高温菌分离污泥的高温堆肥
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水资源是强国之本,但随着中国工业化进程的推进和中国社会经济的不断发展,我国的环境污染已经非常严重,水资源的状况也越来越令人堪忧。这其中污泥对水资源的影响特别严重,如何合理利用污泥、治理污泥,是当今我国乃至世界的重大课题之一。
     本文旨在从样品中分离出能高效产生蛋白酶和纤维素酶的高温菌菌株,并通过实验分析和优化高温菌菌株的产酶条件,逐步达到高温菌菌株产酶的最大效率,检测它们的酶活力,评估其应用潜能。
     其次把分离出的高效产酶的高温菌菌株作为生物添加剂,添加到污泥当中,混合均匀后进行污泥的高温堆肥,通过一个星期左右的堆肥使污泥达到国家农业部有机腐熟料的标准,使其变废为宝。
     从样本中分离到3株产酶菌株,其细胞均为球形,均能产纤维素酶和蛋白酶,用Al,A2,A3表示,其纤维素酶活分别为21.34U/ml,13.46U/ml,30.77U/ml。其蛋白酶酶活分别为20.44U/ml,23.48U/ml,26.36U/ml。
     采用单因素实验进行生长条件的优化,分别探索碳源、氮源、温度、pH对A1,A2,A3三种高温菌酶活力的影响。同时得出A1,A2,A3三种高温菌产纤维素酶和蛋白酶的最大值条件。
     通过单因素实验进行生长条件的优化后,分析A1,A2,A3的数据结果,全面考虑后,A2高温菌的产纤维素酶和蛋白酶的效率高,并把A2高温菌的培养温度定为60℃,培养基pH值定为7.0后进行培养基成分『正交实验,得出结论。高温菌A2的培养基成分为葡萄糖4g/L,羧甲基纤维素钠1lg/L,硝酸铵8g/L,蛋白胨2g/L,硫酸镁0.25g/L、磷酸二氢钾0.5g/L后,高温菌A2生长最旺盛,其产纤维素酶和蛋白酶效率最高。
     根据国家机肥腐熟剂和卫生指标的合格条件,把高温菌A2进行液体的扩大培养和固体的扩大培养,得到符合国家机肥腐熟剂和卫生指标的规定,固体堆肥温度在55℃以上达到了3天,各处固体堆肥后pH值介于7.2之间,菌数为2.4×1012个,纤维素酶活260.11U/ml,蛋白酶活137.25U/m。
     把制得的有机腐熟剂作为生物添加剂,添加到污泥当中,与污泥,稻草,麦秆等一起进行高温堆肥,通过一个多星期的高温堆肥后,备处堆肥后的pH值介于7.4之间,菌数为2.6×1011个,纤维索酶活336.67U/ml,蛋白酶活76.67U/ml。
The water resources are very important for a country. But with the advance of China's industrialization process and the continuous development of China's social-economic. The environmental pollution of China has been very serious, and the status of water resources is more and more concerned, of which the sludge has particularly serious influence on water resources. How to make reasonable use of sludge and practical treatment of sludge is one of the major issues of our country and current world.
     This paper aims at separating the high temperature bacteria strains which can effectively produce protease and cellulose enzyme from the sample, analyzing and optimizing the high temperature bacteria strains enzyme production conditions through the experimental analysis and, gradually achieving the high temperature bacteria strains of enzyme production's maximum efficiency, testing their enzyme, and evaluating the potential of application.
     Secondly add the high temperature bacteria strains with efficient enzyme production capacity which separated from the sample to the sludge as biological additives, make the high-temperature composting after blending. Through a week or so, the sludge reaches the national ministry of agriculture composting of organic compost material standard, then make its reuse.
     Three strains were isolated from the sample, and they are all the coccus. They were separated for producing cellulase, designated as A1, A2and A3, with enzymatic activity of21.34U/ml,13.46U/ml,30.77U/ml,respectively. They also produce protease, with enzymatic activity of20.44U/ml,23.48U/ml,26.36U/ml, respectively.
     Respectively explore the optimized parameters for the three strains containing the types of carbon source, nitrogen source, the fermentation temperature and pH to A1, A2, A3three high temperature bacteria the influence of the enzyme activity. And draw A1, A2, A3three high temperature bacteria produce cellulose enzyme and protease maximum conditions.
     After optimizing the growth condition through single factor experiment, analyze the data of A1, A2, and A3. After the comprehensive consideration, the thermophilic bacterium in A2is the most efficient when producing the cellulase and protease. Then draw the conclusion by taking a medium components of orthogonal experiment after setting the temperature of the high temperature bacteria of A2as60℃, and medium with pH7.0.The composition of the medium of high temperature bacteria in A2includes glucose4g/L, sodium carboxy methyl cellulose11g/L, ammonium nitrate8g/L, specially designed2g/L, magnesium sulfate0.25g/L, potassium dihydrogen phosphate0.5g/L. The A2high-temperature bacteria grows most eugenic, and has the highest efficiency of producing cellulose enzyme and protease.
     According to the national machine fat rotten agent and health indicators of qualified conditions, expand the culture of A2high-temperature bacteria of liquid and of solid to conform the national standard. Set the temperature of solid compost above55℃for three days; the pH value is between7.2after composting; the bacterium number is2.4x1012; cellulose enzyme activity is260.11U/ml and protease activity is137.25U/m.
     Add the organic composting agents we made to the sludge as biological additives, then make high temperature composting with sludge and straws together. After high temperature composting for a week, the pH value everywhere after composting is between7.4; the bacterium number is2.6x1011; cellulose enzyme activity is336.67U/ml; protease activity is76.67U/ml.
引文
[1]曹井国,赵树欣.高温好氧处理有机废液[J].天津科技大学学报,2006,21(1):7-10.
    [2]崔宗均,路鹏,于会泳,等.高温菌生物学特性的应用[J].微生物学杂志,2003,(4):28-31.
    [3]董锡文,薛春梅,吴玉德.极端微生物及其适应机理的研究进展[J].微生物学杂志,2004,25(1):74-77.
    [4]冯明谦,汪立飞,刘德明.高温好氧垃圾堆肥中人工接种初步研究闭[J].四川环境,2000,19(3):27-30.
    [5]郭春雷,彭谦.高温菌研究进展汇[J].生物学杂志,2003,20(4):1-3.
    [6]郭春雷,成妮妮,刘明河,等.高温菌16SrRNA与耐热性关系的初步研究[J].微生物学通报,2005,32(5):14-17.
    [7]和致中,彭谦,张无敌.高温菌的细胞壁和细胞被膜[J].微生物学报,1999,26(5):363-364.
    [8]胡海林,郭维植.细菌实验菌种的保存及管理[J].福建医药杂志,2000,21(1):113.
    [9]Boone D R, Castenhok R. Bergey's Manual of Systematic Bacteriology. Volume One:The Archaea and the Deeply Branching and Phototrophic Bacteria[M].Springer,2001.
    [10]Zeikus J G, Vieille C, Savchenko A. Thermozymes:biotechnology and structure function relationship[J].Extremophiles,1998,4(2):179-183.
    [11]Trivedi S, Gehlot H S, Rao S R. Protein thermostability in Arehaea and Eubaeteria[J].Genet Mol Res,2006,5(8):16-27.
    [12]Sterner R. Thermophilic adaptation of Proteins[J].Crit Rev Bioecology Mol Biol,2001,36: 39-106.
    [13]卢柏松,王国力,黄培堂.嗜热与嗜常温微生物的蛋白质氦基酸组成比较[J].微生物学报,1998,38(1):20-25.
    [14]潘佩蕾,林美爱,周芳美.脱脂牛奶低温法保存微生物菌种的研究[J].临床和实验医学杂志,2006,4(5):352-353.
    [15]钱存柔,黄仪秀.微生物学实验教程[M].北京:北京大学出版社,1999.
    [16]王柏靖,冯雁,王师钮,等.嗜热酶的特性及其应用[J]微生物学报,2002,44(2):127-130.
    [17]吴军林,林炜铁,杨继闭.嗜高温酶的研究及应用[J].广州食品工业科技,2003,19(1):60-63.
    [18]薛红卫,赵树欣.高温菌及用于废物处理的研究[J].天津轻工业学院学报,2002,21(1):7-10.
    [19]杨芳,刘利兵,刘芳娥.常用教学菌种保存方法汇[J].第四军医大学学报,2004,29(9):8-14.
    [20]徐智,汤利,李少明.两种微生物菌剂对西番莲果渣高温堆肥腐熟进程的影响[J].应用生态学报,2007,18(6):l270-1274.
    [21]曹井国,赵树欣,程丽娟,等.高温菌及其在有机废液处理中的应用[J].工业水处理,2006,26(1):9-12.
    [22]Seong Hoon Yoon, Hyung Soo Kim, Sangho Lee.Incorporation of ultrasonic cell disintegration into a membrane bioreactor for zero sludge production[J]. Process Biochemistry,2004,39:1923-1929.
    [23]Chanyasak V, Kubota H. Carbon/organic nitrogen ratio in water extract as measure of composting degradation[J].Journal of Fermentation Technology,1981,5:215-219.
    [24]Huber H, Michael J, Rachel H R, et al. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont[J].Nature,2002,41:63-68.
    [25]Wiegel J, Canganella F, Extreme Thermophiles. Encyclopedia of Life Sciences[M].Nature Publishing Group,2001.
    [26]Jaenicke R, Srerner R. Life at High Temperatures[M].Springer, The Procaryotes,2003.
    [27]Hirai MF, Chanyasak V, Kubota H. A standard measurement for compost maturity[J]. Bioecology,1983,41:54-56.
    [29]崔宗均,路鹏,于会泳.高温菌生物学特性的应用[J].微生物杂志,2003,23(4):28-52.
    [30]齐春梅,张小平,姚听.嗜热微生物酶的嗜热机制及应用研究进展[J].微生物学杂志,2004,24(4):39-43.
    [31]彭谦,陈俊英.高温菌生物学[M].北京:科学出版社,2000.
    [32]许修宏,肖玉珍,陈建平,等.高效纤维素分解菌分离筛选的研究[J].东北农业大学学报,1998,29(4):330-333.
    [33]韩如,阂航,陈美慈,等.嗜热厌氧纤维素降解细菌的分离、鉴定及其系统发育分析[J].微生物学报,2002,42(2):138-144.
    [34]林世平,邓宇,张辉,等.高温厌氧纤维素分解菌及酶的初步研究[J].四川大学学报:自然科学版,2001,38(1):134-136.
    [35]程斐,孙朝晖,赵玉国,等.高温分解纤维素的易变糖丝菌菌株筛选及其特性[J].南京农业大学学报,2002,25(2):35-35.
    [36]Xue Y F, Xu Y, Liu Y, et al. Thermoanaerobacter tengcongensis sp. a novel anaerobic, saccharolytic, thermophilic bacterium isolated a hot spring in Tengcong[J].China International Journal of Systematic and Evolutionary Microbiology,2001,51:1335-1341.
    [37]Bao Q, Tian Y, Li W, et al. A complete sequence of the tengcongensis genome[J].Genome Res,2002,12:689-700.
    [38]Adsul M, Bastawde K B, Varma A J, et al. Strain improvement of Penicillium janthinellum NCIM1171 for increased cellulase production[J]. Bioresource Technology,2007,98(7): 1467-1473.
    [39]史家楔,徐亚同,张明.环境微生物[M].上海:华东师范大学出版社, 1999.
    [40]苏焕,宋兴福,刘够生,等.双菌固态发酵处理餐厨垃圾[J].食品与发酵工业,2004,(5):63-68.
    [41]安森,周琪,李辉.混合菌降解氯苯酚类化合物[J].工业水处理,2003,(8):23-25.
    [42]徐颖宣,徐尔尼,冯乃宪,等.微生物混菌发酵应用研究进展.中国造,2008,186(9):1-4.
    [43]王春铭,雷恒毅,王国惠,等.城市污泥模拟堆肥过程中的高温菌群筛选、鉴定及降解效果[J].环境科学学报,2007,27(6):979-956.
    [44]任南琪,马放.污染控制微生物学[M].哈尔滨:哈尔滨工业大学出版社,2002.
    [45]Riffaldi R, Levi-Minzi R, Pera A, et al. Evaluation of com- post maturity by means of chemical and microbial and microbial analysis[J].Waste Manag Res,1986,4:387-396.
    [46]Eklind Y, Kirchmann H. Composting and storage of organic household waste with different litter amendments Nitrogen turnover and losses[J].Bioresource Technology,2000,74: 125-132.
    [47]崔宗均,李美丹,朴哲,等.一组高效稳定纤维素分解菌复合系MCI的筛选及功能[J].环境科学,2002,23(3):36-39.
    [48]李秀艳,吴星五,高廷耀,等.接种高温菌剂的生活垃圾好氧堆肥处理田[J].同济大学学报,2004,32(3):367-371.
    [49]路葵.城市生活有机垃圾高效微生物处理技术[D].上海:华东师范大学,2001.
    [50]邱成书,荣华,刘会明,等.极端嗜热纤维素分解菌分子特征[J].四川大学学报:自然科学版,2005,42(1):185-189.
    [51]张春枝,王振宁,陈莉,等.高温厌氧菌分解纤维素的研究[J].大连轻工业学院学报,1998,17(3):63-67.
    [52]李日强,王爱英,孔令冬.一株纤维素分解菌的分离选育[J].山西大学学报:自然科学版,2006,28(3):317-320.
    [53]Fuentes A. Comparative study of six different sludges by sequential speciation of heavy metals[J]. Bio resource,2007.
    [54]Guerra Rodriguez E, J Alonso, M J Melgar, et al. Evaluation of heavy metal contents in composts of poultry manure with barley wastes or chestnut burr/leaf litter[J]. Chemosphere, 2006,74:1801-1805.
    [55]Adrian J, whitle Alex J, Dyson. The fate of heavy metals in green waste composting[J]. The Environmentalist,2002,23:13-21.
    [56]Nicholson E A, Chambers B J, Unwin R J. Heavy metal contents of live stock feeds and animal manures in England and wales[J]. Bio resource Technology,1999,23:23-31.
    [57]Whlter I, Manillez F, Cala V. Heavy metal speciation and phototoxic effects of three representable sewage sludges for agricultural uses[J]. Environmental Pollution,2006,139: 507-514.
    [58]冯树,周樱挢,张忠泽.微生物混合培养及其应用[J].微生物学通报,2001,28(3):92-95.
    [59]史玉英,沈其荣,娄无忌,等.纤维素分解菌的分离和筛选[J].南京农业大学学报,1996,19(3):59-62.
    [60]洪洞,黄秀莉.纤维素酶的应用[J].生物学通报,1997,32(12):18-19.
    [61]朴哲,崔宗均,苏宝琳,等.高效稳定纤维素分解菌复合系MCl的酶活特性[J].中国农业大学学报,2003,8(1):59-61.
    [62]伍时华,徐雅飞,黄翠姬.降解纤维素菌株的筛选[].食品科技,2006,8(5):50-51.
    [63]宋颖琦,刘睿倩,杨谦,等.纤维素降解菌的筛选及其降解特性的研究[J].哈尔滨工业大学学报,2002,32(2):197-198.
    [64]魏桃员,张素琴,邵林广,等.一株纤维素降解细菌的分离及特性研究[J].环境科学与技术,2004,27(5):2-3.
    [65]Kansoh A L, Essam S A, Zeinat A N. Biodegradation andutilization of bagasse with Trichodermareesei.Polymer degradation and Stability,1999,62(2):273-278.
    [66]高培基,许平,蔡晓风,等.环境资源微生物技术[C].北京:化学工业出版社,2004.
    [67]潘耀忠,李晓兵,史培军,等.深圳市南山区环境管理信息系统研究[J].环境科学,1997,18(1):76-79.
    [68]Bo Huang, Bin Jiang. AVTOP:A full integration of TOP2 MODEL into GIS[J]. Environmental Modeling & Software,2002,17(3):261-268.
    [69]张丽青,吴海龙,姜红霞,等.纤维素降解细菌的筛选及其产酶条件优化[J].环境科学与管理,2007,32(10):110-111.
    [70]张建强,李亚澜,李勇,等.纤维素降解菌的分离鉴定及固态发酵条件[J].西南交通大学学报,2006,41(4):442-447.
    [71]Buchanan R E, Gibbons N E. Bergey's Manual of De2 terminative Bacteriology[J]. Beijing: Science Press,1984,274-312.
    [72]蒋传葵,金承德,吴仁龙,等.工具酶的活力测定[J].上海:上海科学出版社,1982,79-81.
    [73]赵芸君,孟庆翔.B12添加对活体外瘤胃发酵和纤维降解的影响[J].草食家畜,2006,131(2):35-37.
    [75]周正红,贾宗剑,高孔荣,等.纤维素酶在食品发酵工业中的应用前景[J].暨南大学学报,1998,19(5):125-130.
    [76]Epstein E, The science of composting[M].A technical publishing company pennsylvania, 1997.
    [77]Bach P D, Shoda M, Kubota H. Rate of composting of dewatered sewage sludge in continuously mixed isotheral reactor[J].Journal of Fermentation Technology,1984,62:285-292.
    [78]叶姜瑜.一种纤维索分解菌鉴别培养基[J].微生物学通报.1997,24(4):251-252.
    [79]齐云,袁月祥,陈飞,等.一组纤维素分解菌的分离、筛选及其产酶条件的研究[J]天然产物研究与开发,2003,15(6):510-512.
    [80]张辉,杨启银,戴传超,等,生粪堆肥中好氧纤维素降解菌群及产酶条件研究[J].江苏农业科学,2004,17(2):146-150.
    [81]Sasithorn Kong ruang, Michelle K Bothwell, Joseph McGuire. Regulation of biosynthesis of individual cellulases in Thermomonospora fusca[J].Enzyme and Microbial Technology,2003, 32:539-543.
    [82]Clark MS, Horwath WR, et al. Change in soil chemical properties resulting from organic and low-import fanning practices[J].Agronmy Journal,1998,90(50):662-671.
    [83]Carpenter Boggs L, Kennedy A C, et al. Reganold organic and biodynamic management effects on soil biology[J]. Soil Science Society of America Journal,2000,64(5):1651-1659.
    [84]Bolan N S, Adriano D C, et al. Effects of organic amendments on the reduction and phytoavailability of chromate in mineral soil[J]. Journal of Environmental Quality,2003, 32(1):120-128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700