(6):6~9
    万安民,赵中华,吴立人. 2003.年我国小麦条锈病发生回顾.植物保护, 29(2): 5~8
    王凤乐,吴立人,谢水仙,万安民. 1994.我国小麦重要抗源材料抗条锈基因推导及成株抗病性分析.植物病理学报, 24(2):175~180
    王洪刚,李丹丹,刘树兵,高居荣,李兴锋. 2003.抗白粉病小偃麦异代换系的细胞学和RAPD鉴定.西北植物学报, 23(2): 280~284
    王金平,王洪刚,赵瑾,刘海燕,西廷业,高居荣. 2008.小滨麦易位系山农0096抗条锈基因的微卫星标记和染色体定位.分子植物育种, 6 (3): 475~479
    王黎明,林小虎,张平杰,张志雯,王玉海,赵逢涛,高居荣,李文才,李兴峰,王洪刚. 2005.小麦一中间堰麦草二体异代换系山农0095的选育及其鉴定.中国农业科学, 38(10):1958~1964
    王瑞义. 2004.中国小麦条锈菌鉴别寄主尤皮II号、阿夫抗条锈病基因定位及分子标记. [硕士学位论文],北京:中国农业科学院
    王献平,初敬华,张相岐. 2003.小麦异源易位系的高效诱导和分子细胞遗传学鉴定.遗传学报, 30(7): 619~624
    王心宇,陈佩度,张守忠. 2001.小麦白粉病抗病基因的聚合极其分子标记辅助选择.遗传学报, 28(7) : 640~646
    王悦冰,徐世昌,徐仲,刘太国,蔺瑞明. 2006.小麦条锈菌国际鉴别寄主Vilmorin23的抗条锈病基因YrV23微卫星标记.遗传, 28 (3) :306~310
    王振英,赵红梅,洪敬欣,陈丽媛,朱婕,李刚,彭永康,解超杰,刘志勇,孙其信,杨作民. 2007.
    簇毛麦6VS上4个新分子标记的鉴定及与抗白粉病基因Pm21的连锁分析.作物学报,33 (4): 605~611
    魏艳玲,倪中福,解超杰,杨作民,孙其信,杜金昆. 2003.来自斯卑尔脱小麦新的抗条锈病基因YrsP的分子标记定位.农业生物技术学报, 11(1):30~33
    翁东旭,徐世昌,万安民,万安民,李景鹏,吴立人. 2005.小麦条锈菌鉴别寄主抗条锈病基因Yr9的微卫星标记.遗传学报, 32: 937~941
    武军,赵继新,陈新宏. 2007.普通小麦-华山新麦草衍生后代的细胞学特点及GISH分析.麦类作物学报, 27(5):772~775
    夏先全,姚革,刘正德,牛永春. 2005.四川省常规小麦品种抗条锈基因推导初报.西南农业学报, 18(4): 422~426
    徐世昌,张敬源,赵文生,吴立人,张继新,袁振东. 2001.小麦京核891-1抗条锈主效、微效基因的遗传分析.中国农业科学,34(3): 272~276
    杨国华,李滨,刘建中,英加,穆素梅,周汉平,李振声. 2002.应用基因组原位杂交鉴定蓝粒小麦及其诱变后代.遗传学报, 29(3):255~259
    杨华安, STUBBS R W. 1990.中国小麦条锈菌鉴别寄主抗条锈基因初步分析.植物保护学报, 17 (1) : 67~72
    杨敏娜,姚强,贺苗苗,侯璐,井金学. 2009.小麦-柔软滨麦草易位系M853-4抗条锈病基因的遗传分析和SSR标记定位.农业生物技术学报, 17(4): 695~700
    杨雪,牛永春,邓晖. 2008.小麦农家品种红麦(苏1661)中一个主效抗条锈病基因的微卫星标记定位.植物遗传资源学报,9(2): 131~137
    杨作民,解超杰,孙其信. 2003.后条中32时期我国小麦条锈抗源之现状.作物学报, 29 (2):161~168
    姚占军,蔺瑞明,徐世昌,李在峰,万安民,马峙英. 2007.小麦条锈菌鉴别寄主Lee中抗性基因Yr7的微卫星标记.中国农业科学, 39(6):1146~1152
    殷贵鸿,王建武,司伟锷,何中虎,李在峰,王辉,夏先春. 2009.小麦抗条锈病基因YrZH84的RGAP标记及其应用.作物学报, 35(7):1274~1281
    殷学贵,尚勋武,庞斌双,宋建荣,曹世勤,李金昌,张学勇. 2006. A-3中抗条锈新基因YrTp1和YrTP2的分子标记定位分析.中国农业科学, 39(l):10~17
    曾兴权,王长有,刘新伦,吉万全. 2010.普通小麦-奥地利黑麦抗条锈病衍生系NR1121的鉴定.西北农林科技大学学报(自然科学版), 38(2): 63-68, 75
    张超,徐如宏,思彬彬,任明见,张庆勤. 2006.用AFLP标记来自偏凸山羊草的抗条锈病新基因YrG775.中国农业科学,39(4):673~678
    张海泉,郎杰,马淑琴,张宝石. 2008.粗山羊草抗条锈病新基因YrY206遗传分析和微卫星标记. 生物工程学报, 24(8):1475~1479
    张旭,臧宇辉,刘朝晖,秦浚川,姚景侠. 1998.小麦抗白粉病基因Pm17在亲本和F2代抗感集群中的RAPD分析.江苏农学院学报, 19 (2):67~70
    钟鸣,牛永春.徐世昌,吴立人. 2002.小麦品种Triticum Spelta album中抗条锈病基因Yr5的RAPD标记.遗传学报, 29(8):719~722
    钟鸣,牛永春. 2000. DNA分子标记技术在小麦抗锈病基因研究中的应用.植物保护,26(3): 32~35
    周祥椿,杜久元,杨俊海. 2003.甘肃陇南小麦不同品种类型抗条锈性变化特点分析.植物病理学报, 33(6) : 550~554
    周祥椿,杜久元,鲁清林. 2005.小麦条锈病抗源材料筛选和抗条锈基因库组建研究.麦类作物学报,25(1): 6~12
    周祥椿,谢鸣,周刚. 2008.陇南小麦主要生产品种成株期抗条锈性研究.麦类作物学报, 28 (2): 339~344
    周新力,吴会杰,张如佳,刘佩,井金学. 2008.来自簇毛麦抗条锈病新基因的SSR标记.植物病理学报, 38(1):69~74
    周艳丽,蔺瑞明,张建周,王建华,孙建锋,徐世昌. 2008.小麦条锈菌中国鉴别寄主维尔中抗条锈病基因YrVir1的微卫星标记.中国农业科学, 41(4):1023~1029
    周兖晨,张相岐,王献平,吴立人,周文娟,张文俊,景建康. 2001.滨麦抗条锈基因的染色体定位和分子标记.遗传学报, 28(9):864~869
    Autrique, Singh R P, Tanksley S D. 1995. RFLP mapping of genes associated with differ agronomic traits and disease resistance in wheat. Abstract of Internation Plant GenomeⅢ,,17 :316~319
    Bariana H S, Brown G N, Ahmed N U, Khaltkar S, Conner R L, Wellings C R, Haley S, Sharp P J, Laroche A.. 2002. Characterisation of Triticum vavilovii-derived stripe rust resistance using genetic, cytogenetic and molecular analyses and its marker-assisted selection. Theor Appl Genet, 104(2-3):315~320
    Bariana H S, McIntosh R A. 1993. Cytogenetic studies in wheat XIV. Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A. Genome,36: 476~482
    Bariana H S, Parry N, Barclay L R, Loughman R, McLean R J, Shankar M, Wilson R E, Willey N J , Francki M. 2006. Identification and characterization of stripe rust resistance gene Yr34 in common wheat. Theor Appl Genet, 112 :1143~1148
    Bartos P, Johnson R, Stubbs R W. 1987. Postulatd genes for resistance to yellow rust in Czechoslavakian wheat cultivars. Cereal rusts Bulletin, 1987, 15:79~84
    Biffen R H. 1905. Mendel's law of inheritance and wheat breeding. Agric Sci, 1:4~48
    Borner A, R?der M S, Unger O, Meinel A. 2000. The detection and molecular mapping of a major gene for non-specific adult-plant disease resistance against stripe rust (Puccinia striiformis) in wheat. Theor Appl Genet, 100:1095~1099
    Blanco A, Resta P, Smieone R. 1991. Chromosome allication of seed storage protein gene in Dasypyrum villosum (L) candargy . Theor Appl Genet, 82: 358~362
    Botstein D R, White R L, Skolnick M. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet, 32:314~331
    Browder L E. 1985. Parasite, host, environment specificity in cereal rusts. Ann Rev Phytopath, 23:201~222
    Budak H, Shearman R C, Parmaksiz I, Dweikat I. 2004.Comparative analysis of seeded and vegetative biotype buffalograsses based on phylogenetic relationship using ISSRs, SSRs, RAPDs and SRAPs. Theor Appl Genet, 109: 280~288
    Cao Z J, Deng Z Y , Wang M N, Wang X P, Jing J X, Zhang X Q, Shang H S, and Li Z Q. 2008.
    Inheritance and molecular mapping of an alien stripe-rust resistance gene from a wheat-Psathyrostachys huashanica translocation line. Plant Science, 174:544~549
    Chague V, Fahima T, Dahan A, Sun G L, Korol A B, Ronin Y I, Grama A, R?der M S, Nevo E. 1999.
    Isolation of microsatellite and RAPD markers flanking the Yr15 gene of wheat using NILs and bulked segregant analysis. Genome, 42: 1050~1056
    Chen X M. 2005. Epidemiology and control of stripe rust on wheat. Can J Plant Pathol, 27:314~337
    Chen X M. 2007. Challenges and solutions for stripe rust control in the United States. Aust J Agric Res, 58:648~655
    Chen X M,Jones S ,Line R F. 1995. Chromosomal location of genes for stripe rust resistance in spring wheat cultivars Compair, Fielder, Lee and Lemhi and Interactions of Aneuploid wheats with Races of Puccinia striiformis. Genetic, 85:375~381
    Chen X M, Jones S S, Line R F. 1996. Chromosomal location of genes for resistance to Puccinia striiformis in seven wheat cultivars with resistance genes at the Yr3 and Yr4 loci. Phytopathology, 86:1228~1233
    Chen X M, Line R F. 1992a. Inheritance of stripe rust resistance in wheat cultivars used to different races of Puccinia striiformis in North America. Phytopathology, 82:633~637
    Chen X M, Line R F. 1992b. Identification of stripe rust resistance genes in wheat genotypes used to different North American races of Puccinia striiformis. Phytopathology, 82:1428~1434
    Chen X M, Line R F. 1995a. Gene action in wheat cultivars for durable, high-temperature, adult-plant resistance and interaction with race-specific, seedling resistance to Puccinia striiformis. Phytopathology, 85:567~572
    Chen X M, Line R F. 1995b. Gene number and heritability of wheat cultivars with durable, high-temperature, adult-plant (HTAP) resistance and interaction of HTAP and race-specific seedling resistance to Puccinia striiformis. Phytopathology, 85:573~578
    Chen X M, Line R F. 1993. Inheritance of stripe rust (yellow rust) resistance in the wheat cultivar Carstens V. Euphytica, 71:107~113
    Chen X M, Line R F, Leung H. 1998. Genome scanning for resistance-gene analogs in rice, barley, and wheat by high-resolution electrophoresis. Theor Appl Genet, 97:345~355
    Chen X M, Ling P, Wood D A, Moore M K, Pahalawatta V. 2003. Epidemiology and control of wheat stripe rust in the United State. Ann Wheat Newsl, 50: 274~276.
    Chen X M, Moore M, Milus E A, Long D, Marshall D, Line R F, Jackson L. 2002. Wheat stripe rust epidemic and races of Puccinia striiformis f. sp. tritici in the United States in 2000. Plant Dis, 86:39~46
    Chen X M, Zhao J. 2007. Identification of molecular markers for Yr8 and a gene for high-temperature, adult-plant resistance against stripe rust in the AVS/6*Yr8 wheat line. Phytopathology, 97:S21
    Cheng P, Chen X M. 2010. Molecular mapping of a gene for stripe rust resistance in spring wheat cultivar IDO377s. Theor Appl Genet , published online
    Dedryver E, Jubier M E, Thouvenin J, Goyeau H. 1996. Molecular markers linked to the leaf rust resistance gene Lr34 in different wheat cultivars. Genome, 39:830~835.
    Endo T R. 1986. Complete identification of common wheat chromosomes by means of the c-banding technique. Jpn J Genet, 61: 899
    Eriksen L, Afshari F, Christiansen M J , McIntosh R A, Jahoor A, Wellings C R. 2004. Yr32 for resistance to stripe (yellow) rust present in the wheat cultivar Carstens. Theor Appl Genet, 108(3) :567~575
    Gill B S, Kimber G, Giemsa A. 1974. C-banding technique for cereal chromosome cereal Res. Commun. 2: 87~94
    Hittalmani S, Parco A, Mew TV, Zeigler RS, Huang N. 2000. Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theor Appl Genet, 100:1121~1128
    Hu X Y, Ohm H W, Dweikat I. 1997. Identification of RAPD markers linked to the gene Pm1 for resistance to powdery mildew in wheat. Theor Appl Genet, 94:832~840
    Huang N, Angeles E R, Domingo J. 1997. Pyramiding of barcterial blight resistance gene in rice: marker-assisted selection using RFLP and PCR. Theor Appl Genet, 95:313~320
    Imtiaz M, Ahmad M, Cromey M G, Griffin W B, Hampton J G.2004. Detection of molecular markers linked to the durable plant stripe rust resistance gene Yr18 in bread wheat (Triticum aestivum L.). Plant Breeding, 123:401~404
    Johal G S, Briggs S P. 1992. Reductase activity encoded by the Hml disease resistance gene in maize. Science, 258(5084):985~987
    Johnson R.1979. The concept of durable resistance . Phytopath, 69:198~199
    Khlestkina E K, R?der M S, Unger O. 2007. More precise map position and origin of a durable non-specific adult plant disease resistance against stripe rust (Puccinia striiformis) in wheat. Euphytica, 153:1~10
    Kosambi D D. 1944. The estimation of map distances from recombination values. Ann Eugen. 12: 172~175
    Kota R, Varshney R K, Thiel T, Dehmer K J, Graner A. 2001. Generation and comparison ofEST-derived SSRs and SNPs in barley ( Hordeum vulgare L.). Hereditas, 135 : 145~151
    Kuraparthy V, Chhuneja P, Dhaliwal H S, et al. 2007. Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor Appl Genet, 114: 1379~1389
    Lagudah E S, Fadden H M, Singh R P. 2006. Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor Appl Genet, 114:21~30
    Li G, Gao M, Yang B, Quiros C F. 2003. Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping. Theor Appl Genet, 107(1):168~180
    Li H, Steven A, Brooks W. 2003. Map-Based Cloning of Leaf Rust Resistance Gene Lr21 From the Large and Polyploid Genome of Bread Wheat. Genetics, 164: 655~664
    Lin F, Chen X M. 2007. Genetic and molecular mapping of genes for race-specific all-stage resistance and non-race-specific high-temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa. Theor Appl Genet, 114:1277~1287
    Lin F, Chen X M. 2008. Molecular mapping of genes for race-specific overall resistance to stripe rust in wheat cultivars Express. Theor Appl Genet, 116:797~806
    Lin F, Chen X M. 2009. Quantitative trait loci for non-race-specific, high-temperature adult-plant resistance to stripe rust in wheat cultivar Express. Theor Appl Genet 118:631~642
    Lincoln S, Daly M, Lander E. 1992. Constructing genetic maps with Mapmarker/EXP3.0. Whitehead Institute Techn Rep, 3rd edn. Whitehead Institute, Cambrige
    Line R F. 2002. Stripe rust of wheat and barley in North America: a retrospective historical review. Annu Rev Phytopathol, 40:75~118
    Line R F, Chen X M. 1995. Success in breeding for and managing durable resistance to wheat rusts. Plant Dis, 79:1254~1255
    Line R F, Chen X M. 1996. Wheat and barley stripe rust in North America. In: Proc 9th European and Mediterranean Cereal Rusts and Powdery Mildews Conf, 2-6 September 1996, Lunteren, The Netherlands, pp 101-104
    Line R F, Qayoum A. 1992. Virulence, aggressiveness, evolution, and distribution of races (of the causes of stripe rust of wheat) in North America, 1968–1987. Tech Bull US Dept Agric No.1788 Littiejohn G M, Pienaar R, De V. 1995. Thinopyrum addition lines: production, morphological and cytological characterization of disomic addition lines and stable addition-substitution line. Theor Appl Genet, 90:33~42
    Li Y, Niu Y C,Chen X M. 2009. Mapping a stripe rust resistance gene YrC591 in wheat variety C591 with SSR and AFLP markers. Theor Appl Genet, 118: 339~346
    Li Z F, Zheng T C, He Z H, Li G Q, Xu S C, Li X P, Yang G Y, Singh R P, Xia X C. 2006. Molecular tagging of stripe rust resistance gene YrZH84 in Chinese wheat line Zhou 8425B. Theor Appl Genet, 112: 1098~1103
    Lu Y M, Lan C X, Liang S S, Zhou X C, Liu D, Zhou G, Lu Q L, Jing J X, Wang M N, Xia X C, He Z H. 2009. QTL mapping for adult-plant resistance to stripe rust in Italian common wheat cultivars Libellula and Strampelli. Theor Appl Genet, 119:1349~1359
    Martin G B, Brommmonschenkel S H, Chunwongse J, 1993. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science, 262: 1432~1436
    Marais G F, Pretorius Z A, Wellings C R, McCallum B. and Marais A F. 2005. Leaf and stripe rust resistance genes transferred to common wheat from Triticum dicoccoides. Euphytica, 143:115-123
    McIntosh R A, Devos K M, Dubcovsky J, Rogers W J. 2004. Catalogue of gene symbols for wheat: 2004 supplement [online]. http://wheat.pw.usda.gov/ggpages/wgc/2004upd.html
    McIntosh R A, Devos K M , Dubcovsky J, Rogers W J, Morris C F, Appels R,Anderson O D. 2005. Catalogue of gene symbols for wheat: 2005 supplement [online]. http:// wheat.pw.usda.gov/ggpages /wgc/2005upd.html
    McIntosh R A, Devos K M, Dubcovsky Rogers W J , Morris C F, Appels R, Somers D J., Anderson O A. 2007. Catalogue of gene symbol for wheat: 2007 supplement. http:// wheat.pw.usda.gov/ ggpages /awn/53/Textfiles/WGC.html
    McIntosh R A, Dubcovsky J, Rogers W J, Morris C, Appels R, Xia X C. 2009. Catalogue of gene symbols for wheat: 2009 supplement. Online: http:// www.shigen.nig.ac.jp/ wheat/ komugi/ genes/ macgene/supplement2009.pdf
    McIntosh R A, Lagudah E S. 2000. Cytogenetical studies in wheat.XVIII. Gene Yr24 for resistance to stripe rust. Plant Breed, 119(I): 76~81
    Michelmore R W,Paran I,Kesseli R V. 1991. Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating segregation populations. Proceedings of the National Academy of Sciences of the United States of America, 88: 9828~9832
    Nagarajan S, Nayar S K, Bahadur P. 1986. Race 13 (67 S8) virulence on Triticum spelta var. album in India. Plant Dis, 70:173
    Naik S, Gill K S, Prakasa R V S. 1998. Identification of STS marker linked to the Aegilops speltoides derived of rust resistance gene Lr28 in wheat. Theor Appl Genet, 97:535~540
    Nasu S, Suzuki J, Ohta R, Hasegawa K, Yui R, Kitazawa N, Monna L, Minobe Y. 2002. Search for and analysis of single nucleotide polymorphisms (SNPs) in rice ( Oryza sativa, Oryza rufipogon) and establishment of SNP markers. DNA Res, 9 : 163~171
    Pahalawatta V, Chen X M. 2005a. Genetic analysis and molecular mapping of wheat genes conferring resistance to the wheat stripe rust and barley stripe rust pathogens. Phytopathology, 95:427-432
    Pahalawatta V, Chen X M. 2005b. Inheritance and molecular mapping of barley genes conferring resistance to wheat stripe rust. Phytopathology ,95:884-889
    Peng, J H, Fahima T, R?der M S, Li Y C, Grama A and Nevo E. 2000. Microsatellite high-density mapping of the stripe rust resistance gene YrH52 region on chromosome 1B and evaluation of its marker-assisted selection in the F2 generation in wild emmer wheat. New Phytologist, 146: 141~154
    Perwaiz M S, Johnson R.1986. Genes for resistance to yellow rust in seedlings of wheat cultivars from Pakistan tested with British isolates of Puccinia striiformis. Plant Breeding, 97:289~296
    Procunier J D, Townley-Smith T E, Fox S, Prashar S, Gray M, Kim W K, Czarnecki E , Dyck E L.1995. PCR–based RAPD/DGGE markers linked to leaf rust resistance gene Lr29 and Lr25 in wheat. Journal of Genetic Breeding, 49:87~92
    Qayoum A, Line R F. 1985. High-temperature adult plant resistance to stripe rust of wheat. Phytopathology, 75:1121-1125
    Robert O, Abelard C, Dedryver F. 1999. Identification of molecular markers for the detection of theyellow rust resistance gene Yr17 in wheat. Molecular Breeding, 5:167~175
    Roder M S, Korzun V, Wendehake K, Plaschke J, Tixier M H, Leroy P, Ganal M W.1998. A microsatellite map of wheat. Genetics, 149:207~333
    Rudorf W, Breitrage Z. 1929. Immunitatszuchtung gegen Puccinia glumarum tritici. Pathytopatholgy, 1:465~525
    Schachermayr G, Siedler H, Gale M D, et al. 1994. Identification and localization of molecular markers linked to the Yr9 leaf rust resistance gene of wheat. Theor Appl Genet, 88:110~115
    Sears E R. 1954. The aneuploids of common wheat. Mo Agric Exp Sta Res Bull, 572: 1~58
    Shi Z X, Chen X M, Line R F, Leung H, Wellings C R. 2001. Development of resistance gene analog polymorphism markers for the Yr9 gene resistance to wheat stripe rust. Genome, 44: 509-516
    Sharma S, Louwers J M, Karki C B, Snijders C H A.1995. Postulation of resistance genes to yellow rust in wild emmer wheat derivatives and advanced wheat lines from Nepa. Ephytica, 81:271~277
    Singh H. 1990. Genes for race-specific resistance to yellow rust (Puccinia striiformis) in Indian wheat cultivars. Plant pathology, 39:424~433
    Singh R P., Nelson J C, Scorrells M E. 2000. Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Sci, 40:1148~1155
    Singh R P, Rajaram S. In: Li Z S, Xined Y Z. 1993. Eighth International Wheat Genetics Symposium[M], Vol.2 . Beijing:China Agricultural Scientech Press,901~905
    Smith P H, Korbner R, Michin P N, etc. 2000. The isolation of yellow rust resistance genes from wheat. Proceedings of the 10th cereal Rusts and Powdery Mildews conference, 35:91~93
    Somers D J, Isaac P, Edwards K. 2004. A high density microsatellite concensus map for bread wheat (Triticum aestivum L).Theor Appl Genet, 109: 1105~1114
    Spielmeyer W, Singh R P, McFadden H, Wellings C R, Huerta-Espino J, Kong X, Appels R, Lagudah E S. 2008. Fine scale genetic and physical mapping using interstitial deletion mutants of Lr34/Yr18: a disease resistance locus effective against multiple pathogens in wheat. Theor Appl Genet, 116:481~490
    Stubbs R W. 1988. Pathogenicity analysis of yellow (stripe) rust of wheat and its significance in global context. Pages 23-28 in N.W. Simmonds and S. Rajiaram eds. Breeding strategies for resistance to the stripe rusts of wheat, CIMMYT, Mexico, D.F.
    Stubbs R W.1985.Stripe rust. In: Roelfs AP, Bushnell WR (eds) The Cereal Rusts. Academic Press. New York. Vol II, pp 61-101
    Sui X X, Wang M N, Chen X M. 2009. Molecular mapping of a stripe rust resistance gene in spring wheat genotype‘Zak’. Phytopathlogy, 99:1209~1215
    Sun G L, Fahima T,Korol A B,Turpeinen T, Grama A, Ronin Y I, Nevo E.1997. Identification of molecular markers linked to the Yr15 stripe rust resistance gene of wheat originated in wild emmer wheat, Triticum dicoccoides. Theor Appl Genet,95:622~628
    Sun Q L, Wei Y, Ni Z, Xie C, Yang T. 2002. Microsatellite marker for yellow rust resistance gene Yr5 introgressed from spelt wheat. Plant Breeding,121: 539~541
    Tanksley S D, Young N D, Paterson A H. 1989. RFLP mapping in plant breeding: new too is for old sciences. Biotechnology, (7) : 257~264
    Tixier M H, Sourdille P S. 1997. Detection of wheat microsallite using no-radioactive silvermitrate staining method. Genetic Breeding, 51: 175~177
    Uauy C, Brevis J C, Chen X M, Khan, I., Jackson L, Distelfeld O C A, Fahima T, Dubcovsky J. 2005. High- temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoidesis closely linked to the grain protein content locus Gpc-B1. Theor Appl Genet, 112:97~105
    Vallavieille-Pope C De. 1990. Specific resistance factors to yellow rust in seedlings of some Franch varieties and races of P.striiformis West in France. Agronomic, 2:103~113.
    Vos P, Hogerss R, Bleeker M, Reijians M, Vanderlee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res, 23(21):4407~4414
    Wan A M, Zhao Z H, Chen X M, He Z H, Jin S L, Jia X Q, Yao G, Yang J X, Wang B T, Li G B, Bi Y Q, Yuan Z Y. 2004. Wheat stripe rust epidemic and virulence of Puccinia striiformis f.sp.tritici in China in 2002. Plant Disease, 88: 896~904
    Wang L F, Ma J X, Zhou R H, Wang X M, Jia J Z. 2002. Molecular tagging of the yellow rust resistance gene Yr10 in common wheat, P.I. 178383 (Triticum aestivum L.). Euphytica 124:71~73
    Wellings C R, McIntosh R A. 1990. Puccinia striiformis f.sp. tritici in Australasia : pathogenic changes during the first 10 years. Plant Pathol, 39:316~325
    William M, Singh R P, Huerta-Espino J, Ortiz I, Hoisington. 2003. Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat. Phytopathology, 93:153~159
    Williams J G K, Kubelik A R K, Livak J L , Rafalski J A, Tingey S V. 1990. DNA polymorphisms amplified by random primers are useful as genetic markers. Nucl. Acids Res, 18:6531~6535
    Worland A J, Law C N. 1986. Genetic analysis of chromosome 2D of wheat. I. The location of genes affecting height, day-length insensitivity, hybrid dwarfism and yellow rust resistance. Z. Pflanzenzücht. 96: 331-345.
    Yan G P, Chen X M. 2006. Molecular mapping of a recessive gene for resistance to stripe rust in barley. Theor Appl Gene,t 113:529~537
    Yan G P, Chen X M. 2007. Molecular mapping of the rps1.a recessive gene for resistance to stripe rust in BBA 2890 barley. Phytopathology ,97:668~673
    Yan G P, Chen X M. 2008. Identification of a quantitative trait locus for high-temperature adult-plant resistance against Puccinia striiformis f. sp. hordei in‘Bancroft’barley. Phytopathology, 98:120~127
    Yan G P, Chen X M, Line R F, Wellings C R. 2003. Resistance gene analog polymorphism markers co-segregating with the Yr5 gene for resistance to wheat stripe rust. Theor Appl Genet, 106:636-643
    Zabeau M, Vos P. 1993. Selective restriction fragment amplification: a general method for DNA fingerprinting. European Patent Application, Publication number 0534858A1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700