小麦抗条锈病和白粉病基因的分子标记
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦条锈病和白粉病分别是由小麦条锈菌(Puccinia striiformis f. sp. tritici)和白粉菌(Blumeria graminis f.sp. tritici)引起的重要病害,严重影响生产发展。选育和合理利用抗病品种是防治小麦条锈病和白粉病最为经济、简单、安全、有效的措施。自从条锈菌优势小种条中32和白粉菌强毒力小种E20出现以后,国内大部分品种都已丧失了抗性。因此,挖掘不同类型的抗病基因,加大开发和应用分子标记,通过分子标记辅助选择,提高抗病育种效率,加快育种进程,对于抗条锈病和抗白粉病小麦品种的选育至关重要。
     本研究主要分为两部分,一是利用RGAP标记技术筛选与小麦抗条锈病基因YrZH84紧密连锁的分子标记,并对其有效性进行验证;二是对黄淮麦区大面积推广的小麦新品种济麦22所携带的抗白粉病基因进行遗传分析和分子标记定位,为品种的合理利用和分子标记辅助育种提供理论依据。主要结果如下:
     1、利用1711对RGA(Resistance gene analog, RGA,抗病基因同源序列)引物组合对黄淮麦区骨干亲本周8425B与中国春杂交F2代522个单株进行抗病鉴定和分子标记分析,其中清晰、稳定可重复的引物对有40个。用这40对引物组合检测60个抗病株(IT =2)和60个感病株(IT =4),表明交换率在1%以下的有1对,该标记命名为Xrga-1,用于检测整个F2群体。结果表明,Xrga-1与YrZH84紧密连锁,遗传距离0.8 cM。经挖胶回收,克隆测序,其RGA片段长度为343 bp。BLAST分析表明,该RGA序列与已克隆的大麦抗秆锈病基因Rpg1核苷酸序列同源性为93%,与大麦抗白粉病基因Mla家族的核苷酸序列同源性为92%。这些研究结果对小麦抗条锈病分子标记辅助育种和YrZH84基因克隆有重要作用。
     2、用与小麦抗条锈病基因YrZH84两侧紧密连锁的RGAP标记Xrga-1(0.8 cM)和SSR标记Xcfa2040-7B(1.4 cM)检测周8425B的48个衍生品种和黄淮麦区的9个主推品种,结果显示,在周麦11、周麦17、周麦20、周麦22、矮抗58、04中36、源育3号、05中37、宛抗18、豫展10号等10个品种中,YrZH84两侧标记都存在,系谱分析发现它们都是周8425B的衍生后代,结合田间抗病性鉴定结果,确定它们携带YrZH84基因。而其他38个周8425B的衍生品种表现感病,且没有检测到两侧标记的特异性片段(343、238bp),说明YrZH84基因在这些品种选育过程中已丢失。建立了小麦抗条锈病新基因YrZH84分子检测体系,可用于抗条锈病的分子标记辅助育种,聚合多个抗病基因,提高品种的持久抗性。
     3、用白粉菌强毒力小种E20对济麦22与感病亲本中国春杂交群体的228个F2抗、感分离单株和99个F2;3家系进行苗期接种鉴定,分析表明,济麦22携带1个显性抗白粉病基因,暂命名为PmJM22,系谱分析和亲本接种鉴定表明,该抗性基因可能来源于英国的普通小麦TJB259/87。运用SSR和EST标记技术及分离群体分组分析法(BSA),将其定位在2BL染色体上,与距其最近的SSR标记Xwmc149-2B和EST标记CD490485-2B的遗传距离分别为7.7 cM和18.7 cM。分析2BL上其它抗白粉病基因的来源、染色体位置和抗性反应,表明PmJM22与Pm6、Pm26、Pm33和MlZec1都不相同,很可能是一个新的抗白粉病基因。为小麦抗白粉病育种提供了抗病基因。
     4、用白粉菌强毒力小种E20接种鉴定2008-2009年度黄淮麦区预备试验的79份小麦新品种、2份对照品种以及黄淮麦区7个主推品种。结果表明,在79份小麦新品种中,对E20表现抗病的新品种有4个,占5.1%,其中豫农209、远594、金禾9123表现高抗,洛麦27表现中抗;对E20表现感病的品种75个,占94.9%,包括表现中感的为涡02197等22个品种,表现高感的洛麦22等53个品种。2份对照品种周麦18、偃展4110均为中感。生产上主推品种对E20表现高抗的有周麦22、济麦22、矮抗58,表现中感的为邯6172,表现高感的为新麦18、济麦19和石4185。系谱分析表明,黄淮麦区新育成品种的亲缘关系较近,遗传基础狭窄,抗病基因单一,是导致这些品种白粉病抗性差的主要原因。
Stripe rust and powdery mildew, caused by Puccinia striiformis f. sp. tirtici and Blumeria graminis f. sp. tritici, respectively, are the most damaging diseases in common wheat (Triticum aestivum L). Breeding and utilization of resistant varieties are the most economical and effective way to control the disease. After the emergence of the highly virulent race CYR32 of Puccinia striiformis f. sp. tirtici and highly virulent isolate E20 of Blumeria graminis f. sp. tritici, most of Chinese wheat varieties have lost their resistance to stripe rust and powdery mildew, and thus vulnerable to the two diseases under suitable climate. Therefore, identification of stripe rust and powdery mildew resistance genes are essential for breeding resistant wheat cultivars.
     The objectives of this study were to identify the molecule markers tightly linked to wheat stripe rust resistance gene YrZH84 employing the resistance gene-analog polymorphism (RGAP) markers, and validate the availability of the markers, and to map the powdery mildew resistance gene in Jimai 22. The molecular markers identified in this study can be used for marker-assisted selection in wheat breeding. The results are summarized as follows:
     1. A total of 522 F2 plants derived from the cross Zhou 8425B/Chinese Spring and their parents were used for linkage analysis. In all, 1711 RGA primer combinations were used to test the parents, as well as the resistant and susceptible bulks. Of the 116 RGA primer combinations, 40 generated repeatable and clearly polymorphic bands between the resistant and susceptible bulks. One RGAP marker, designated Xrga-1, showed a tight linkage with the stripe rust resistance gene YrZH84, with a genetic distance of 0.8 cM. The DNA sequence of the RGA fragment was in a size of 343 bp. BLAST analysis indicated that the Rpg1 showed 93% of identical nucleotide sequences to that of barley stem rust resistance gene Rpg1, and 92% to that of barley powdery mildew resistance gene Mla homology family. These results will greatly benefit for the marker-assisted selection and cloning of the resistance gene YrZH84.
     2. Forty-eight varieties derived from Zhou 8425B and seven important commercial varieties from the Huang and Huai winter wheat region were tested by the YrZH84 flanking RGAP marker Xrga-1 and SSR marker Xcfa2040. The results indicated that the specific 343-bp PCR fragment generated by the Xrga-1 and 238-bp by Xcfa2040 were detected in 10 varieties, i.e. Zhoumai 11, Zhoumai 17, Zhoumai 20, Zhoumai 22, Aikang 58, 04 Zhong 36, Yuanyu 3, 05 Zhong 37, Yuankang 18 and Yuzhan 10, which showed resistant to the prevalent race CYR32 of Puccinia striiformis f. sp. tirtici and should contain the stripe rust resistance gene YrZH84 based on resistance identification result and the pedigree analysis. In contrast, the other 38 derivatives of Zhou 8425B, susceptible to the race CYR32, did not amplify the corresponding specific PCR fragment, indicating that the resistance gene YrZH84 were lost during the development of these varieties. These results showed that the marker Xrga-1 and Xcfa2040 can be effectively used for the test of the stripe rust resistance gene YrZH84 and marker-assisted selection.
     3. A total of 228 F2 plants and 99 F2;3 lines derived from the cross Jimai 22/Chinese Spring and their parents were used for the identification of powdery mildew resistance gene in the Jimai 22 using a highly virulent isolate E20 of Blumeria graminis f. sp. tritici, and SSR and EST markers. The result showed that Jimai 22 carried a dominant powdery mildew resistance gene, designated PmJM22 tentatively. Pedigree analysis and resistance test indicated that this gene may be originated from an English common wheat line TJB 259/87. Molecular marker analysis indicated that the powdery mildew resistance gene PmJM22 was mapped on chromosome 2BL, and linked to SSR marker Xwmc149-2B and EST markers CD490485-2B with genetic distances of 7.7 cM and 18.7 cM, respectively. Based on the origins, chromosome locations and reaction patterns of the powdery mildew resistance genes on chromosome 2BL, PmJM22 is likely a new powdery resistance gene that is different from Pm6, Pm26, Pm33 and MlZec1.
     4. Seventy-nine advanced wheat lines participating in the national field trials for the Huang Huai winter wheat region and two control varieties in 2008-2009 cropping season, and seven important commercial varirties were used for seedling test to the isolate E20. The results showed that 4 lines were resistant to E20, accounted for 5.1%, in which Yunong 209, Yuan 594 and Jinhe 9123 were highly resistant and Luomai 27 moderately resistant, whereas 75 were susceptible to E20 with a percentage of 94.9%, including 22 moderately susceptible and 53 highly susceptibile lines. Two control varieties Zhoumai 18 and Yanzhan 4110 were moderately susceptibile to E20. Three of the seven commercial varirties were highly resistant, i.e., Zhoumai 22, Jimai 22 and Aikang 58, and Han 6172 were moderately susceptibile, while Xinmai 18, Jimai 19 and Shi 4185 were highly susceptibile. Pedigree analysis indicated that the genetic basis of these new breeding lines was rather narrow, and thus it is essential to find some new powdery resistance genes for the development of resistant wheat varieties.
引文
[1]庄巧生主编.中国小麦品种改良及系谱分析[M].北京:中国农业出版社,2003.
    [2]李振岐,曾士迈.中国小麦锈病[M].北京:中国农业出版社,2002.
    [3]金善宝.中国小麦学[M].北京:中国农业出版社,1996.
    [4] Bennett F G A. Resistance to powdery mildew in wheat: A review of its use in agriculture and breeding programmes [J]. Plant Pathol, 1984,33: 279-300.
    [5]万安民,赵中华,吴立人. 2002年我国小麦条锈病发生回顾[J].植物保护,2003,29(2):5-8.
    [6]牛永春,乔奇,吴立人.豫鲁皖三省重要小麦品种抗条锈基因推导[J].植物病理学报, 2000,30(2):122-128.
    [7]王凤乐,吴立人,万安民等.陕甘川重要小麦品种抗条锈基因分析[J].作物学报,1994,20(5):589-594.
    [8] Li Z F, Xia X C, Zhou X C, et al. Seedling and slow rusting resistance to stripe rust in chinese common wheats[J]. Plant Dis, 2006, 90: 1302-1312.
    [9]何中虎,张爱民主编.中国小麦育种进展[C].北京:中国科学技术出版社,2002.
    [10]杨作民,唐伯让,孙其信,等.小麦育种的战略问题—锈病和白粉病第二抗源的建立和利用[J].作物学报,1994,20:385-394.
    [11] Wang Z L, Li L H, He Z H,et al. Seedling and adult plant resistance to powdery mildew in Chinese bread wheat cultivars and lines[J]. Plant Dis, 2005, 89: 457-463.
    [12] Biffen R H. Mendel’s law of inheritance and wheat breeding[J]. Journal of Agricultural Science, 1905, 1: 4-48.
    [13] Stakeman E C. The determination of biologic forms of puccinia graminis on Triticum spp[R]. Technical Bulletin of the reactions patterns Minnesota Agricultural Experimental Station, 1922, 8: 1-10.
    [14] Flor H H. Host parasite interaction in flax rust: Its genetics and implication[J]. Phytopathology, 1955, 45: 680-685.
    [15] Loegering W Q. A second gene for resistance to puccinia graminis f. sp. tritici in the red egyptian 2D wheat substitution line[J]. Phytopathology, 1968, 58: 584-586.
    [16] Sears E R. The aneuploids of common wheat. Missouri Agricultural Experiment Station Research Bulletin[R]. 1954, 572: pp.59
    [17]方宣钧,吴为人,唐纪良编著.作物DNA标记辅助育种[M].北京:科学出版社,2001.
    [18]李在峰.中国小麦品种条锈鉴定及抗条锈新基因YrZH84分子标记[D].北京:中国农科院研究生院,2006年6月.
    [19] Botstein D R, White R L, Skolnick M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. The American Journal Human Genetics, 1980, 32: 314-331.
    [20] Autrique E. Molecular markers for four leaf rust resistance genes introgressed into wheat from wild relatives[J]. Genome, 1995, 23: 75-83.
    [21] Welsh J, MmClelland M. Fingerprinting genomes using PCR with arbitary primers[J]. Nucleic Acids Research, 1990, 18: 7213-7218.
    [22] Chague V, Fahima T, Dahan A, et al. Isolation of microsate and RAPD markers flanking the Yr15 of wheat using NILs bulked segregant analysis[J]. Genome, 1999, 42: 1050-1056.
    [23] Robert O. Combination of resistance test and molecular tests to postulate the yellow rust resistance gene Yr17 in bread wheat lines[J]. Plant Breeding, 2000, 119: 467-472.
    [24] Zabeau M, Vos P. Selective restriction fragment amplification: a general method for DNA fingerprinting. European Patent Application number 924026297; Publication number 0534858A1, 1993.
    [25] Meksem K, Leister D, Peleman J, et al. A high-resolution map of the vicinity of the R1 locus onchromosome of potato based on RFLP and AFLP markers[J]. Mol Gel Genet, 1995, 249: 74-81.
    [26] Mackill D J, Zhang Z, Redona E D, et al. Level of polymorphism and genetic mapping of AFLP markers in rice[J]. Genome, 1996, 39(5): 969-77.
    [27] R?der M S, Korzun V, Wendehake K, et al. A microsatellite map of wheat[J]. Genetics, 1998, 149: 2007-2023.
    [28] Litt M. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene[J]. Am J Hum Genet, 1989, 44: 397-401.
    [29] Peng J H. High-density molecular map of chromosomal region harboring stripe rust resistance genes YrH52 and Yr15 derived from wild emmer wheat[J]. Genetica, 2000, 109: 199-210.
    [30] Talbert L E, Blake N K, Chee P W, et al. Evaluation of seque nce–tag ged–sit -facilitated PCR products as molecular markers in wheat[J]. Theor Appl Genet, 1994, 87: 789-794.
    [31] Blake T K, Kadyrzhanova D, Shepherd K W, et al. STS-PCR markers appropriate for wheat-barley introgression[J]. Theor Appl Genet, 1996, 93: 826-832.
    [32] Shan X, Blake T K, Talbert L E. Conversion of AFLP markers to sequence-specific PCR markers in barley and wheat[J]. Theor Appl Genet, 1999, 98: 1072-1078.
    [33] Olson M, Hood L, Cantor C, et al. A common language for physical mapping of the human genome[J]. Science, 1989, 245: 1434-1435.
    [34] Paran I, Michelmore R W. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce[J]. Theor Appl Genet, 1993, 85: 985–993.
    [35] Chang Y L, Tao Q, Scheuring C, et al. An integrated map of arabidopsis thaliana for functional analysis of its genome sequence[J]. Genetics, 2001, 159: 1231-1242.
    [36] Yamamoto K, Sasaki T. Large-scale EST sequencing in rice[J]. Plant Mol Biol, 1997, 35: 144.
    [37] Joen I, An G. Gene tagging in rice: a high throughput system for functional genomics[J]. Plant Sci, 2001, 161: 211-219.
    [38] Konieczny A, Ausubel F M. A procedure for mapping arabidopsis mutations using codominanteco- type-specific PCR based markers[J]. Plant Journal, 1993, 4: 403-410.
    [39] Williamson V M, Ho J H, Wu F F, et al. A PCR-based marker tightly linked to the nematode resistance gene Mi in tomato[J]. Theor Appl Genet, 1994, 87: 757-763.
    [40] Caranta C, Thabuis A, Palloix A. Development of a CAPS marker for the Pvy4 locus:a tool for pyramiding polyvirus resistance genes in pepper[J]. Genome, 1999, 42: 1111 -1116.
    [41] Chen X M, Line R F, Leung H. Genome scanning for resistance-gene analogs in rice, barley, and wheat by high-resolution electrophoresis[J]. Theor Appl Genet, 1998, 97: 345 -355.
    [42] Lin F, Chen X M. Molecular mapping of genes for race-specific overall resistance to stripe rust in wheat cultivar Express[J]. Theor Appl Genet, 2008, 116: 797–806.
    [43] Madsen L H, Collins N S, Rakwalska M, et al. Barley disease resistance gene analogs of the NBS-LRR class: identification and mapping[J]. Mol Genet Gen, 2003, 269: 150-161.
    [44] Yan G P, Chen X M. Molecular mapping of a recessive gene for resistance to stripe rust in barley[J]. Theor Appl Genet, 2006, 113: 529–537.
    [45] Yan, G P, Chen X M. Molecular mapping of the rps1.a recessive gene for resistance to stripe rust in BBA 2890 barley[J]. Phytopathology, 2007, 97: 668-673.
    [46] Graham M A, Marek L F, Lohnes D, et al. Expression and genome organization of resistance gene analogs in soy bean[J]. Genome, 2000, 43 : 86-93.
    [47] Quint M, Mihaljevic R, Dussle C M, et al. Development of RGA-CAPS markers and genetic mapping of candidate genes for sugarcane mosaic virus resistance in maize[J]. Theor Appl Genet, 2002, 105: 355-363.
    [48] Ramalingam J, Vera Cruz C M, Kukreja K, et al. Candidate defense genes from rice, barley, and maize and their association with qualitative and quantitative resistance in rice[J]. Mol Plant Microbe Interact, 2003, 16: 14-24.
    [49] Muehlbauer G L, Specht J E, Thomas-Compton M A, et al. Near isogenic lines - A potential resource in the integration of conventional and molecular marker linkage maps[J]. Crop Sci, 1988, 28: 729-735.
    [50] Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations[J]. Proc Natl Acad Sci USA, 1991, 88: 9828–9832.
    [51] Bagge M, Xia X C, Lübberstedt T. Functional markers in wheat[J]. Current Opinion in Plant Biology, 2007, 10: 211-216.
    [52] Wan A M, Zhao Z H, Chen X M, et al. Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici in China in 2002[J]. Plant Dis, 2004, 88: 896-904.
    [53]赵中华. 2003年全国小麦条锈病的流行特点及治理策略[J].中国植保导刊, 2004, 2: 16-18.
    [54]全国农业技术推广服务中心. 2004年全国主要农作物重大病虫发生趋势预报[J].中国植保导刊, 2004, 3: 21-22.
    [55]张跃进,王建强,姜玉英,等. 2005年全国农作物重大病虫发生趋势预报[J].中国植保导刊, 2005, 4: 28-30.
    [56]张跃进,王建强,姜玉英,等. 2006年全国农作物重大病虫发生趋势预报[J].中国植保导刊, 2006, 4: 5-8.
    [57]张跃进,王建强,姜玉英,等.2007年全国农作物重大病虫发生趋势预报[J].中国植保导刊, 2007, 2: 32-35.
    [58] Lupton F C H, Macer R C F. Inheritance of resistance to yellow rust (Puccinia glum -arum Erikss. and Henn.) in seven varieties of wheat[J]. Transactions of the British Mycological Society, 1962, 45: 21-45.
    [59] Allan R E, Purdy L H. Single gene control of stripe rust resistance in wheat[J]. Plant Dis Rep, 1967, 51: 1041-1043.
    [60] Robbelen G H C, Sharp E L. Mode of inheritance, interaction and application of genes conditioning resistance to yellow rust[R]. Verlay paul parey, Berlin, 1978.
    [61] McIntosh R A. A catalogue of gene symbols for wheat[C]. In:Proc Int Whea Genet Sym, 6th, 1983, 1197-1254.
    [62] Knott D R. The wheat rust breeding for resistance[R]. Springer-verlag, Berlin. 1989
    [63] McIntosh R A, Hart G E, Devos K M. Catalogue of gene symbols for wheat[C]. In: Slinkard AE (ed) Proceedings of ninth international wheat genetics symposium, vol 3. University Extension Press, University of Saskatchewan, Saskatoon, 1998, 139-143.
    [64] McIntosh R A, Yamazaki Y, Devos K M, et al. Catalogue of gene symbols for wheat[C]. In: Pogna N E, Romano N, Pogna E A, Galterio G, (eds). Tenth international wheat genetics symposium. Rome: Instituto Sperimentale per la Cerealcoltura, 2003, vol 5.
    [65] McIntosh R A, Devos K M, Dubcovsky J, et al. Catalogue of gene symbols for wheat: 2005 supplement, http://www.shigen.lab.nig.ac.jp/wheat/komugi/genes/macgene/
    [66] McIntosh R A, Devos K M, Dubcovsky J, et al. Catalogue of gene symbols for wheat: 2006 Supplement. http://wheat.pw.usda.gov/ggpages/wgc/2006upd.html.
    [67] McIntosh R A, Devos K M, Dubcovsky J, et al. Catalogue of gene symbols for wheat: 2007 Supplement. http://wheat.pw. usda.gov/ggpages/ awn/53/Textfile/ WGC. html.
    [68] McIntosh R A, Yamazaki Y, Dubcovsky J, et al. Catalogue of gene symbols for wheat[C]. In Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L,Sharp P, (eds). Proc 11th Intl Wheat Genet Symp. Sydney, Australia: Sydney University Press, 2008.
    [69] Macer R C F. The formal and monosomic genetic analysis of stripe rust (Puccinia striiformis) resistance in wheat[C]. Proceedings of the 2nd International Wheat Genetics Symposium Lund, Sweden 1963 (MacKey J ed.): Hereditas Supplement 1966, 2:127-142
    [70] Riley R, Chapman V, Johnson R. Introduction of yellow rust resistance of Aegilops comosa into wheat by genetically induced homoeologous recombination[J]. Nature 1968, 217: 383-384.
    [71] Riley R, Chapman V, Johnson R. The incorporation of alien disease resistance in wheat by genetic interference with the regulation of meiotic chromosome synapsis[J]. Genetical Research Cambridge, 1968, 12: 199-219.
    [72] Macer R C F. Plant pathology in a changing world[C]. Transactions of the British Mycological Society, 1975, 65: 351-374.
    [73] Johnson R, Taylor A J. Isolates of Puccinia striiformis collected in England from wheat varieties 'Maris Beacon' and 'Joss Cambier'[J]. Nature, 1972, 238: 105-106.
    [74] Priestley R H. Detection of increased virulence in populations of wheat yellow rust[M]. In, Plant Disease Epidemiology. Oxford: Blackwell Scientific Publishers, 1978, (Scott PR & Bainbridge A eds.): 63-70.
    [75] Gerechter-Amitai Z K, Silfhout C H, Grama A, et al. Yr15 a new gene for resistance to Puccinia striiformis in Triticum dicoccoides sel. G-25[J]. Euphytica, 1989, 43: 187 -190.
    [76] Worland A J, Law C N. Genetic analysis of chromosome 2D of wheat I. The location of genes affecting height, day-length insensitivity, hybrid dwarfism and yellow-rust resistance[J]. Zeitschrift für Pflanzenzuchtung, 1986, 96: 331-345.
    [77] Bariana H S, McIntosh R A. Cytogenetic studies in wheat XIV. Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A[J]. Genome, 1993, 36: 476-482.
    [78] Singh R P. Genetic association of leaf rust resistance gene Lr34 with adult plant resistance to stripe rust in bread wheat[J]. Phytopathology, 1992, 82: 835-838.
    [79] Chen X M, Jones S S, Line R F. Chromosomal location of genes for stripe rust resistance in spring wheat cultivars Compair, Fielder, Lee and Lemhi and interactions of aneuploid wheats with races of Puccinia striiformis[J]. Phytopathology, 1995, 85: 375-381.
    [80] McIntosh R A, Lagudah E S. Cytogenetical studies in wheat XVIII. Gene Yr24 for resistance to stripe rust[J]. Plant Breeding, 2000, 119: 81-83.
    [81] Calonnec A, Johnson R. Chromosomal location of genes for resistance to Puccinia striiformis in the wheat line TP1295 selected from the cross of Soissonais-Desprez with Lemhi[J]. European Journal of Plant Pathology, 1998, 104: 835-847.
    [82] Ma J X, Zhou R G, Dong Y S, et al. Molecular mapping and detection of the yellow rust resistance gene Yr26 in wheat transferred from Triticun turgidum L. using microsatellite markers[J]. Euphytica, 2001, 120: 219-226.
    [83] McDonald D, McIntosh R A, Wellings C R, et al. Cytogenetical studies in wheat XIX. Location and linkage studies on gene Yr27 for resistance to stripe rust[J]. Euphytica, 2004, 2: 1-10.
    [84] Singh R P, Nelson J C, Sorrells M E. Mapping Yr28 and other genes for resistance to stripe rust in wheat[J]. Crop Science, 2000, 40: 1148-1155.
    [85] William H M, Singh R P, Herta-Espino J, et al. Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat[J]. Phytopathology, 2003, 93: 153-159.
    [86] Suenaga K, Singh R P, Huerta-Espino J, et al. Microsatellite markers for genes Lr34/Yr18 and other quantitative trait loci for leaf rust and stripe rust resistance in bread wheat[J]. Phytopathology, 2003, 93: 881-890.
    [87] Singh R P, William H M, Huerta-Espino J, et al. Indentification and mapping of genes Yr31 for resistance to stripe rust in Triticum aestivum cultivar pastor[C]. Proceeding of the 10th International Wheat Genetics. Symposium, 2003, Volume: 411-413.
    [88] Eriksen L, Afshari F, Christiansen M J, et al. Yr32 for resistance to stripe rust present in the wheat cultivar Carstens V[J]. Theor Appl Genet, 2004, 108: 567-575.
    [89] Zahravi M. Bulk segregation analysis of stripe rust resistant gene Yr33 in wheat (T.aestivum) using microsatellite markers[C]. Proceeding of the 10th international wheat genetics symposium, Italia, 2003, 861-863.
    [90] Bariana H S, Parry N, Barclay I R, et al. Identification and characterization of stripe rust resistance gene Yr34 in common wheat[J]. Theor Appl Genet, 2006, 112: 1143-1148.
    [91] Marais G F, McCallum B, Snyman J E, et al. Leaf rust and stripe rust resistance genes Lr54 and Yr37 transferred to wheat from Aegilops kotschyi[J]. Plant Breeding, 2005, 124: 538-541.
    [92] Chicaiza O, Khan I A, Zhang X, et al. Registration of five wheat isogenic lines for leaf rust and stripe rust resistance genes[J]. Crop Science, 2006, 46: 485-487.
    [93] Marais G F, McCallum B, Snyman J E, et al. Leaf rust and stripe rust resistance genes Lr54 and Yr37 transferred to wheat from Aegilops kotschyi[J]. Plant Breeding, 2005, 124: 538-541.
    [94] Marais G F, McCallum B, Marais A S. Leaf rust and stripe rust resistance genes derived from Aegilops sharonensis[J]. Euphytica, 2006, 149: 373-380.
    [95] Lin F, Chen X M. Genetics and molecular mapping of genes for race-specific all-stage resistance and non-race-speciWc high-temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa[J]. Theor Appl Genet, 2007, 114: 1277 -1287.
    [96] Kuraparthy V, Chhuneja P, Dhaliwal H S, et al. Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat[J]. Theor Appl Genet, 2007, 114: 1379 -1389.
    [97] Luo P G, Hu X Y, Ren Z L, et al. Allelic analysis of stripe rust resistance genes on wheat chromosome 2Bs[J]. Genome, 2008, 51: 922-927.
    [98] Chen X M, Line R F. Inheritance of stripe rust resistance in wheat cultivars postulated to have resistance gene at Yr3 and Yr4 loci[J]. Phytopathology, 1993, 83: 382-388.
    [99] Chen X M, Jones S S, Line R F. Chromosomal location of genes for resistance to Puccinia striiformis in seven wheat cultivars with resistance genes at the Yr3 and Yr4 loci[J]. Phytopathology, 1996, 86: 1228-1233.
    [100]张正斌.小麦遗传学[M].北京:中国农业出版社,2001.
    [101] Wellings C R, McIntosh R A, Hussain M. A new source of resistance to Puccinia striiformis f. sp. tritici in spring wheats (Triticum aestivum)[J]. Plant Breeding, 1988, 100: 88-96.
    [102] Li G Q, Li Z F, Yang W Y, et al. Molecular mapping of stripe rust resistance gene YrCH42 in Chinese wheat cultivar Chuanmai 42 and its allelism with Yr24 and Yr26[J]. Theor Appl Genet, 2006, 112: 1434-1440.
    [103] Navabi A, Tewari J P, Singh R P, et al. Inheritance and QTL analysis of durable resistance to stripe and leaf rusts in an Australian cultivar Triticum aestivum‘Cook’[J], Genome, 2005, 48: 97-107.
    [104] Chen X M, Line R F, Jones S S. Chromosomal location of genes for resistance to Puccinia striiformis in winter wheat cultivars Heines VII, Clement, Moro, Tyee, Tres and Daws[J]. Phytopathology, 1995, 85: 1362-1367.
    [105] Chen X M, Line R F, Jones S S. Chromosomal location of genes for resistance to Puccinia sriiformis in wheat cultivars Druchamp, Stephens, and Yamhill[J]. Phytopathology, 1994, 84: 1116.
    [106] Peng J H, Fahima T, R?der M S, et al. Microsatellite tagging of the stripe rust resistance gene YrH52 derived from wild emmer wheat, Triticum dicoccoides, and suggestive negative crossover interference on chromosome 1B[J]. Theor Appl Genet, 1999, 98: 862-872.
    [107] Cao Z J, Deng Z Y, Wang M N, et al. Inheritance and molecular mapping of an aliem stripe-rust resistance gene from a wheat-Psathyrostachys huashanica tran slocation line[J]. Plant Science, 2008, 174: 544-549.
    [108]周兖晨,张相岐,王献平,等.滨麦抗条锈病基因的染色体定位和分子标记[J].遗传学报,2001,28(9): 864-869.
    [109] Bomer A, R?der M S, Unger O, et al. The detection and molecular mapping of a major gene for non specific adult plant disease resistance against stripe rust (Puccinia striiformis) in wheat[J]. Theor Appl Genet, 2000, 100: 1095-1099.
    [110] Gosal K S. Aspects of Resistance to Wheat Stripe Rust in Australia: [PhD Thesis]. Sydney: The University of Sydney, 2000.
    [111] Li Z F, Zheng T C, He Z H, et al. Molecular tagging of stripe rust resistance gene YrZH84 in Chinese wheat line Zhou 8425B[J]. Theor Appl Genet, 2006, 112: 1098 -1103.
    [112]辛志勇,Johnson R,Law C N.冬小麦丰抗13抗条锈病基因的分析[J].作物学报,1984,10(4):217-222.
    [113] Stubbs R W. Stripe rust. In, The Cereal Rusts II[M]. 1985, Academic Press, Orlando. (Roelfs AP & Bushnell WR eds.): 61-101.
    [114] Wellings C R, McIntosh R A, Hussain M. A new source of resistance to Puccinia striiformis f. sp. tritici in spring wheats (Triticum aestivum)[J]. Plant Breeding, 1988, 100: 88-96.
    [115] Johnson R, Minchin P N. Genetics of resistance to yellow (stripe) rust of wheat in some differential cultivars[J]. Vortrage für Pflanzenzuchtung. 1992, 24: 227-229.
    [116] McIntosh R A, Wellings C R, Park R F. CSIRO Australia. Wheat Rusts: An Atlas of Resistance Genes[R]. 1995.
    [117]林风,徐世昌,张立军,等.小麦抗条锈病基因Yr2的SSR标记[J].麦类作物学报,2005,25(1):17-19.
    [118] Sun Q, Wei Y, Ni C, et al. Micrsoatellite marker for yellow rust resistance gene Yr5 introgressed from spelt wheat[J]. Plant Breeding, 2002, 121: 539-541.
    [119]钟鸣.小麦抗条锈病基因分子标记的建立[D].沈阳:沈阳农业大学, 2000年6月.
    [120] Yan G P, Chen X M, Line R F, et al. Resistance gene-analog polymorphism markers co-segregating with the Yr5 gene for resistance to wheat stripe rust[J]. Theor Appl Genet, 2003, 106: 636–643
    [121]刘红彦,小麦抗条锈病基因分子标记的建立[D].陕西杨凌:西北农业大学,1999年6月.
    [122] Shi Z X, Chen X M, Line R F, et al. Development of resistance gene analog polymorphism markers for the Yr9 gene resistance to wheat stripe rust[J]. Genome, 2001, 44: 509-516.
    [123] Wang L F, Ma J X, Zhou R H, et al. Molecular tagging of the yellow rust resistance gene Yr10 in common wheat, P.I. 178383 (Triticum aestivum L.)[J]. Euphytica, 2002, 124:71-73.
    [124]邵映田,牛永春,朱立煌,等.小麦抗锈病基因Yr10的AFLP标记[J].科学通报,2001,46(8): 669-672.
    [125] Sun G L, Fahina T, Korol A B, et al. Identification of molecular makers linked to the Yr15 stripe rust resistance gene of wheat originated in wild emmer wheat, Triticum dicoccodes[J]. Theor Appl Genet, 1997, 95(4): 622-628.
    [126] Fahima T, Sun G L, Chaque V, et al. Use of the near isogenic lines approach to identify molecular markers linked to the Yr15 stripe rust resistance gene of wheat[J]. Israel Journal of Plant Science, 1997, 45: 262.
    [127] Robert O, Abelard C, Dedryver F. Identification of molecular markers for the detection of the yellow rust resistance gene Yr17 in wheat[J]. Molecular Breeding, 1999, 5: 167-175.
    [128] Suenaga K, Singh R P, Huerta-Espino J, et al. Microsatellite markers for genes Lr34/Yr18 and other quantitative trait loci for leaf rust and stripe rust resistance in bread wheat[J]. Phytopathology, 2003, 93: 881-890.
    [129] Wen W E, Li G Q, He Z H, et al. Development of an STS marker tightly linked to Yr26 against wheat stripe rust using the resistance gene-analog polymorphism(RGAP) technique[J]. Mol Breeding, 2008, 22: 507 -515.
    [130] Johal G S, Briggs S P. Reductase activity encoded by the Hml disease resistance gene in maize[J]. Science, 1992, 258 (5084): 985-987.
    [131] Martin G B, Brommmonschenkel S H, Chunwongse J, et al. Map-based cloning of a protein kinase gene conferring disease resistance in tomato[J]. Science, 1993, 262: 1432-1436.
    [132] Liu J L,Liu X L,Dai L Y, et al. Recent progress in elucidating the structure, function and evolution of disease resistance genes in plants[J]. Journal of Genetics and Genomics, 2007, 34(9): 765-776.
    [133] Fu D L, Uauy C, Distelfeld A, et al. A kinase-START gene confers temperature -dependent resistance to wheat stripe rust[J]. Science, 2009, 323: 1357-1360.
    [134] Krattinger S G, Lagudah E S, Spielmeyer W, et al. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat[J]. Science, 2009, 323: 1360-1363.
    [135] Traut T W. The functions and consensus motifs of nine types of peptide segments that form diVerent types of nucleotide-binding sites[J]. Eur J Biochem , 1994, 222: 9-19.
    [136] Liu J J, Ekramoddoullah A K M. Isolation, genetic variation and expression of TIR-NBS-LRR resistance gene analogs from western white pine (Pinus monticola Dougl. ex. D. Don.)[J]. Mol Genet Gen, 2004, 270: 432–441.
    [137] Brighthill H D,Libraty D H, Krutzik S R, et al. Host defence mechanisms triggered by microbial lipoproteins through Toll-like recepters[J]. Science,1999, 285: 732-739.
    [138] Catherine F, Christophe R, Per K, et al. Molecular characterization of a new type of receptor-like kinase (wlrk) gene family in wheat[J]. Plant Molecular Biology, 1998, 37: 943-953.
    [139] Xie C J, Sun Q X, Ni Z F, et al. Identification of resistance gene analogue markers closely linked to wheat powdery mildew resistance gene Pm31[J]. Plant Breeding, 2004, 123: 198-200.
    [140] Ahmet Y, Yasar K. Transfer of stripe rust resistance gene Yr26 to Turkish wheats using microsatellite markers[J]. Cereal Research Communications, 2004, 32(1): 25-30.
    [141]李峰奇,韩德俊,魏国荣,等.黄淮麦区126个小麦品种(系)抗条锈病基因的分子检测[J].中国农业科学,2008,41(10):3060-3069.
    [142]王长有,王耀勇,张改生,等.小麦抗白粉病和条锈病基因的分子标记辅助鉴定[J].西北农林科技大学学报(自然科学版),2008,36(3):280-285.
    [143]张跃进,王建强,姜玉英,等. 2008年全国农作物重大病虫发生趋势预报[J].中国植保导刊, 2008, 3: 38-40.
    [144] Sears, E R, Briggle L W. Mapping the gene Pm1 for resistance to Erysiphe graminis f. sp. tritici on chromosome 7A of wheat[J]. Crop Sci, 1969, 9: 96-97.
    [145] Hsam S L K, Huang X Q, Ernst F, et al. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. Em. Thell.) 5. Alleles at the Pm1 locus[J]. Theor Appl Genet, 1998, 96: 1126-1134.
    [146] Singrün C H, Hsam S L K, Hartl L, et al. Powdery mildew resistance gene Pm22 in cultivar Virest is a member of the complex Pm1 locus in common wheat (Triticum aestivum L. em Thell.)[J]. Theor Appl Genet, 2003, 106: 1420-1424.
    [147] Peusha H, Hsam S L K, Zeller F J. Chromosomal location of powdery mildew resistance genes in common wheat (Triticum aestivum L. em. Thell.). 3.Gene Pm22 in cultivar Virest[J]. Euphytica, 1996, 91: 149-152.
    [148] McIntosh R A, Baker E P. Cytogenetical studies in wheat.Ⅳ. Chromosome location and linkage studies involving the Pm2 locus for powdery mildew resistance[J]. Euphytica, 1970, 19: 71-77.
    [149] Briggle L W, Sears E R. Linkage of resistance to Erysiphe graminis f. sp. tritici (Pm3) and hairy glume (Hg) on chromosome 1A of wheat[J]. Crop Sci, 1966, 6: 559–561.
    [150] Zeller F J, Lutz J, Stephan U. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L.) Mlk and other alleles at the Pm3 locus[J]. Euphytica, 1993, 68: 223-230.
    [151] Zeller F J, Hsam S L K. Progress in breeding for resistanceto powdery mildew in common wheat (Triticum aestivum L.)[C]. In: A.E. Slinkard (Ed.), Proceedings of the 9th International Wheat Genet Symposium, University Extension Press, Saskatoon, Canada, 1998, 1: 178 -180.
    [152] The T T, McIntosh R A, Bennett F G A. Cytogenetic studies in wheat. IX. Monosomic analysis, telocentric mapping and linkage relationships of genes Sr21, Pm4, and Mle. Aust[J]. J Biol Sci, 1979, 32: 115-125.
    [153] Law C N, Wolfe M S. Location of genetic factors for mildew resistance and ear emergence time on chromosome 7B of wheat[J]. Can J Genet Cytol, 1966, 8: 462-479.
    [154] Hsam S L K, Huang X Q, Zeller F J. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em. Thell.). 6. Alleles at the Pm5 locus[J]. Theor Appl Genet, 2001, 102: 127-133.
    [155] Huang X Q, Wang L X, Xu M X, et al. Microsatellite mapping of the powdery mildew resistance gene Pm5e in common wheat (Triticum aestivum L.)[J]. Theor Appl Genet, 2003, 106: 858–865.
    [156] Huang X Q, Hsam S L K, Zeller F J. Chromosomal location of two novel genes for resistance to powdery mildew in Chinese landraces (Triticum aestivum L. em. Thell.)[J]. J Genet & Breed. 2000, 54: 311–317.
    [157] J?rgensen J H, Jensen C J. Gene Pm6 for resistance to powdery mildew in wheat[J]. Euphytica, 1973, 22: 423.
    [158] Friebe B, Heun M, Tuleen N, et al. Cytogenetically monitored transfer of powdery mildew resistance from rye into wheat[J]. Crop Sci, 1994, 34: 621-625.
    [159] Hsam S L K, Zeller F J. Evidence of allelism between genes Pm8 and Pm17 and chromosomal location of powdery mildew and leaf rust resistance genes in the common wheat cultivar‘Amigo’[J]. Plant Breeding, 1997, 116: 119–122.
    [160] Hsam S L K, Huang X Q, Ernst F, et al. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. Em. Thell.) 5. Alleles at the Pm1 locus[J]. Theor Appl Genet, 1998, 96: 1126-1134.
    [161] Tosa Y, Tsujimoto H, Ogura H. A gene involed in the resistance of wheat to wheatgrass powdery mildew fungus[J]. Genome, 1987, 29: 850-852.
    [162] Tosa Y, Tokunaga H, Ogura H. Identification of a gene for resistance to wheatgrass powdery mildew fungus in common wheat cultivar Chinese Spring[J]. Genome, 1988, 30: 612-614.
    [163] Jia J, Devos K M, Chao S, et al. RFLP-based maps of the homoeologous group-6 chromosomes of wheat and their application in the tagging of Pm12, a powdery mildew resistance gene transferred from Aegilops speltoides to wheat[J]. Theor Appl Genet, 1996, 92: 559-565.
    [164] Ceoloni C, Del Signore G, Pasquini M, et al. Transfer of mildew resistance from Triticum longissimum into wheat by ph1 induces homoeologous recombination[C]. In:Miller TE, Koebner RMD(eds) Proc 7th Int Wheat Genet Symp, Cambridge, UK, 1988, 221-226.
    [165] Tosa Y, Sakai K. The genetics of resistance of hexaploid wheat to the wheatgrass powdery mildew fungus[J]. Genome, 1990, 33: 225-230.
    [166] Reader M, Miller T E. The introduction into bread wheat of a major gene for resistance to powdery mildew from wild emmer wheat[J]. Euphytica, 1991, 53: 57-60.
    [167] Heun M, Freibe B, Bushuk W. Chromosomal location of the powdery mildew resistance gene of Amigo wheat[J]. Phytopathology, 1990, 80: 1129-1133.
    [168] Lutz J, Hsam S L K, Limpert E, et al. Chromosomal location of powdery mildew resistance genes in Triticum aestivum L. (common wheat). 2.Genes Pm2 and Pm19 from Aegilops squarrosa L[J]. Heredity, 1995, 74: 152-156.
    [169] Friebe B, Heun M, Tuleen N, et al. Cytogenetically monitored transfer of powdery mildew resistance from rye into wheat[J]. Crop Sci, 1994, 34: 621-625.
    [170] Chen P D, Qi L L, Zhou B, et al. Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew[J]. Theor Appl Genet, 1995, 91, 1125-1128.
    [171] McIntosh R A, Hart G E, Devos K M, et al. Catalogue of gene symbols for wheat[C]. In: Slinkard AE (ed) Proc 9th Int Wheat Genet Symp, University Extention Press, Saskatoon, Sask, Canada, 1998, 5: 123-127.
    [172] Huang X Q, Hsam S L K, Zeller F J, et al. Molecular maping of the wheat powdery mildew resistance gene Pm24 and marker validation for molecular breeding[J]. Theor Appl Genet, 2000, 101: 407-414.
    [173] Huang X Q, Hsam S L K, Zeller F J. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em. Thell.) 4. Gene Pm24 in Chinese landrace Chiyacao[C]. Theor Appl Genet, 1997, 95: 950-953.
    [174] Shi A N, Leath S, Murphy J P. A major gene for powdery mildew resistance transferred to common wheat from wild einkorn wheat[J]. Phytopathology, 1998, 88: 144-147
    [175] Rong J K, Millet E, Manisterski J, et al. A new powdery mildew resistance gene: Introgression from wild emmer into common wheat and RFLP-based mapping[J]. Euphytica, 2000, 115: 121-126.
    [176] J?rve K, Peusha H O, Tsymbalova J, et al. Chromosomal location of a Triticum timopheevii-derived powdery mildew resistance gene transferred to common wheat[J]. Genome, 2000, 43: 377-381.
    [177] Peusha H, Enno T, Priilinn O. Chromosomal location of powdery mildew resistance genes and cytogenetic analysis of meiosis in common wheat cultivar Meri[J]. Heroditas, 2000, 132: 29-34.
    [178] Zeller F J, Kong L, Hartl L, et al. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 7. Gene Pm29 in line Pova[J]. Euphytica, 2002, 123: 187– 194 .
    [179] Liu Y G, Tsunewaki K. Restriction fragment length polymorphism (RFLP) analysis in wheat. II. Linkage maps of the RFLP sites in common wheat[J]. Jpn J Genet Oct, 1991, 66(5): 617-33.
    [180] Xie C J, Sun Q X, Ni Z F, et al. Chromosomal location of a Triticum dicoccoides-derived powdery mildew resistance gene in common wheat by using microsatellite markers[J]. Theor Appl Genet, 2003, 106: 341-345.
    [181] Hsam S L K, Lapochkina I F, Zeller F J. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 8. Gene Pm32 in a wheat-Aegilops speltoides translocation line[J]. Euphytica, 2003, 133: 367–370.
    [182] Zhu Z D, Zhou R H, Kong X Y, et al. Microsatellite markers linked to two powdery mildew resistance genes introgressed from Triticum carthlicum accession PS5 into common wheat[J]. Genome, 2005, 48: 585–590.
    [183] Miranda L M, Murphy J P, Marshall D, et al. Pm34: a new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat (Triticum aestivum L.)[J]. Theor Appl Genet, 2006, 113: 1497-504.
    [184] Miranda L M, Murphy J P, Marshall D, et al. Chromosomal location of Pm35, a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticum aestivum L.)[J]. Theor Appl Genet, 2007, 114: 1451 -1456.
    [185] Antonio Blanco, Gadaleta A. et al. Molecular mapping of the novel powdery mildew resistance gene Pm36 introgressed from Triticum turgidum var. dicoccoides in durum wheat[J]. Theor Appl Genet, 2008, 117: 135-142.
    [186] Perugini L D, Murphy J P, Marshall D, et al. Pm37, a new broadly effective powdery mildew resistance gene from Triticum timopheevii[J].Theor Appl Genet, 2008, 116: 417-425.
    [187] Lillemo M, Asalf B, Singh R P, et al. The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar[J]. Theor Appl Genet, 2008, 116: 1155 -1166.
    [188] Luo P G, Luo H Y, Chang Z J, et al. Characterization and chromosomal location of Pm40 in common wheat: a new gene for resistance to powdery mildew derived from Elytrigia intermedium[J]. Theor Appl Genet, 2009, DOI 10.1007/s00122 -009-0962-0.
    [189] Li G Q, Fang T L, Xie C J, et al. Molecular identification of a new powdery mildew resistance gene Pm41 on chromosome 3BL derived from wild emmer (Triticum turgidum var. dicoccoides)[J]. Theor Appl Genet (In press), 2009.
    [190] Wei H, Liu Z J, Zhu J, et al. Identification and genetic mapping of Pm42, a new recessive wheat powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides)[J]. Theor Appl Genet (In press), 2009.
    [191] He R, Chang Z, Yang Z, et al. Inheritance and mapping of powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat[J]. Theor Appl Genet (In press), 2009, DOI 10.1007/s00122 -009-0971-Z.
    [192] Lutz J, Katzhmmer M, Stephan U, et al. Identification of powdery–mildew-resistance genes in common wheat (Triticum aestivum L. em. Thell.). V. Old German cultivars and cultivars released in the former GDR[J]. Plant Breeding, 1995, 114: 29-33.
    [193] Huang X Q, Hsam S L K, Zeller F J. Chromosomal location of genes for resistance to powde ry mildew in Chinese wheat lines Jieyan 94-1-1 and Siyan 94-1-2[J]. Hereditas, 2002, 136: 212?218.
    [194] Yao G, Zhang J, Yang L, et al. Genetic mapping of two powdery mildew resistance genes in einkorn (Triticum monococcum L.) accessions[J]. Theor Appl Genet, 2007, 114(2): 351–358.
    [195] Zhou R H, Zhu Z D, Kong X Y, et al. Development of wheat near-isogenic lines for powdery mildew resistance[J]. Theor Appl Genet, 2005, 110: 640?648.
    [196] Singrün C H, Hsam S L, Zeller F J, et al. Localization of a novel recessive powdery mildew resistance gene from common wheat line RD30 in the terminal region of chromosome 7AL[J]. Theor Appl Genet, 2004, 109: 210–214.
    [197] Chantret N, Souridille P, R?der M, et al. Location and mapping of the powdery mildew resistance gene MlRE and detection of a resistance QTL by bulked segregant analysis (BSA) with microsatellites in wheat[J]. Theor Appl Genet, 2000, 100: 1217-1224.
    [198] Pogna N E, Romano N, Pogna E A, et al. Chromosomal location of powdery mildew resistance gene Td1055 in wild emmer wheat (T. dicoccoides) accessions TA1055 and TA1150[C]. Proceedings 10th International Wheat Genetics Symposium Instiuto Sperimentale per la Cerealcoltura, Rome, Italy, 2003, 3: 1090 -1092.
    [199] Mohler V, Zeller F J, Wenzel G, et al. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 9. Gene MlZec1 from the Triticum dicoccoides-derived wheat line Zecoi-1[J]. Euphytica, 2005, 142: 161-167.
    [200] Niu J S, Wang B Q, Wang Y H, et al. Chromosome location and microsatellite markers linked to a powdery mildew resistance gene in wheat line 'Lankao 90(6)'[J]. Plant Breeding, 2008, 127: 346-349.
    [201]胡铁柱,李洪杰,谢超杰,等.小麦品种“唐麦4号”抗白粉病基因的分子标记与染色体定位[J].作物学报,2008, 34(7): 1193?1198.
    [202]唐媛,傅体华,贾明娟. SSR标记定位一个新的小麦白粉病抗性基因[J].华北农学报,2008,23(5):127-130.
    [203] Zhu Z D, Zhou R H, Kong X Y, et al. Microsatellite marker identification of a Triticum aestivum-Aegilops umbellulata substitution line with powdery mildew resistance[J]. Euphytica, 2006, 150: 149–153.
    [204]刘素兰,王长有,王秋英,等.小麦新种质N9628-2抗白粉病基因的SSR分析[J].作物学报,2008,34(1):84-88.
    [205] Ma Z Q, Sorrells M E, Tanksley S D. RFLP markers linked to powdery mildew resistance genes Pm1, Pm2, and Pm4 in wheat[J]. Genome, 1994, 37: 871-875.
    [206] Hartl L, Weiss H, Stephan U, et al. Molecular identification of powdery mildew resistance genes in wheat (Triticum aestivum L.)[J]. Theor Appl Genet, 1995, 90: 601-606.
    [207] Hu X Y, Ohm H W, Deikat I. Ientification of RAPD markers linkde to the gene Pm1 for resistance to powdery mildew in wheat[J]. Theor Appl Genet, 1997, 94: 832-840.
    [208] Hartl L, Mohler V, Zeller F J, et al. Identification of AFLP markers closely linkde to the powdery mildew resistance gene Pm1c and and Pm4a in common wheat[J]. Genome, 1999, 42: 322-329.
    [209]刘金元,陶文静,刘大均.与小麦白粉病抗性基因Pm2紧密连锁的RAPD标记的筛选研究[J].遗传学报, 2000, 27(2): 139-145.
    [210] Mohler V, Jahoor A. Allele specific amplification of polymorphic sites for the detection of powdery mildew resistance loci in cereals[J]. Theor Appl Genet, 1996, 93: 1078–1082.
    [211] Hartl L, Weiss H, Zeller F J, et al. Use of RFLP markers for the identification of alleles of the Pm3 locus conferring powdery mildew resistance in wheat (Triticum aestivum L.)[J]. Theor Appl Genet, 1993, 86: 959-963.
    [212] Bougot Y, Lemoine J, Pavoine M T, et al. Identification of a microsatellite marker associated with Pm3 resistance alleles to powdery mildew in wheat[J]. Plant Breed, 2002, 121: 325–329.
    [213] Huang X Q, Hsam S L K, Mohler V, et al. Genetic mapping of three alleles at the Pm3 locus conferring powdery mildew resistance in common wheat (Triticum aestivum L.)[J]. Genome, 2004, 47: 1130–1136.
    [214]陈松柏,蔡一林,周荣华,等.小麦抗白粉病基因Pm4的STS标记[J].西南农业大学学报,2002,24(3):231-234.
    [215] Hao Y F, Liu A F, Wang Y H, et al. Pm23 : a new allele of Pm4 located on chromosome 2AL in wheat[J]. Theor Appl Genet, 2008, 117(8): 1205-1212.
    [216] Chao S, Sharp P J, Worland A J, et al. RFLP-based genetic maps of wheat homoeologous group 7 chromosomes[J]. Theor Appl Genet, 1989, 78(4): 495-504.
    [217] Nematollahi G, Mohler V, Wenzel G, et al. Microsatellite mapping of powdery mildew resistance allele Pm5d from common wheat line IGV1-455[J]. Euphytica, 2008, 159(3): 307-313.
    [218]朱玉丽,王黎明,王洪刚.小麦抗白粉病基因Pm5e的SSR标记研究[J].分子植物育种,2008,6(6):1080-1084.
    [219] Tao W, Liu D, Liu J, et al. Genetic mapping of the powdery mildew resistance gene Pm6 in wheat RFLP analysis[J]. Theor Appl Genet, 2000, 100: 564-568.
    [220]王心宇,亓增军,马正强.小麦抗白粉病基因Pm6的RAPD标记[J].遗传学报,2000,27(12):1072-1079.
    [221]王俊美,刘红彦,王飞,等.小麦抗白粉病基因Pm6的微卫星标记鉴定[J].植物病理学报,2007,37(3):329-332.
    [222] Wricke G, Dill P, Senft P. Linkage between a major gene for powdery mildew resistance and an RFLP marker on chromosome 1R of rye[J]. Plant Breeding, 1996, 115: 71-73.
    [223] Jia J, Devos K M, Chao S, et al. RFLP-based maps of the homoeologous group-6 chromosomes of wheat and their application in the tagging of Pm12, a powdery mildew resistance gene transferred from Aegilops speltoides to wheat[J]. Theor Appl Genet, 1996, 92: 559-565.
    [224] Song W, Xie H, Liu Q, et al. Molecular identification of Pm12 carrying introgression lines in wheat using genomic and EST-SSR markers[J]. Euphytica, 2007, 158(1): 95-102.
    [225] Cenci A, D’ovidio R, Tanzarella O A, et al. Identification of molecular markers linked to Pm13, an Aegilops longissima gene conferring resistance to powdery mildew in wheat[J]. Theor Appl Genet, 1999, 98: 448-454.
    [226] Chen X M, Luo Y H, et al. Chromosomal location of powdery mildew resistance gene Pm16 in wheat using SSR marker analysis[J]. Plant Breeding, 2005, 124: 225-228.
    [227] Hsam S L K, Mohler V, Hartl L, et al. Mapping of powdery mildew and leaf rust resistance genes on the wheat-rye translocated chromosome T1BL. 1RS using mloecular and biochemical markers[J]. Plant Breeding, 2000, 119: 87-89.
    [228] Mater Y, Baenziger S, Gill K, et al. Linkage mapping of powdery mildew and greenbug resistance genes on recombinant 1RS from‘Amigo’and‘Kavkaz’wheat–rye translocations of chromosome 1RS.1AL[J]. Genome, 2004, 47: 292-298.
    [229] Qi L L, Cao M S, Chen P D, et al. Identification, mapping, and application of polymorphic DNA associated with resistance gene Pm21 of wheat[J]. Genome, 1996, 39: 191-197.
    [230] Liu Z Y, Sun Q X, Ni Z F, et al. Molecular characterization of a novel powdery mildew gene Pm30 in wheat originating from wild emmer[J]. Euphytica, 2002, 123: 21-29.
    [231]徐相波,刘冬成,郭小丽,等.小麦抗白粉病基因Pm21分子标记辅助选择的应用[J].分子植物育种,2006, 4(2): 194-198.
    [232]桑大军,许为钢,胡琳,等.河南省小麦品种白粉病抗性基因的分子鉴定及分子标记辅助育种[J].华北农学报,2006,21(1):86-91.
    [233]董建力,张增艳,王敬东,等. 3种小麦抗白粉病基因聚合体的STS和SCAR标记[J]. 2007, 16(3):64-67.
    [234]张林,樊庆琦,隋新霞,等.山东小麦品种抗白粉病基因的分子鉴定[J].麦类作物学报,2008, 28(5):905-911.
    [235] Wis’niewska H, Kowalczyk K. Resistance of cultivars and breeding lines of spring wheat to Fusarium culm orum and powdery mildew[J]. J Appl Genet, 2005, 46(1) : 35– 40.
    [236] Tommasini L, Yahiaoui N, Srichumpa P, et al. Devel2 opment of functional markers speci -fic for seven Pm3 resistance alleles and their validation in the bread wheat gene pool [J]. Theor Appl Genet, 2006, 114: 165- 175.
    [237] Hysing S C, Merker A, Liljeroth E, et al. Powdery mildew resistance in 155 Nordic bread wheat cultivars and landraces [ J ]. Hereditas, 2007, 144(3) : 102– 11.
    [238] Kilpatrick R A. New wheat cultivars and longevity of rust resistance, 1971-1975[R]. 1975, Beltsville, MD: US Department of Agriculture, Agricultural Research Service.
    [239]杨作民,解超杰,孙其信.后条中32时期我国小麦条锈抗源之现状[J].作物学报,2003, 29(2):161-168.
    [240] Lincoln S, Daly M, Lander E. Constructing genetic maps with MAPMAKER /EXP3.0. 3rd edn, Whitehead Institute Technical Report, Cambridge, Massachus- etts, 1992.
    [241] Ling H Q, Zhu Y, Keller B. High-resolution mapping of the leaf rust disease resistance gene Lr1 in wheat and characterization of BAC clones from the Lr1 locus[J]. Theor Appl Genet, 2003, 106: 875–882.
    [242] McFadden H G, Lehmensiek A, Lagudah E S. Resistance gene analogues of wheat: molecular genetic analysis of ESTs[J]. Theor Appl Genet, 2006, 113: 987–1002.
    [243] Xiao W K, Xu M L, Zhao J R, et al. Genome-wide isolate- ion of resistance gene analogs in maize (Zea mays L.) [J]. Theor Appl Genet, 2006, 113: 63–72.
    [244]贾秋珍,金社林,曹世勤,等.小麦条锈菌生理小种条中32号及水源14致病类型在甘肃的流行与发展趋势[J].植物保护学报,2007,34(2):263-267.
    [245]全国农业技术推广中心,河南省农科院小麦研究中心.中国冬小麦新品种动态[R].北京:中国农业科技出版社,2008.
    [246]王西成主编. 2007河南省小麦新品种研究[R].北京:中国广播电视出版社,2007.
    [247]曹廷杰主编. 2008河南省小麦新品种研究[R].北京:中国广播电视出版社,2008.
    [248] Peng J H, Fahima T, R?der M S, et al. Microsatellite high-density mapping of the stripe rust resistance gene YrH52 region on chromosome 1B and evaluation of its marker-assisted selection in the F2 generation in wild emmer wheat[J]. New Phytologist, 2000, 146, 141-154.
    [249] Zheng K L , Huang N , Jon B , et al. PCR-based maker-assisted selection in rice breeding [M ]. Manila, Philippines: IRRI discussion paper series NO 12,1995.
    [250]胡铁柱,李洪杰,刘子记,等.普通小麦品种“豫麦66”抗白粉病基因的鉴定与分子标记[J].作物学报,2008, 34(4): 544?550.
    [251] Huang X Q, R?der M S. Molecular mapping of powdery mildew resistance genes in wheat: A review[J]. Euphytica, 2004, 137: 203–223.
    [252]李豪圣,刘建军,宋建民,等.高产稳产抗病广适型小麦新品种济麦22[J].麦类作物学报, 2007, 27: 744 .
    [253] Saghai-Maroof M A, Soliman K M, Jorgensen R A, et al. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal locations and population dynamics[J]. Proc Natl Acad Sci USA, 1984, 81: 8014–8018.
    [254] Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.)[J]. Theor Appl Genet, 2004, 109: 1105?1114.
    [255] Song Q J, Shi J R, Singh S, et al. Development and mapping of microsatellite (SSR) markers in wheat[J]. Theor Appl Genet, 2005, 110: 550?560.
    [256] Conley E J, Nduati V, Gonzalez-Hernandez J L, et al. A 2600-locus chromosome bin map of wheat homoeologous group 2 reveals interstitial gene-rich islands and colinearity with rice[J]. Genetics, 2004, 168: 625–637.
    [257] Sourdille P, Singh S, Cadalen T, et al. llite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.)[J]. Funct Integr Genomics, 2004, 4: 12-25.
    [258]武计萍,许钢垣,仇松,等.小麦抗病资源临远7069的抗性遗传表现及其利用[J].麦类作物学报, 1997, 17(5): 16–18.
    [259]王剑雄,张清海,郭秀婵.英国小麦品种的抗条锈和抗白粉性及其利用刍议[J].河南农业大学学报,1992,26(2): 174-178 .
    [260]向齐君,盛宝钦,段霞瑜,等.若干小麦抗白粉病品系的有效抗病基因的测定[J].作物学报, 1996, 22(6): 741-744 .
    [261]武英鹏,原宗英,李艳芳,等.山西省不同生态区小麦抗白粉病菌毒性监测研究[J].中国农业生态学报, 2005, 13(2): 62-64.
    [262]曹世勤,郭建国,骆惠生,等.甘肃小麦白粉病抗源材料的筛选及抗病基因库的组建[J].植物保护, 2008, 34(1): 49-52.
    [263]李强,王保通,吴兴元,等.陕西省小麦抗白粉病基因及新育成小麦品种(系)抗白粉病分析[J].植物保护学报, 2008, 35(5): 438-442.
    [264]张志华,王洪森,闫俊,等.抗病小麦种质C39的评价与利用[J].作物品种资源, 1999, 4: 36-37.
    [265]郑殿升,宋春华,刘三才,等.对抗白粉病而晚熟小麦种质的改良[J].作物品种资源, 1999, 4: 33-55.
    [266]周阳,何中虎,张改生,等.1BL/1RS易位系在我国小麦育种中的应用[J].作物学报,2004,30(6):531-535.
    [267]宋宏超,任明全,康明辉,等.小麦新品种豫麦29号的选育及其主要特性[J].河南农业科学,1994,5:1-3.
    [268]任明见,朱文华,张庆勤.小麦新抗源—贵农21抗白粉病基因分析[J].种子, 1999,6: 14-16.
    [269]沈东风,王书子,王翠玲,等.优质高产小麦新品种-洛麦1号[J].麦类作物学报, 2003,23(3):157.
    [270]许为钢,胡琳,张磊,等.河南省小麦白粉病、条锈病抗性基因利用状况及分子聚合育种进展[R]. 2009年全国植物分子育种研讨会摘要集,2009,104.
    [271]施爱农,陈孝,肖世和.抗白粉病小麦新品系的选育及其抗性基因的分析[J].植物病理学报,1998,28(3):209-214.
    [272]肖永贵,闫俊,何中虎,等. 1BL/1RS易位对小麦产量性状和白粉病抗性的影响及其QTL分析[J].作物学报,2006,32(11):1636-1641.
    [273]王竹林,何中虎,段霞瑜,等. 54份CIMMYT小麦材料抗白粉病分析[J].西北植物学报,2007,27(10):1973-1979.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700