人参皂苷Rg1对树突状细胞效应与分子机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     人参是传统的补药,具有延长寿命和增强人体抗病能力的作用,可有效地抗应激、抗疲劳、抗肿瘤以及抗氧化等作用。人参皂苷是其主要有效成分,其中以人参皂苷Rg1含量较高。对人参的药物基因组学和调节阴阳平衡研究表明,人参皂苷Rgl具有抗肿瘤作用和类固醇激素样作用。树突状细胞(DC)是功能最强的专职抗原提呈细胞,它可捕获肿瘤细胞分泌的可溶性抗原,以MHCⅠ类分子或Ⅱ类分子限制的方式提呈给CD8+T细胞或CD4+T细胞,使之活化并发挥抗瘤效应。其中CD4+T细胞还参与激活B细胞、巨噬细胞、自然杀伤细胞(NK)和细胞毒淋巴细胞(CTL),协同发挥抗肿瘤作用。人参皂苷Rg1作为人参的主要成分,可提高小鼠的非特异性免疫功能,但其机制尚不清楚,是否能通过影响DC功能而提高免疫应答有待进一步研究。基因芯片在研究药物对机体免疫系统的调节,寻找药物靶向方面具有优越性,本课题运用功能基因芯片技术,研究与DC功能相关的基因,以期找到人参皂苷Rg1作用于DC的相关分子,明确人参皂苷Rg1发挥免疫调节作用的信号通路,为中医药“扶正祛邪”治疗原则以及人参的双向免疫调节作用提供实验依据,也为人参皂苷Rg1作为临床抗肿瘤新中成药的组成成份提供明确的生物学基础和实验依据。
     方法
     1、实验一针对人参皂苷Rg1是否影响卵清蛋白(OVA)免疫小鼠特异性免疫应答能力进行研究。以OVA为抗原,混合人参皂苷Rgl或氢氧化铝(Al(OH)3)佐剂,颈部皮下免疫BALB/c小鼠,间隔2周,免疫三次。分为生理盐水对照组(NS组)、人参皂苷Rgl对照组(Rg1组)、铝盐对照组(A1组)、OVA组、OVA+Al组和OVA+Rg1组共六组。免疫三次后第10天,采用MTT比色法测小鼠脾淋巴细胞的增殖能力、用间接ELISA法分别测总血清IgG、IgG1、IgG2a、IgG2b变化以及血清白细胞介素-4(IL-4)、γ干扰素(IFN-γ)的分泌水平等指标的变化,探讨人参皂苷Rgl对BALB/c小鼠免疫调节作用的影响。
     2、实验二以体外培养小鼠骨髓来源树突状细胞模型为研究对象,以粒细胞及巨噬细胞集落刺激因子(GM-CSF)和IL-4刺激骨髓造血干细胞,从而使之朝树突状细胞方向分化。待培养至第7天收集细胞,加入不同药物刺激24小时,分为培养基对照组(Ⅰ组)、人参皂苷Rg1组(Ⅱ组)、脂多糖(LPS)组(Ⅲ组)和人参皂苷Rg1+LPS组(Ⅳ组)共四组。培养过程使用相差显微镜观察DC的形态变化,并在培养结束时采用流式细胞术检测各组DCs标志表面分子MHC-Ⅱ、CD40和CD86的表达情况,探讨人参皂苷Rgl能否能促进树突状细胞的成熟以及人参皂苷Rg1作用于DC的可能机制。
     3、实验三中,对于树突状细胞吞噬抗原能力的检测,收集培养6天的骨髓造血干细胞(即未成熟DCs),加入不同浓度的人参皂苷Rg1刺激24小时后,加入FITC-OVA避光孵育1小时,最终冰上终止反应5分钟,流式细胞仪检测树突状细胞吞噬FITC-OVA的荧光强度。对于DCs处理提呈抗原能力的检测,收集培养6天的骨髓造血干细胞(即未成熟DCs),加入不同浓度的人参皂苷Rg1刺激细胞24小时后,用SIINFEKL肽段刺激,再加入1μg/ml的LPS刺激16小时后和B3Z T细胞孵育,通过检测上清中IL-2的水平判断致敏后的树突状细胞对B3Z T细胞的活化能力。细胞因子的检测分组和实验二相同,加入药物刺激后为检测IL-12分泌水平的孵育时间为24小时,而为检测IL-4和IL-10分泌水平的孵育时间为48小时,利用间接ELISA法检测树突状细胞培养上清中细胞因子IL-12、IL-4、IL-10水平。进一步揭示人参皂苷Rgl免疫调节作用的机制。
     4、实验四分组和实验二相同,以GM-CSF和IL-4刺激骨髓造血干细胞,从而使之朝树突状细胞方向分化。待培养至第7天收集细胞,加入不同药物刺激24小时,分为培养基对照组、人参皂苷Rg1组、LPS组和人参皂苷Rgl+LPS组共四组。培养结束后,抽提树突状细胞总RNA,利用树突状和抗原呈递细胞基因芯片对细胞功能相关基因进行检测,以筛选人参皂苷Rgl作用于DC的差异表达基因,为进一步寻找药物作用靶点提供了线索。
     5、实验五通过分析总结实验四的结果找出感兴趣的目的基因,以GAPDH为管家基因,提取细胞RNA,以等量RNA为模板,以各基因特异引物,采用半定量RT-PCR检测EGFR和p44 mRNA表达水平;不同药物和DC孵育后,裂解细胞提取蛋白质,总蛋白跑SDS-PAGE后转膜,采用Western blot法分析EGFR和ERK1/2蛋白表达水平从而进一步证实人参皂苷Rg1是否影响EGFR-p44 MAPK途径对DC产生调控作用。
     结果
     1、用人参皂苷Rg1、铝盐佐剂以及卵清蛋白(OVA)免疫各组小鼠,体重并无明显差异。OVA特异性总IgG抗体水平的OD值,按照从小到大的顺序依次是:OVA<(OVA+Rg1)<(OVA+A1),其中(OVA+Rg1)组明显高于OVA组(p<0.01);(OVA+Rg1)组IgG1、IgG2a、IgG2b、IgG3抗体水平明显高于OVA组(p<0.05);(Al+OVA)组IgG1、IgG3.IgG2b抗体具有较高水平,IgG2a低水平(p>0.05).OVA组与NS组相比,IgG1和IgG3具有较高水平;此外,(OVA+Rg1)组免疫小鼠脾细胞对OVA抗原刺激的增殖反应在各组中最高;ELISA结果显示(OVA+Rg1)组脾细胞分泌的IFN-γ含量最高,且(OVA+Rg1)组和OVA组存在明显差别(p=0.03);而(OVA+Al)组与OVA组相比分泌更高水平IL-4(p=0.01)。
     2、体外培养BM-DC 7d后,相差显微镜下可见典型形态的树突状细胞,收集总DC数超过85%。40lg/ml的人参皂苷Rgl处理不成熟BM-DC 24小时后,表面分子I-A/I-E、CD40和CD86变化不显著;加入LPS后,DC表面的I-A/I-E、CD40和CD86分子均显著升高(p<0.05,与对照组相比);人参皂苷Rgl和LPS同时加入DC时,细胞表面的I-A/I-E分子表达显著性升高(p<0.05,与LPS组相比),而CD40和CD86升高不明显。
     3、人参皂苷Rg1可以在体外促进未成熟DC分泌IL-12,和LPS同时作用时,有协同增强作用;此外人参皂苷Rgl还能促进未成熟树突状细胞分泌IL-4和IL-10;人参皂苷Rg1可以显著增强未成熟树突状细胞吞噬FITC-OVA抗原,并且促使成熟树突状细胞处理抗原肽,并提呈给T细胞使之活化分泌IL-2。
     4、树突状细胞RNA提取A260/A280的比值在2.0左右,变性琼脂糖凝胶电泳RNA条带清晰,28s:18s rRNA条带亮度接近2:1;经终浓度为40μg/ml的人参皂苷Rg1和/或1μg/ml LPS处理24小时后,人参皂苷Rgl组与对照组相比较(Ⅱ/Ⅰ)上调≥2倍基因23个,下调≥2倍基因45个;LPS组与对照组相比较(Ⅲ/Ⅰ)上调≥2倍基因15个下调≥2倍基因47个;人参皂苷Rg1+LPS组与人参皂苷Rg1组相比(Ⅳ/Ⅱ)上调≥2倍基因35个,下调≥2倍基因15个;人参皂苷Rg1+LPS组与LPS组相比(Ⅳ/Ⅲ)上调≥2倍基因37个,下调≥2倍基因10个,在差异表达基因中,给予人参皂苷Rg1后,Erbb2和Ifi44基因在DCs呈现较高转录水平。
     5、从基因芯片结果中找出感兴趣的差异表达基因Erbb2和Ifi44,进一步利用半定量RT-PCR和Western blot法检测Rgl组、LPS组以及Rg1+LPS组分别处理DC后的EGFR.p44基因的转录水平及蛋白质表达水平。其中Rgl组与对照组相比,两条基因的结果条带清晰,EGFR.p44基因转录水平明显增加;Western blot法分析EGFR和p44蛋白分泌水平均上调。
     结论
     1、人参皂苷Rg1能增强卵清蛋白免疫小鼠的特异性免疫应答。
     2、人参皂苷Rg1不能促进未成熟树突状细胞的成熟,但能促进成熟DCs高表达I-A/I-E分子;人参皂苷Rg1能增强未成熟DCs的抗原吞噬能力;人参皂苷Rgl能促进成熟DCs的抗原提呈能力。
     3、人参皂苷Rg1对DCs功能基因的调控涉及到DC的迁移、抗原吞噬、处理和提呈、分泌细胞因子等各个环节,尤其是能通过EGFR-MAPK途径调控下游细胞因子IL-10的产生,从而影响T细胞的极化状态调节免疫应答。
     综上所述,尽管人参皂苷Rgl不能促进未成熟树突状细胞的成熟,但能增强小鼠树突状细胞的吞噬抗原、处理呈递抗原的能力并影响其产生细胞因子。上述作用可能涉及到多个靶点,通过本实验研究可以明确人参皂苷Rg1能够上调EGFR-MAPK途径调控DC功能而调节下游细胞因子IL-10的产生,从而调控免疫应答。这种作用是否是直接作用抑或是间接作用,需要进一步实验证明,下一步拟利用生物传感器或iRNA干扰技术进一步明确人参皂苷Rg1是否直接作用于EGFR分子。除此之外,我们的实验结果表明人参皂苷Rgl能辅助增强小鼠特异性免疫应答能力。
     本研究的实验结果证明了人参皂苷Rg1具有双向的免疫调节作用,探讨了人参皂苷Rgl作用于树突状细胞的分子机制及其发生作用的信号通路,为中医药“扶正祛邪’治疗原则以及人参的双向免疫调节作用提供实验依据,并为中医药调节免疫功能研究提供一个新的思路和方法,最终为将来人参皂苷Rg1作为临床抗肿瘤新中成药的组成成份提供明确的生物学基础和实验依据。
In Chinese medicine, ginseng has long been used as a general tonic to promote longevity and enhance bodily functions. It has also been claimed to be effective in combating stress, fatigue, oxidants and cancer.Ginsenoside Rgl is one of ginseng's active ingredients and has anti-tumor, angiomodulating and steroid-like activities through investigating its pharmacogenomics from the perspective of the Yin/Yang therory. Though celluar immunity mediated by T cells、NK cells and macrophages is predominant in tumor immunity, humoral immunity plays an important role in the virus-induced tumors. However, dendritic cells (DC), which is the most powerful professional antigen presenting cells, can capture soluble antigens secreted by tumor cells, present them to be recongnized by CD4+T cells by the MHCⅠor MHCⅡmolecules restricted manner and finally activate CD8+T or CD4+T cells which play anti-tumor effect. In addition, CD4+T cells also involved in activation of B cells, macrophages, NK cells and CTL, synergistic antitumor effects. It is reported that ginsenoside Rgl as the main component of ginsenoside improved the non-specific immune function in mice, however, wheather this enhancement is mediated by regulating the functions of DCs remains unknown. Gene chip technology has advantages in studying the regulation of the immune system and finding out the key molecules on the immune cells influence by drugs. This study, is focused on the influence which ginsenoside Rgl has on the specific immune responses in BALB/c mice as well as the key molecules on DCs which ginsenoside Rgl targets by gene chip technology, in order to find out the target signal passway of ginsenoside Rgl on DCs and provide the experimental evidence for the therapeutic principles of strenghthening body resistance and eliminating evil in TCM, the two-direction regulation of ginseng as well as ginsenoside Rg1 as the main composition of new anti-tumor Chinese medicines.
     Method
     1. At first, the influence of ginsenoside Rg1 on immune responses immunized by ovalbumin (OVA) in BALB/c mice was investigated.50μg OVA mixed ginsenoside Rgl or aluminum hydroxide (Al (OH) 3) adjuvant, were given to immunize BALB/c mice three times at a two-week interval.10 days after three immunizations, lymphocyte proliferation, specific total IgG and IgG subclass, cytokines IL-4 and IFN-y secreted by splenocytes from culture supernatants were measured respectively by MTT assay and ELISA.
     2. The influence of ginsenoside Rg1 on the surface molecules of bone marrow derived dendritic cells. After culturing bone marrow derived cells stimulated by Granulocyte macrophage colony stimulating factor (GM-CSF) and Interleukin-4 for 7 days, bone marrow derived dendritic cells (BM-DCs) were treated by different concentrations of ginsenoside Rg1 and LPS for 24 hours. Finally, the expression of the surface molecule I-A /I-E, CD40 and CD86 were detected by flow cytometry in order to investigate whether ginsenoside Rg1 could promote immature DCs to mature.
     3. In this study, the impacts of ginsenoside Rgl on the secretion of cytokines, phagocytosis and antigen-presenting of murine bone marrow dendritic cells were analyzed. After culturing bone marrow derived cells stimulated by GM-CSF and Interleukin-4 for 7 days, BM-DCs were treated by different concentrations of ginsenoside Rg1 and LPS for 24 hours or 48 hours. Then culture supernatant were collected and the sectretion of cytokines IL-12, IL-4, IL-10 levels by an indirect ELISA assay. In addition, after BM-DCs were treated by ginsenoside Rgl and then FITC-OVA for 1 hour, the phagocytosis was detected by flow cytometry. Finally, the influence of ginsenoside Rg1 on antige-presenting of BM-DCs were detected by IL-2 secreted from active B3Z T cells.
     4. The influence of ginsenoside Rg1 on the expression of functional gene from mouse bone marrow-derived DC was analyzed by gene chip technique. After culturing bone marrow derived cells stimulated by GM-CSF and Interleukin-4 for 7 days, BM-DCs were treated by different concentrations of ginsenoside Rg1 and LPS for 24 hours and then the total RNA was extracted. Oligo dendritic &antigen presenting cell gene chips were utilized to find out the difference genes.
     5.With GAPDH as the housekeeping gene, was extracted RNA, the same amount of RNA as template, the gene specific primers, using semi-quantitative RT-PCR and semi-quantitative detection of p44 mRNA expression levels EGFR; DC lysis cell extracts after incubation of protein, total protein run SDS-PAGE after the transfer film by Western bolt analysis EGFR and p44 protein secretion, and whether the aforementioned cytokine ELISA assay consistent with the results, thus confirming whether ginsenoside Rg1 by EGFR-p44 MAPK pathway on the regulation of DC generation.
     Result
     1. Among the different groups, body weights did not differ significantly. OD values of OVA-specific IgG antibodies responses are ranging in descending order:OVA<(OVA+ Rgl)<(OVA+Al). Among them, those from (OVA+Rg1) group were significantly higher than those from OVA group (p<0.01). In addition, IgG1, IgG2a, IgG2b, IgG3 antibody levels from(OVA+Rg1) group were significantly higher than those from OVA group (p<0.05); IgG1, IgG3, IgG2b levels from (Al+OVA) group were obviously higher while its IgG2a responses didn't increase significantly compared with the NS group. What's more, IgG1 and IgG3 responses from OVA-immunized alone group were evidently higher than those from NS group. In cellular immunity, the stimulation index of splenocytes from (OVA+Rg1) group was significantly enhanced compared with that from OVA group. Finally, the ELISA results showed that IFN-γlevels from (OVA+Rg1) group were the highest, and significant difference existed between that from (OVA+Rgl) group and OVA group (p=0.03) while (OVA+Al) groups secreted significantly higher levels of IL-4 compared with OVA group.
     2. After cultivating bone marrow derived hematopoietic stem cells for 7 days, more than 85% of the dendritic cells were collected. The surface molecule I-A/I-E, CD40 and CD86 on DCs did not change significantly after DCs were treated with ginsenoside Rgl at a concentration of 40μg/ml. However, after adding LPS, those were significantly higher (p <0.05, compared with the media control group). In addition, the cell surface I-A/I-E molecules on DCs from ginsenoside Rgl plus LPS group was significantly increased in (p <0.05, compared with LPS group) while CD40 and CD86 remained unchanged.
     3. Ginsenoside Rgl not only promoted DC in vitro to secrete higher levels of IL-12 but also strengthened this promotion if added with LPS simultaneously. Secondly, ginsenoside Rgl promoted immature dendritic cells to secrete IL-4 and IL-10 molecules. What's more, ginsenoside Rgl had an obvious influence on the phagocytosis of FITC-OVA antigen for immature DCs.Finally, ginsenoside Rgl promoted mature DCs to process and present peptides which activated B3Z T cells to secrete obviously higher levels of IL-2.
     4. A260/A280 ratios were about 2.0 for RNA extraction from dendritic cells. In denaturing agarose gel electrophoresis, bands were clear and 28s rRNA band intensity is nearly twice as much as that for 18s rRNA.There were 23 genes whose ratios of Rgl group to media group (Ⅱ/Ⅰ) were above 2, and 45 genes below 0.5. As for those of LPS group to media group (Ⅲ/Ⅰ),there were 15 genes above 2 and 47 below 0.5. In addition, there were 35 above 2 and 15 below 0.5 for the ratios of Rgl+LPS to Rgl (Ⅳ/Ⅱ) while there were 37 above 2 and 10 below 0.5 for (Ⅳ/Ⅲ). Among those differently expressing genes, Erbb2 and Ifi44 showed obviously expressed in DCs stimulated by ginsenoside Rg1.
     5. The results of semi-quantitative RT-PCR and Western Blot indicated that in DCs stimulated by ginsenoside Rgl, both EGFR and p44 which is also called ERK2, assumed obviously higher transcription and expression levels, compared with the media group.
     Conclusion
     1. Ginsenoside Rgl can enhance the specific immune responses in OVA-immunized mice.
     2. Though ginsenoside Rgl can't promote the maturation of imDCs, it can up-reguate the expression of I-A/I-E molecules in mDCs. In addition, it can strengthen the phagocytosis of imDCs. Finally, it may enhance the antigen-presenting capability of mDCs.
     3. The differently expressing genes in DCs stimulated by ginsenoside Rgl are involved in multiple processing including the migration, phagocytosis, antigen-presenting and secreting cytokines in DCs. It is worthwhile that ginsenoside Rgl may up-regulate the EGFR-MAPK passway in order to secret IL-10 which influences the Th polarization and regulate the immune response.
     In conclusion, though ginsenoside Rgl can't promote the maturation of imDCs, it can strenghthen the photocytosis, antigen-presenting and the secretion of cytokines in murine DCs. These might be involed in multiple targets. Microarray and Western blot results indicated that ginsenoside Rgl might up-regulate the EGFR-MAPK passway to aid in secreting cytokines, which regulates the immune responses. However, whether the effect is direct or not need to be proved by further experiments such as biosensors or iRNA technology. What's more, ginsenoside Rgl enhances the specific immunity in OVA-immunized mice.
     This study proves that ginsenoside Rg1 has two-diection immune-regulation and up-regulate the EGFR-MAPK passway, which provides the experimental evidence for the therapeutic principles of strenghthening the Vital and Dispenlling the Pathogen in TCM, the two-direction regulation of ginseng as well as ginsenoside Rgl as the main composition of new anti-tumor Chinese medicines.
引文
[1]Sun L Q.Information on research and application of Ginseng,the king of traditional and herbal medicines[J].Asian Drug Metab Pharmacokinet,2004,4(4):264-282.
    [2]黎阳,张铁军,刘素香,等.人参的化学成分和药理作用研究进展[J].中草药,2009,40(1):164.
    [3]韩冬,张铁军,唐铖,等.人参皂苷的药动学研究进展[J].中草药,2009,40(20):附1.
    [4]张经纬,王广基,孙建国.人参皂苷Rg1的药效学和药代动力学研究进展[J].中国药科大学学报,2007,38(3):283-288.
    [5]Rudakewich M,Ba F,Benishin CG.Neurotrophic and neuroprotective actionsof ginsenosides Rb1 and Rg1[J].Planta Med,2001,67(6):533-537.
    [6]杨赣军,张建平,李庆耀.人参皂苷Rgl对帕金森病模型小鼠室管膜下区神经干细胞的作用[J].四川生理科学杂志,2009,31(1):17-19.
    [7]张建平,司银楚,朱培纯.人参皂苷Rg1诱导大鼠海马神经干细胞分化的实验研究[J].神经解剖学杂志,2009,25(3):335-338.
    [8]Chen F, Eckman EA, Eckman CB. Reductions in levels of the Alzheimer's amyloid beta peptide after oral administration of ginsenosides[J].Faseb J,2006,20(8):1269-1271.
    [9]吕俊华,黄丰,刘月丽,等.人参皂苷Rgl对LPS诱导的SK-N-SH细胞株脑啡肽酶表达的影响[J].中药材,2005,28(2):117-119.
    [10]李娜,王利民,人参皂苷Rg1对阿尔茨海默病模型大鼠学习记忆的影响[J].滨州医学院学报,2007,30(5):325-329.
    [11]王晓英,陈霁,张均田.人参皂苷Rg1对β-淀粉样肽(25-35)侧脑室注射所致小鼠学习记忆障碍的改善作用及其机制[J].药学学报,2001,36(1):1-4.
    [12]Mook-Jung I,Hong HS,Boo JH,et al.Ginsenoside Rb1 and Rg1 improve spatial learning and increase hippocampal synaptophysin level in mice[J].J Neurosci es,2001,63(6):509-515.
    [13]Lawrence C H Wang,Lee T.Effects of ginseng saponins in energy metaliolism,memory and antineurotoxicity[J].In The Korean Society of Ginseng Advances in ginseng research.2002:27-46.
    [14]Cheng Y,Shen LH,Zhang JT.Anti-amnestic and anti-aging effects of ginsenoside Rgl and Rbl and its mechanism of action[J].Acta Pharmacol Sin,2005,26(2):143-149.
    [15]Jianfei Xue,Zhijun Liu,Jinfeng Hu,et al.Ginsenoside Rg1 promotes neurotransmitter release by modulating phosphorylation of synapsins through a cAMP-dependent protein kinase pathway[J].Brain Research,2006:91-98.
    [16]Shoji S J.Korean Med.Sci,2001,16:28-37.
    [17]Chen X C,Zhu Y G,et al.Protactive effect of ginsenoside Rgl against MPTP-induced apoptosis in mouse subtantia nigra neurons.Acto Pharmacol Sin,2002,23:829-834.
    [18]张志军,江文,万群.人参皂甙扩张兔基底动脉作用及其机制[J].心脏杂志,2003,15(4):313-5.
    [19]张荣,刘咏芳.人参皂甙Rgl对大鼠急性心肌梗死后血管再生及心功能的影响[J].重庆医学.2009,38(7):805-807.
    [20]张如升,张馥敏,杨志键,等.三七皂甙Rg1对SD乳鼠心肌细胞缺血/再灌注性损伤的保护作用及其机制[J].南京医科大学学报(自然科学版),2006,26(4):242-245.
    [21]赵昕,李智,曹云鹏等.人参皂甙Rg1对缺氧豚鼠心肌细胞游离钙浓度降低作用的研究[J].中国医科大学学报,2001,30(6):431-40.
    [22]Leung KW, Cheng YK,Mak NK, et al.Signaling pathway of ginsenoside-Rgl leading to nitric oxide production in endothelial cells[J].FEBSLett,2006,580(13):3211-3216.
    [23]杜吕佩,杨倩,尤启冬,等.药物与hERG钾通道相互作用预测的研究进展[J].中国药科大学学报,2006,37(4):291-296.
    [24]KimCS,Son SJ,KimHS,et al. Modulating effect ofginseng saponins on het-erologously expressed HERG currents in Xenopus oocytes[J].Acta Pharmacol Sin,2005,26(5):551-558.
    [25]ZhangHS,Wang SQ.Ginsenoside Rgl inhibits tumor necrosis factoralpha (TNF-alpha)-induced human arterial smooth muscle cells(HASMCs) proliferation[J].J Cell Biochem,2006,98(6):1471-1481.
    [26]李志刚,蓝荣芳.人参皂甙Rg1抗OxLDL诱导内皮细胞凋亡及分子机制[J].中国组织化学与细胞化学杂志,2002,11(3):248-51.
    [27]张荣,刘咏芳.人参皂甙Rg1对大鼠急性心肌梗死后血管再生及心功能的影响[J].重庆医学,2009,38(7):805-807.
    [28]Lee YJ,Chung E,Lee KY,et al.Ginsenoside-Rg1,one of the majoractive molecules fromPanax ginseng,is a functional ligand of glucocorticoid receptor[J].Mol Cell Endocrinol,1997,133(2):135-140.
    [29]Chung E,Lee KY,Lee YJ,et al.Ginsenoside Rgl down-regulates glucocorti-coid receptor and displays synergistic effects with cAMP[J].Steroids,1998,63(7-8):421-424.
    [30]Chan RY, Chen WF, Dong A,et al. Estrogen like activity of ginsenoside Rgl derived from Panax notoginseng[J].J Clin Endocrinol Metab,2002,87(8):3691-3695.
    [31]Chen WF,Lau WS,Cheung PY,et al. Activation of insulin-like growth factor Ⅰ receptor-mediated pathway by ginsenoside Rgl[J].Br JPharmacol,2006,147(5):542-551.
    [32]王力,吴鑫,卢新政等.人参皂苷Rg1对培养大鼠骨髓间充质干细胞增殖影响的机制研究[J].中国药理学通报,2007,23(11):1480-1484.
    [33]任杰红,陈林芳,张路晗.人参皂苷Rg1的免疫促进作用[J].中药新药与临床药理,2002,13(2):92.
    [34]Lee,E.J.Ko,E.Lee,J,et al.Ginsenoside Rg1 enhances CD4(+)T-cell activitiesand modulates Thl/Th2 differentiation[J].Int Immunopharmacol.2004,4(2):235-44.
    [35]Lee, J. H.Han, Y. Ginsenoside Rgl helps mice resist to disseminated candidiasis by Thl type differentiation of CD4+T cell[J].Int Immunopharma-col.2006,6 (9):1424-30.
    [36]Sun,J.Song,X.Hu,S.Ginsenoside Rgl and aluminum hydroxide synergistically promote immune responses to ovalbumin in BALB/c mice[J]. Clin Vaccine Immunol,2008,15(2):303-7.
    [37]Shi,A.W.Wang,X.B.Lu,F.X. et al. Ginsenoside Rgl promotes endothelial progenitor cell migration and proliferation[J]. Acta Pharmacol Sin,2009,30(3):299-306.
    [38]Cho JY,Kim AR,YooES,etal.Ginsenosides from Panaxginseng differentiallyregulate lymphocyte proliferation[J]. PlantaMed,2002,68(6):497-500.
    [39]陈宇,郑纯威,陈国江等.人参皂苷Rg1免疫佐剂作用的研究[J].军事医学科学院院刊,2009,33(3):251-253.
    [40]Fan, Z. H.Isobe, K.Kiuchi, K. Enhancement of nitric oxide production from activated macrophages by a purified form of ginsenoside (Rgl)[J]. Am J Chin Med,1995,23(3-4):279-87.
    [41]王毅,郝钰,邱全瑛,等.人参皂苷Rgl、Rh1对树突状细胞刺激T细胞增殖及LPAK抗肿瘤活性的影响[J].中国免疫学杂志,2003,19(4):248-252.
    [42]王毅,郝钰,邱全瑛,等.人参皂苷Rg1与Rh1对树突状细胞表达HLA-DR、CD25、 CD44、CD54、CDllc及E-selectin的影响[J].中国免疫学杂志,2007,23(1):46-48.
    [43]Rhule, A.Rase, B.Smith, etal. Toll-like receptor ligand-induced activation of murine DC2.4 cells is attenuated by Panax notoginseng [J].J Ethnophar-macol.2008,116(1):179-86.
    [44]Kim JY, Lee BK, Ro JY. Single Component of Ginsenosides Modulates Immune Responses for Oxazolone-House Dust Mite [J]. Asthma Allergy Clinlmmunol. 2004,24(4):435-444.
    [45]金岩,曲婷婷,柳越冬,等.人参皂苷Rb1、Rg1与5-氟脲嘧啶对荷瘤小鼠免疫功能的影响[J].中医研究,2006,19(6):16-17.
    [46]Kenarova B,Neychev H.Hadiivanova C,et al.Immunomodulating activity of ginsenoside Rgl from Panax ginseng,Jpn J Pharmacol,1990,54:447-454.
    [47]刘忞,张均田.人参皂甙Rg1对老年大鼠免疫功能的调节作用[J],药学学报Act8Pharmaceut Jca Sinica.1995,30(11):818-823.
    [48]Liu M,Zhang J T.Immunoregulatory effects of ginsenoside Rgl in aged rats[J].Yao Xue Xue Bao,1995,30:818-823.
    [49]Liu M,Zhang J T Studies on the mechanesms of immunoregulatory effects of ginsenoside Rgl in aged rats[J].Yao Xue Xue Bao,1996,31:95-100.
    [50]Lee E J,EoE,Lee J,et al.Ginsenoside Rgl enhances CD4+T-cell activitiesand modulates Th1/Th2 differentiation[J].Int Immunopharmacol,2004,4:235-244.
    [51]Wang Y, HaoY, Lou J L,et al.Effect of ginsenoside Rgl and Rhl on theantitumor activity of dendritic cell[J],Chinese Journal of Pathophysiology,2004,20(10):1759-1764.
    [52]Eui-joon Lee, Eunjung Ko, Jinwoo Lee Ginsenoside Rg1 enhances CD4+T-cell activities and modulates Thl/Th2 differentiation[J]. International Immunopharmacology, 2004,4(2):235-244.
    [53]Liou C J,Li ML,Tseng J.Intraperitoneal injection of ginseng extract enhances both immunoglobulin and cytokine production in mice[J].Am J Chin Med,2004,32:75-88.
    [54]Cheng Y,Shen L H,Zhang J T.Anti-amnestic and anti-aging effects of ginsenoside Rg1 and Rb1 and its mechanism of action[J].Acta Pharmacol Sin,2005,26:143-149.
    [55]Wang X Y,Zhang J T.NO mediates ginsenoside Rg1-induced long-term potentiation in anesthetized rats[J].Acta Phar macol Sin,2001,22:1099-1200.
    [56]Wang X Y,Chen J,Zhang J T.Effect of ginsenoside Rgl on synaptic plasticity of freely moving rats and its mechanism of action[J].Acta Pharmacol Sin,2001,22:657-662.
    [57]Chen X C,et al.Involvement of CDK4,pRB,and E2F1 inginsenoside Rgl protecting rat cortical neurons from betaamyloid-induced apoptosis[J].Acta Pharmacol Sin,2003,24:1259-1264.
    [58]Chen X C,Chen Y,Zhu Y G,et al.Protective effect of ginsenoside Rgl against MPTP-induced apoptosis in mouse substantia nigra neurons[J],Acta Pharmacol Sin,2002,23:829-834.
    [59]Liang H C,et al.Loading of a novel angiogenic agent,ginsenoside Rgl in an acellular biological tissue for tissue regeneration[J].Tissue Eng,2005,11:835-846.
    [60]Shen L,Zhang J.Ginsenoside Rgl increases ischemia-induced cell prolifer-ation and survival in the dentate gyrus of adult gerbils[J].Neurosci Lett,2003,344:1-4.
    [61]Shen L H, Zhang J T.Culture of neural stem cells from cerebral cortex of rat embryo and effects of drugs on the proliferation ability of stem cells[J].Yao Xue Xue Bao,2003,38:735-738.
    [62]Shen L H, Zhang J T.Ginsenoside Rgl promotes proliferation of hippoca-mpal progenitor cells[J].Neurol Res,2004,26:422-428.
    [63]Shen L H, Zhang J T.NMDA receptor and iNOS are involved in the effects os ginsenoside Rgl onhippocampal neurogenesis in ischemic gerbils[J].Neurol Res,2007,29:270-273.
    [1]赵刚.生物基因芯片技术与中西医发展的相关性[J].深圳中西医结合杂志,2001,11(5):302-307.
    [2]雄杰,常淑枫,石学敏.基因芯片技术在中医药领域中的应用[J].天津中医学院学报,2004,23(2):95-96.
    [3]陈忠斌.生物芯片技术[M].北京:化学工业出版社,2005:2.
    [4]邓沱.生物芯片技术在药物研究与开发中的应用[J].中国新药杂志,2002,11(1):23-31.
    [5]刘喜云,等.生物芯片在药物研究中的应用[J].天津药,2002,14(3):4-6.
    [6]张小平,白荣,侯建丽等,生物芯片在中医药研究中的应用思考[J].内蒙古中医药,2006,12(1):36-37.
    [7]吴志奎,张新华,蔡辉国,等.益髓生血颗粒治疗β-地贫与调控珠蛋白表达分子机制研究[J].医学研究杂志,2006,35(9):36-37.
    [8]马淑然,郭霞珍,刘燕池,等.“肾应冬”调控机制的分子生物学实验研究[J].中国中医基础医学杂志,2001,7(12):16-19.
    [9]马淑然,郭霞珍,刘燕池,等.中医“肾应冬”生理机制与褪黑素关系的实验研究[J].北京中医药大学学报,2002,25(2):19-21.
    [10]张仲林,彭成.基因芯片技术在中医药研究领域中的应用[J].中国药科大学学报,2007,38(2):190-192.
    [11]沈自尹.基因科学和21世纪中医药学的走向[J].上海中医药杂志,2000,(10)7-9.
    [12]李兰芳,陈临溪.基因芯片技术在中医药研究中的应用[J].浙江中西医结合杂志,2004,14(8):463-465.
    [13]刘莺.中医证候诊断的思考[J].江苏中医药,2003,24(7):4-6.
    [14]吴元胜,范瑞强,陈红,等.基因芯片技术分析SLE证候基因表达的初步研究[J].现代中西医结合杂志,2003,16(12):1683.
    [15]史大卓.基因芯片技术与血瘀证和活血化瘀研究[J].中国中西医结合杂志,2002,22(12):890.
    [16]张伟荣,张庆彝.略论体质病理学的基因研究[J].中国中医基础医学杂志,2002,8(2):23-24.
    [17]王米渠,吴斌,严石林,等.论虚寒证基因芯片及生物信息的高起点切入研究[J].辽宁中医杂志,2003,30(3):169-170.
    [18]方肇勤.基因芯片技术现状及其在中医基础实验研究中的应用[J].上海中医药大学学报,2001,15(1):17-19.
    [19]王米渠,张卫,李珉,等.用基因芯片筛选针刺衰老大鼠涌泉穴的318个差异基因初报[J].中国中西医结合杂志,2002,22(11):844-847.
    [20]于建春,于涛,韩景献.从基因表达差异分析腧穴和非腧穴针刺效应差异[J].中国针灸,2002,22(11):749-751.
    [21]陈泽斌,王华.针刺对大鼠脑组织神经生物学基因表达的研究[J].中国针灸,2005,25(8):573-576.
    [22]谭从娥,黄信勇,吴斌,等.骨关节炎肾阳虚证个案的温针疗效及基因表达谱研究[J].现代中西医结合杂志,2004,13(20):2662-2664.
    [23]林代华,彭成.脾虚胃癌转移鼠模型的建立及基因表达谱的变化[D].成都.成都中医药大学,2005.
    [24]沈自尹,陈瑜.淫羊藿总黄酮与补肾复方对皮质酮大鼠T细胞凋亡相关基因群调控的对比研究[J].中国免疫学杂志,2002,18(3):187-190.
    [25]管冬元,鲁恒心,方肇勤,等.不同中医治法对ras/MAPK信号通路相关基因转录调节的实验研究[J].中国中医基础医学杂志,2002,8(10):36-38.
    [26]周津,刘芝华,王秀琴.食管癌及癌旁组织中基因表达的初步研究[J].中华医学遗传学杂志,1999,16(5):303-306.
    [27]谢梅林,顾振纶,周文轩,等.消瘀片对粥样硬化兔血管壁组织ET-1mRNA和NOSmRNA表达的影响[J].中草药,1999,25(11):834-847.
    [28]Heller RA,Schena M,Chai A,el al. Discovery and analysis of inflammatory disease-related genes using cDNA microarrays[J].Proc NatlAcad Sci USA,1997,94(6):2150-2155.
    [29]唐咸玉,王剑,严灿,等.活血祛痰法对高血压左心室肥厚大鼠心肌ras原癌基因表达的影响[J].中医研究,2001,14(1):14-16.
    [30]吴斌,等.运用基因芯片研究骨关节炎虚寒证的基因表达谱述要[J].中医药学刊,2004,22(11):2008-2010.
    [31]周联,王培训,赖小平,等.基因芯片在中药复方研究中的应用[J].中药新药与临床药理,2002,13(6):383-384.
    [32]王拥军,施杞,李家顺,等.椎间盘细胞信号及益气化瘀方调控机理的研究[J].中国康复医学杂志,2003,18(7):403-406.
    [33]Rho S, Kang M, Choi B, et al-Effects of Yukmijihwangtang derivatives (YMJd), a memory enhancing herbal extract, on the gene expression profile in the rat hippocampus[J]·Biol Pharm Bull,2005,28(1):87.
    [34]托娅等.基因芯片在抗肿瘤血管生成中草药相关基因筛选中的应用[J].第二军医大学学报,2002,23(3):273-275.
    [35]陶嫄,韩俊,于小丽,等,基因芯片技术在中药研发中的应用[J].黑龙江医药,2009,22(4):458-460.
    [36]徐仿周,吴继洲.基因芯片技术在中药中的应用研究进展[J].国外医学药学分册,2005,32(15):300-305.
    [37]李崇辉,陈明易,刘巨超,等.脂多糖诱导的小鼠腹腔巨噬细胞基因表达谱分析[J].中华微生物学和免疫学杂志,2004,24(10):773-777.
    [38]王忠,应康,张占军,等.黄芩苷对局灶性脑缺血大鼠脑组织基因表达谱的影响[J].中国中药杂志,2004,29(1):83-86.
    [39]张永清,黄高升,王哲,等.基因芯片方法研究苦参碱抗白血病细胞增殖机制[J].第三军医大学学报,2004,25(14):1266-1268.
    [40]张彦,马凌娣,何於娟,等.苦参碱诱导K562细胞分化早期的基因表达分析.中华血液学杂志,2004,25(6):342-345.
    [41]李瀚旻,桂文甲,李晶津,等.左归丸对同种异性骨髓移植小鼠肝再生相关基因信号通路的影响[J].中国组织工程研究与临床康复,2008,12(31):6069-6073.
    [42]胡和平,张俊平,应康,等.基因芯片技术分析斑蝥素对肝癌细胞细胞毒作用的分子机制[J].第一军医大学学报,2003,24(6):645-649.
    [43]贾春蓉.半硫丸药物配伍毒性与毒理基因的实验研究[D].武汉:湖北中医学院,2005.
    [44]Rho S,Kang M,Choi B,et al.Effects of Yukmijihwangtang derivatives(YMJd), a memory enhancing herbal extract, on the gene expression profile in the rat hippocampus[J].Biol Pharm Bull,2005,28 (1):87.
    [45]高月,马增春,谭洪玲,等.四物汤及其提取物对辐射致血虚证小鼠造血作用的研究[J].天津中医药,2003,20(6):47-51.
    [46]李铁军,邱彦,芮耀诚,等.基因芯片分析补阳还五汤对局灶性脑缺血再灌注大鼠的保护作用机制[J].中国中药杂志,2004,29(6):59-563.
    [47]吴伟康,谭红梅,罗汉川,等.应用基因表达谱芯片观察小鼠心肌缺血后基因表达的变化以及四逆汤对其影响[J].中国病理生理杂志,2003,19(2):207-210.
    [48]史蒂夫·拉塞尔,莉萨·梅多斯,罗斯林·拉塞尔.生物芯片技术与实践[M].科学出版社,2010,4-5.
    [1]Patrick Ying Kit Yue, Nai Ki Mak, Yuen Kit Cheng.Pharmacogenomics and the Yin/Yang actions of ginseng:anti-tumor, angiomodulating and steroid-like activities of ginsenosides[J].Chinese Medicine,2007,5(15):6-10.
    [2]张天泽,徐光炜,孙燕,等.肿瘤学(第二版)(M),天津科学技术出版社,2005年.
    [3]许承斌,柴晓文.Thl/Th2细胞的免疫功能变化与抗肿瘤免疫[J].现代诊断与治疗,2009,20(3):162-164.
    [4]Knutson KL,Disis ML. Tumor antigen-specific T helper cells in cancerimmunity and immunotherapy[J]. Cancer Immunol Immunother,2005,54(8):721-728.
    [5]Neurath MF, Finotto S,Glimcher LH.The role of Thl/Th2 polarization in mucosal immunity[J].NatMed,2002,8(1):567-573.
    [6]Kalinski,P,Catharien MU. Eddy A et al. T-cell priming by type-1and type-2 polarized dendritic cell. The concept of a third signal[J].Immunol today,1999,20(8):562-567.
    [7]Rissoan MC,Soumelis V,Kadowaki N et al.Reciprocal control of Thelper cell and dendritic cell differentiation[J].Science,1999(7):1183-1192.
    [8]Shortman K,Yongjun L.Human and mouse dendritic cell subtype[J].Nature Rev,2002,21(9):151-154.
    [9]Susanne Ebner, Gudrun Ratzinger.Production of IL-12 by Human Monocyte Derived Dendritic Cells Is Optimal When the Stimulus Is Given at the Onset of Maturation, and Is Further Enhanced by IL-4[J]. J.Immunol,2001,166:633-641.
    [10]Sun L Q.Information on research and application of Ginseng,the king of traditional and herbal medicines[J].Asian J Drug Metab Pharmacokinet,2004,4(4):264-282.
    [11]黎阳,张铁军,刘素香等.人参的化学成分和药理作用研究进展[J].中草药,2009,40(1):164.
    [12]韩冬,张铁军,唐铖等.人参皂苷的药动学研究进展[J].中草药,2009,40(20):附1.
    [13]张经纬,王广基,孙建国.人参皂苷Rg1的药效学和药代动力学研究进展[J].中国药科大学学报,2007,38(3):283-288.
    [14]王毅,郝钰,娄金丽,等.人参皂苷Rg1和Rh1对树突状细胞功能的影响[J].中国病理生理杂志,2004,20(10):1764-1764.
    [15]王毅,郝钰,邱全瑛,等.人参皂苷Rg1、Rh1对树突状细胞刺激T细胞增殖及LPAK抗肿瘤活性的影响[J].中国免疫学杂志,2003,19(4):248-252.
    [16]Liu, J, et al, Evaluation of estrogenic activity of plant extracts for the potential treatment of menopausal symptoms[J]. J Agric Food Chem,2001,49(5):2472-9.
    [17]Amato, P, S. Christophe, and P.L. Mellon, Estrogenic activity of herbs commonly used as remedies for menopausal symptoms[J]. Menopause,2002,9(2):145-50.
    [18]Duda, R.B, et al, pS2 expression induced by American ginseng in MCF-7 breast cancer cells[J]. Ann Surg Oncol,1996,3(6):515-20.
    [19]Leung, K.W, et al, Signaling pathway of ginsenoside-Rgl leading to nitric oxide production in endothelial cells[J]. FEBS Lett,2006,580(13):3211-6.
    [20]Chen, W.F, et al, Activation of insulin-like growth factor I receptor-mediated pathway by ginsenoside Rg1. Br J Pharmacol,2006.147(5):542-51.
    [21]Lee, E.J, et al, Ginsenoside Rg1 enhances CD4(+) T-cell activities and modulates Th1/Th2 differentiation[J]. Int Immunopharmacol,2004.4(2):235-44.
    [22]Lee, J.H. and Y. Han, Ginsenoside Rgl helps mice resist to disseminated candidiasis by Thl type differentiation of CD4+T cell[J]. Int Immunopharmacol,2006.6(9):1424-30.
    [23]Liu, M. and J.T. Zhang,Studies on the mechanisms of immunoregulatory effects of ginsenoside Rgl in aged rats[J]. Yao Xue Xue Bao,1996.31 (2):95-100.
    [24]马宇滢,张新民.基因芯片技术在免疫学研究中的应用及其对中医药研究的启发[J].中西医结合学报,2004,2(2):90-93.
    [1]龚菲力,医学免疫学(第二版)(M),科学出版社,2008年9月第十二次印刷.
    [2]Cai QL, Peng GY, Lin YH et al. Immunogenicity and in vitro protective efficacy of a polyepitope Plasmodium falciparum candidate vaccine constructed by epitope shuffling [J]. Vaccine,2007,25(28):5155-65.
    [3]Wu C, Shi Y, Guo H et al. Protection against Helicobacter pylori infection in mongolian gerbil by intragastric or intramuscular administration of H. pylori multicomponent vaccine[J]. Helicobacter,2008,13(3):191-9.
    [4]O'Garra A. Cytokines induce the development of functionally heterogeneous T helper cell subsets[J]. Immunity,1998,8(3):275-283.
    [5]Vaney JL. Dendritic cell subsets:the ultimate T cell differentiation decision makers? [J]. Gut,1999,45(5):640-641.
    [6]李泽庚,张四春,彭波,等.慢性阻塞性肺疾病肺气虚证与肺阴虚证患者细胞免疫功能的比较[J].北京中医药,2009,28(1):17.
    [7]黎阳,张铁军,刘素香,等.人参的化学成分和药理作用研究进展[J].中草药,2009,40(1):164.
    [8]李丽艳.人参皂苷的最新研究进展[J].四川省卫生管理干部学院学报,2004,23(4):294.
    [9]Cai QL, Wei F, Zhang LH et al. Immunogenicity of polyepitope libraries assembled by epitope shuffling:an approach to the development of chimeric gene vaccination against malaria[J]. Vaccine,2004,23(2):267-77.
    [10]王毅,郝钰,邱全瑛,等.人参皂苷Rg1、Rh1对树突状细胞刺激T细胞增殖及LPAK抗肿瘤活性的影响[J].中国免疫学杂志,2003;19(4):248-252.
    [11]Jianhua Sun, Xiaoming Song, Songhua Hu. ginsenoside Rgl and aluminum hydroxide synergistically promote immune responses to Ovalbumin in BALB/c mice[J]. Clinical and vaccine immunology[J].2008,15(2):303-307.
    [12]陈宇,郑纯威,陈国江,等。人参皂苷Rg1免疫佐剂作用的研究[J],军事医学科学院院刊[J],2009,33(3):251-253.
    [13]Reiner,S.L.and R. M.Locksley.The regulation of immunity to Leishmania major[J]. Annu Rev Immunol,1995,13:151-77.
    [14]Concha C, Hu S, Holmberg O,et al. The proliferative responses of cow stripping milk and blood lymphocytes to poke weed mitogen and ginsengin vitro[J]. VetRes,1996,27(2): 107-115.
    [15]Scaglione F, Ferrara F, Dugnani S,et al. Immunomodulatory effects of two extracts ofPanax ginseng[J]. Drugs Exp Clin Res,1990,16(10):537-542.
    [16]Cho JY,Kim AR,YooES,et al.Ginsenosides fromPanaxginseng differentially regulate lymphocyte proliferation[J]. Planta Med,2002,68(6):497-500.
    [17]刘靖华,陈惠孙,胡德耀.人参皂苷对创伤失血性休克免疫功能的调节作用[J],第三军医大学学报,2000,22(4):324.
    [18]任杰红,陈林芳,张路晗,等.人参皂苷Rgl的免疫促进作用[J].中药新药与临床药理,2002,13(2):92.
    [1]Aarntzen E.H, Figdor C. G,Adema G. ed al.Dendritic cell vaccination and immune monitoring[J] Cancer Immunol Immunother,2008,57:1559-1568.
    [2]滕怀宁,郑军华.树突状细胞研究进展[J].肾脏病与透析肾移植杂志,1998,7(6):549-551。
    [3]Smaroula D,Julius MC,Robert L. Function of CD80 and CD86 on monocyte and stem cell derived dendritic cells[J]. Exp Mol Pathol,2003,75:217.
    [4]Thurnher M,Papesh C,Oner RR et al.In vitro generation of CD83+human blood dendritic cells for active tumor immunotherapy[J].Exp Hematol,1997;25:232.
    [5]郭建巍.Th细胞的活化与树突状细胞[J].国外医学免疫学分册,2002,25(1):13-17.
    [6]包杰,王前,郑磊.小鼠骨髓成熟与未成熟树突状细胞的生物免疫学功能比较研究[J],中华风湿病学杂志,2007,11(2):86-88.
    [7]黎阳,张铁军,刘素香,等.人参的化学成分和药理作用研究进展[J].中草药,2009,40(1):164
    [8]王毅,姜艳,王本祥.人参皂苷Rg1及其肠内菌代谢产物Rhl对小鼠免疫细胞功能的影响[J].药学学报,2002,37(12):927.
    [9]王毅,郝钰,娄金丽,马辉,邱全瑛.人参皂苷Rgl和Rhl对树突状细胞功能的影响[J].中国病理生理杂志,2004.20(10):1764-1764.
    [10]王毅,郝钰,邱金瑛,郭丽姝,任钧国.人参皂苷Rg1、Rh1对树突状细胞刺激T细胞增殖及LPAK抗肿瘤活性的影响[J].中国免疫学杂志,2003.19(4):248-252.
    [11]Boudreau J, Koshy S, Cummings D, Wan Y. Culture of myeloid dendritic cells from bone marrow precursors[J]. JoVE.17.2008.
    [12]田蓉,李巍,于继云,等.小鼠树突状细胞的体外培养与鉴定[J].第四军医大学学报,2006,27(10):895-897.
    [13]Wang J, Lo JC, Foster A et al. The regulation of T cell homeostasis and autoimmunity by T cell-derived LIGHT[J].J Clin Invest.2001,108(12):1771-1780.
    [14]Wu MT, Huang ST. CXCR5-transduced bone marrow-deriveddendritic cells traffic to B cell zones of lymph nodes and modify antigen-specific immune responses[J].J Immunol 2002;168:5096-5102.
    [15]Stober D, Trobonjaca Z, Reimann J, Schirmbeck R. Dendritic cells pulsed with exogenous hepatitis B surface antigen particles efficiently present epitopes to MHC class I-restricted cytotoxic T cells[J].Eur J Immunol 2002;32:1099-1108.
    [16]Valladeau J, Clair-Moninot V, Dezutter-Dambuyant C, Pin JJ,Kissenpfennig A, Mattei MG, Ait-Yahia S, Bates EE, Malissen B,Koch F, Fossiez F, Romani N,Lebecque S, Saeland S.Identificationof mouse langerin/CD207 in Langerhans cells and some dendritic cells of lymphoid tissues[J].J Immunol 2002;168:782-792.
    [17]Son YI,Egawa S,Tatsumi T,et al. A novle bulk culture method for generating mature dendritic cells from mouse bone marrow cells[J]. J Immunol Methods,2002,262(12):145.
    [18]聂志林,靳风烁,梁培禾,CpG-ODN促进小鼠骨髓来源的树突状细胞成熟作用的实验研究[J],重庆医学,2008,37(2):136-138.
    [19]DauerM, Schad K, Junkmann J, et al IFN-α lpha Promotes definitive maturation of dendritic cells generated by short-term culture of monocytes with GM-CSF and IL-4[J].J Leukoc Biol 2006,80(2):278-28.
    [1]陈晖,王炯坤.树突状细胞:专职的抗原提呈细胞[J].甘肃农业,2006,244(11):165-167.
    [2]曹雪涛.树突状细胞的基础与临床研究新进展[J].中国免疫学杂,1998,14(3):161-168.
    [3]苏敏,钟翠平.树突状细胞对外源性抗原的摄取和加工机制[J].解剖科学进展,2003,9(3):242·245.
    [4]Mahnke K, Gou M, Lee S, et al. The dendritic cell receptor for endocytosis, DEC-205, can recycle and enhance anigen presentation via major histocompatibility complex class Ⅱ-positive lysosomal compartments [J]. The Journal of Cell Biology,2000,151(3):673-683.
    [5]徐水凌,树突状细胞研究进展分析[J].嘉兴学院学报.2004,16(6):43-45.
    [6]陈月,树突状细胞免疫调控作用研究新进展[J].现代免疫学,2004,24(6):514-517.
    [7]Kidd P.Th1/Th2 balance:the hypothesis, its limitations, and implications for health and disease[J]·Altern Med Rev,2003,8:223.
    [8]马红玲,王和平,王莉.等.双歧杆菌对过敏性哮喘儿童树突状细胞分泌IL-10、IL-12等细胞因子的影响[J].中国微生物生态学杂志,2009,21(5):407-414.
    [9]Richard T. Robinson, Shabaana A. Khader, Cynthia A. Martino,et al. Mycobacterium tuberculosis infection inducesil12rbl splicing to generate a novel IL-12R1 isoform that enhances DC migration[J].JEM,2010,8,591-605.
    [10]Barbara A,Gargi D,Latha B,et al.Reduced T-cell and dendritic cell function is related to cyclooxygenase-2 overexpression and prostaglandin E2 secretion in patients with breast cancer[J].AnnSurgOncol,2004,11(3):328-339.
    [11]Kowalewicz-Kulbat M,Pestel J,Biet F,et al.Mycobacterium bovis BCG mycobacteria-new application[J].Pol J Microbiol,2006,55(1):13-17.
    [12]徐珊,姚咏明,盛志勇.树突状细胞免疫调节作用及其信号转导机制[J].生理科学进展,2006,37(4):313-318.
    [13]孙黎飞,刘江,曹雪涛等.IL-2基因修饰增强树突状细胞抗原提呈功能及其机制[J].中华血液学杂志,2002,23(5):247-250.
    [14]赵园园,张淑敏.树突状细胞体外培养各阶段作用因子研究进展[J].天津医药,2007,35(12):956-958.
    [15]Qian S, Lu L, Fu F,et al. Donor pretreatment with Flt-31igand augments antidonor cytotoxic T lymphocyte, natural killer, and lymphokine-activated killer cell activities within liver allografts and alters the pattern of intragraft apoptotic activity [J]. Transplantation,1998,65(12):1590-1598.
    [1]赵刚.生物基因芯片技术与中西医发展的相关性[J].深圳中西医结合杂志,2001,11(5):302-307.
    [2]McIlroy D,Tanguy2Royer S,Le Meur N et al. Profiling dendritic cell mat2uration with dedicated microarrays[J]. J Leukoc Biol,2005,78(3):7942803.
    [3]Hashimoto S I,Suzuki T,Nagai S et al.Identification of genes specifically expressed in human activated and mature dendritic cells through serial analysis of gene expression[J].Blood,2000;96 (6):2206-2214.
    [4]马宇滢,张新民.基因芯片技术在免疫学研究中的应用及其对中医药研究的启发[J].中西医结合学报,2004,2(2):90-93.
    [5]Cheng Y, Shen L H, Zhang J T. Anti-amnestic and anti-aging effects of ginsenoside Rgl and Rb1 and its mechanism of action [J].Acta Pharmacol Sin,2005,26(2):143-149.
    [6]Zhang JT, Nootropic mechanisms of ginsenoside Rg1--influence on neuronal plasticity and neurogenesis [J].Acta Pharm Sin,2005,40(5):385-8.
    [7]Zhao C H, Chen X C, Zhu Y G, et a.l Roles of telomere and telomerase in the process of ginsenoside Rgl protection against tert-butyl hydroperoxide-induced senescence in WI-38 cells [J].ChinPharmacolBull,2005,21(1):61-6.
    [8]Gervais A, Toutirais O, Bouet-Toussaint F,et al.In vitro antitumor lymphocyte generation using dendritic cells and innate immunity mechanisms as tumor cell treatments[J].Anticancer Research,2007,27(4B):2385-2392.
    [9]Watanabe S, Yamakawa M, Hiroaki T, et al.Correlation of dendritic cell infiltration with active crypt inflammation in ulcerative colitis [J].Clin Immunol,2007,122(3):288-297.
    [10]Boudreau J, Koshy S, Cummings D, Wan Y. Culture of myeloid dendritic cells from bone marrow precursors. JoVE.17.2008.
    [11]王毅,王本祥,刘铁汉,等.人参皂苷Rg1的肠内菌代谢Ⅱ.人参皂苷Rg1和Rh1免疫活性[J].中国药理学报(英文版),2000,21(9):792-796.
    [13]Cho JY,Kim AR,YooES,etal.Ginsenosides fromPanaxginseng differentially regulate lymphocyte proliferation[J]. PlantaMed,2002,68(6):497-500.
    [14]陈宇,郑纯威,陈国江,等.人参皂苷Rg1免疫佐剂作用的研究[J].军事医学科学院院刊,2009,33(3):251-253.
    [15]Stuart LM, Lucas M,Simpson C, et al. Inhibitory effects of apoptotic cell ingestion upon endotoxin-driven myeloid dendritic cell maturation [J].The Journal of Immunology,2002,168(4):1627-1635.
    [16]Alison Reid, Laura Vidal, Heather Shaw, et al. Dual inhibition of ErbB1 (EGFR/HER1) and ErbB2 (HER2/neu) [J]. European Journal of Cancer,2007,43 (3):481-489.
    [17]E Lin, Y Hwang, EY Chen. Gene-gene and gene-environment interactions in interferon therapy for chronic hepatitis C[J].Future Medicine,2007,8(10):1327-1335.
    [1]Jorissen RN,Walker F,Pouliot N,et al.Epidermal growth factor receptor:mechanisms of activation and signalling[J].Exp Cell Res,2003,284(1):31-53.
    [2]Herbst RS.Review of epidermal growth factor receptor biology[J].Int JRadiat Oncol Biol Phys,2004,59(2 Suppl):21-26.
    [3]蒋丽,张丽,彭韬,等.表皮生长因子受体信号通路调控人肝细胞癌细胞增殖分子机制的研究[J].南京医科大学学报(自然科学版),2007,27(6):523-526.
    [4]Bonaccorsi L,Marchiani S,Muratori M,et al.Gefitinib inhibits EGF-induced invasion in prostate cancer cells by suppressing PI3K/AKT activation[J].J Cancer Res Clin Oncol,2004,130(10):604-614.
    [5]张晓晶,王廷,刘云鹏,等.EGFR信号通路调控结肠癌Caco-2细胞侵袭转移的分子机制[J].第三军医大学学报,2006,28(14):1479-1482.
    [6]李彬彬,郑燕,郏雁飞,等.IFI44的研究现状[J].山东科学,2008,21(3):33-37.
    [7]HALLEN L C,BURKI Y,EBELING M,et al. Antiproliferative Activity of the Human IFN-alpha-inducible Protein IFI44[J].J Interferon Cytokine Res,2007,27(8):675-680.
    [8]季语祝.MAPK信号通路与大肠癌[J].肿瘤防治研究,2009,36(7):623-627.
    [9]JUNG-SIKK,CAROLYNL,CHALLICELB,et al.Activation of p53-DependentGrowth Suppression inHuman Cells by Mutations in PTEN or PIK3CA[J].Mol Cell Biol,2007,27(2):662-677.
    [10]Stuart LM, Lucas M,Simpson C, et al. Inhibitory effects of apoptotic cell ingestion upon endotoxin-driven myeloid dendritic cell maturation [J].The Journal of Immunology,2002,168(4):1627-1635.
    [11]Alison Reid, Laura Vidal, Heather Shaw, et al. Dual inhibition of ErbB1 (EGFR/HER1) and ErbB2 (HER2/neu) [J].European Journal of Cancer,2007,43(3):481-489.
    [12]ORTONR J, STURM O E, VYSHEMERSKY V, et al.Computational modelling of the receptor-tyrosine-kinase-ac-tivated MAPK pathway[J]. Biochem J,2005,392(2):249.
    [13]段光军,吴曙华,胡华成.表皮生长因子受体在肺癌中表达的临床意义[J].苏州大学学报(医学版),2006,26(4):622-625.
    [14]王明国.表皮生长因子受体[J].国外医学分子生物学分册,2002,24(2):82-85.
    [15]房华,李燕.表皮生长因子受体激活的ERK信号转导通路的动力学模拟与分析[J].生物医学工程学杂志,2009,26(2):327-333.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700