基于渡越辐射新型高功率微波源的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发展更高功率、更高频率和更长脉冲的高功率微波设备始终是高功率微波研究领域的重要课题。在基于渡越辐射效应的高功率微波发生器中,渡越时间振荡器因为简单紧凑的结构一直广受关注,但其在高功率和长脉冲运行方面存在困难,这主要受限于传统渡越时间振荡器中易于产生等离子体的导体箔结构。相对论速调管取消了导体箔,是一种有望高功率、长脉冲运行的渡越器件,然而其较长的漂移段加剧了强流相对论电子束发生传输不稳定性的风险,同时对励磁系统也提出了更高的要求。此外,在向更高频率发展的过程中,因为缩小的腔体尺寸,渡越时间振荡器和相对论速调管本身功率容量进一步减小,高功率和长脉冲运行遇到更大困难。
     为了顺应高功率微波源的发展趋势,本课题提出并研究了基于渡越辐射效应的新型无箔高功率微波发生器。新器件相对于速调管结构更为紧凑,仅需要较低的外加导引磁场,同时具有高功率、高频率和长脉冲运行的潜在优势。本文从理论分析、粒子模拟和实验研究等方面对新型器件进行了较为系统的研究,确立了新型渡越器件的研究基础。
     首先,利用模式匹配理论求解了新型渡越腔结构中的调制场分布。数值计算结果证实了新型结构中的调制场呈现准体波分布特性。从单腔渡越腔结构的场分布特性出发,推导得到了表征任意数目腔体结构中调制场与电子束发生能量交换的电子束归一化电导函数,由电导函数可以得到对应结构的工作电压范围。
     其次,论文对比研究了L波段渡越器件的模拟和实验结果。在二极管电压620kV、电流25kA、导引磁场0.5T的条件下,实验得到了约3.5GW的输出微波功率,微波频率1.64GHz,器件效率达到22.6%。实验结果与粒子模拟结果几乎一致。初步实验证实了新型器件的高功率输出能力,同时也发现了其在长脉冲运行方面存在的诸多不足,为进一步的结构改进提供了依据。
     对新型渡越器件的结构改进主要在X波段进行。从二极管间隙宽度、电子束收集位置、器件表面射频场强等方面全面考虑了改进型结构长脉冲运行的可能性。在束压710kV、束流14.5kA、导引磁场0.8T的条件下,粒子模拟得到了2.5GW的输出微波功率,主频为9.38GHz,效率约24.3%。器件内部表面轴向射频场强控制在590kV/cm左右,低于真空中射频击穿场强阈值。
     基于改进型渡越器件的设计,对其进行了初步的实验研究。在电子束束压780kV、束流13.5kA、导引磁场约0.8T的条件下,初步实验得到了约1.1GW的输出微波功率,主频9.34GHz,器件效率约10.5%。实验结果与相同工作电压电流波形下的粒子模拟结果(~1.5GW)吻合较好。初步实验也表明改进型渡越器件具备长脉冲运行的潜力,为下一步的长脉冲实验奠定了基础。
     最后,考虑到未来的应用需求,对新型渡越器件进行了进一步的拓展研究。在产生多频段微波辐射方面,新型结构表现出了许多新的优势。在电子束压500kV、束流15kA、导引磁场0.8T的条件下,粒子模拟得到了总功率约2.37GW的双频段微波输出,效率达到31.6%。在锁频锁相方面,初步研究表明:低功率注入时(~MW),同一射频信号控制下的多个同频渡越器件之间的相位锁定是可能的;高功率注入时(~100MW),新型渡越器件的频率和相位能被外部信号有效锁定。
To generate high power microwave (HPM) with higher power, higher frequencyand longer pulse width is always one of the hottest topics in the HPM domain. In theHPM generators based on transit radiation, the transit-time oscillator (TTO) is attractivebecause of its simplicity and compactness, yet it is very difficult to realize high-poweredand long-pulsed operation, which has been greatly limited by the conducting foilstructures. Without foils structure, the relativistic klystron is expected to operate at highpower and long-pulse. However, due to a long drift-tube, the intense relativistic electronbeam (IREB) would probably degrade in its transportation process, and the externalmagnetic field is also required more strictly. Besides, in pursuit of higher frequency,owing to the reduced dimensions, both the devices are confronted with the limititationof power capacity.
     Because of these reasons, a novel foilless HPM generator based on transit radiationis put forward. With a low external guiding magnetic field, such a device is morecompact than the klystron and has the advantages of high output power, high operationfrequency and long-pulsed operation. In the paper, the proposed device is systematicallyinvestigated by theoretical analysis, particle-in-cell (PIC) simulation and experiments,and its investigation foundation is eventually established.
     Firstly, the modulating field distributions are analytically solved by using modematching method. The numerical calculation shows that the modulating fields in thestructure have the trait of quasi body wave. From the field distribution of the singlecavity, the normalized beam-loading conductance ratio of the multi-cavity structure,indicating the beam-wave energy interchange, is derived. Consequently, the operatingvoltage range can be easily obtained.
     Secondly, the simulation and experimental results from the L-band device arecompared. With a620keV,25kA electron beam guided by an external magnetic fieldof0.5T, a3.5GW microwave at1.64GHz is obtained and the corresponding efficiencyreaches22.6%. The experimental results are almost consistent with those of the PICsimulation. The initial investigation testifies that the novel device is capable ofgenerating high output power. Simultaneously, it also indicates that the designed devicehas many shortcomings in the long-pulsed operation, which can provide a good guidefor the next structure improvement.
     Further, an improved device based on transition radiation is designed at X-band. Inorder to realize long-pulsed operation, special attentions are focused on thecathode-anode gap, the distance between the extractor and the electron collector, and theaxial electric field strength on the structure surface. With a710keV,14.5kA electronbeam guided by an external magnetic field of0.8T, a2.5GW microwave at9.38GHz is obtained in the simulation, and the corresponding efficiency is about24.3%. Thehighest axial electric field strength on the surface of electrodynamic structure is only590kV/cm, which is lower than the RF breakdown threshold in vacuum.
     Based on the PIC simulation, the elementary experiment of the improved X-banddevice is carried out in our laboratory. With a780kV,13.5kA electron beam guided byan external magnetic field of~0.8T, a9.34GHz,1.1GW microwave has beenexperimentally obtained and the corresponding efficiency is about10.5%. The resultsare basically consistent with those obtained in the simulation with the similar beamparameters (~1.5GW). The elementary investigations indicate that the improved deviceis hopeful of long-pulsed operation, which has laid a good foundation for the cominglong-pulsed experiments.
     Finally, considering the realistic demands, studies of the novel device are furtherwidened to the multi-frequency and phase-locking domains. In the generation ofmulti-frequency HPM, the novel structure shows many merits. With a500kV,15kAelectron beam guided by an external magnetic field of0.8T, a dual-frequency HPM hasbeen obtained in the simulation. The output power is about2.37GW and thecorresponding efficiency reaches31.6%. In the phase-locking, preliminary studies haveshown that, phase-locking among several devices with the same operation frequency ispossible when the input RF power is relatively low (~MW), and the operation frequencyand phase can be effectively controlled by the external signal when the input RF powergets to100MW.
引文
[1]周传明,刘国治,刘永贵等,高功率微波源[M].北京:原子能出版社,2007:269-309.
    [2] S. H. Gold and G. S. Nusinovich. Review of High-power Microwave SourceResearch [J]. Rev. Sci. Instrum.1997,68(11):3945-3974.
    [3]贺军涛.新型渡越时间振荡器的研究[D].长沙:国防科技大学研究生院,2004.
    [4] J. T. He, H. H. Zhong, B. L. Qian, and Y. G. Liu. A new method for increasingoutput power of a three-cavity transit-time oscillator [J]. Chin. Phys. Lett.,2004,21(7):1302-1305.
    [5] J. Benford, J. A. Swegle, E. Schamiloglu. High Power Microwaves [M]. NewYork: Taylor&Francis Group,2007:43-105.
    [6] M. J. Arman. High Efficiency Long Pulse Gigawatt Sources of HPM Radiation[C]. AIP Conf. Proc.1999,474:342-346.
    [7] M. Friedman and V. Serlin. Present and future developments of high powerrelativistic klystron amplifiers [J]. Pro. Of SPIE-The Inter. Soc. for Optical Eng.,Ed., Howard E. Brandt,1992,1629:2-7.
    [8] S. D. Korovin, I. K. Kurkan, I. V. Pegel, and S. D. Polevin. Gigawatt S-bandFrequency-tunable HPM Sources [C]. Power Modulator Symposium,2002and2002High-Voltage Workshop. Conference Record of the Twenty-FifthInternational,2002:244-247.
    [9] S. P. Bugaev, V. A. Cherepenin, V. I. Kanavets, A. I. Klimov, A. D. Kopenkin, V.I. Koshelev, V. A. Popov, and A. I. Slepkov. Relativistic Multiwave CerenkovGenerators [J]. IEEE Trans. Plasma Sci.,1990,18(3):525-536.
    [10] F. T. Agee. Evolution of Pulse Shortening Research in Narrow Band, High PowerMicrowave Sources [J]. IEEE Trans. Plasma Sci.1998,26(3):235-245.
    [11] J. Benford and G. Benford. Survey of pulse shortening in High-Power MicrowaveSources [J]. IEEE Trans. Plasma Sci.,1997,25(2):311-317.
    [12] S. P. Bugaev, V. A. Cherepenin, V. I. Kanave, A. I. Koshelev, V. A. Popov, andA. N. Vlasov. Investigation of a millimeter-wavelength-range relativisticdiffraction generator [J]. IEEE Trans. Plasma Sci.,1990,18(3):518-524.
    [13] J. Marcum. Interchange of Energy between an Electron Beam and an OscillatingElectric Field [J]. J. Appl. Phys.1946,17(1):4~11.
    [14] B. M. Marder, M. C. Clark, etal. The Split-Cavity Oscillator: A High-PowerE-Beam Modulator and Microwave Source [J]. IEEE Trans. Plasma Sci.1992,20(3):312-330.
    [15]刘庆想.三腔渡越时间效应高功率微波振荡器研究[R].中国国防科技报告,ZW-K-9800034,1998.
    [16] Z. Fan, Q. Liu, D. Chen, J. Tan, and H. Zhou. Theoretical and experimentalresearches on C-band three-cavity transit-time effect oscillator [J]. Sci. China, Ser.G,2004,47(3):310-329.
    [17] R. B. Miller et al. Super-Reltron Theory and Experiments [J]. IEEE Trans. PlasmaSci.,1992,20(3):332-343.
    [18] M. J. Arman. Initial study of a low-impedance high power radial klystronamplifier [C]. Proceeding of the Seventh National Conference on HPMTechnology,1994.
    [19] M. J. Arman. High Power radial klystron oscillator [C]. Proc of SPIE,1995:2557.
    [20] M. J. Arman. Radial acceletron, a new low-impedance HPM source [J]. IEEETrans. Plasma Sci.,1996,24(3):964-969.
    [21] J. W. Luginsland, E. Schamiloglu, and R. L. Wright. Comparison of theory andsimulation for radially-symmetric transit-time oscillator [J]. Pulsed PowerConference,1999. Digest of Technical Papers.12th IEEE International,1999,2:859-862.
    [22] J. T. He, H. H. Zhong, and Y. G. Liu. A new low-impedance high powermicrowave source [J]. Chin. Phys. Lett.,2004,21(6):1111-1113.
    [23] W. Yang and W. Ding. Studies of a low-impedance coaxial split-cavity oscillator[J]. Phys. Plasmas,2005,12(6):063105.
    [24] W. Yang and W. Ding. A new X-band coaxial transit-time oscillator [J]. Phys.Plasmas,2002,9(2):662-665.
    [25] Y. Cao, J. Zhang, and J. He. A low-impedance transit-time oscillator without foils[J]. Phys. Plasmas,2009,16(8):083102.
    [26] Y. Cao, J. He, J. Zhang, Q. Zhang, and J. Ling. High power microwave generationfrom the low-impedance transit-time oscillator without foils [J]. Phys. Plasmas,2012,19(7):072106.
    [27] J. Pasour, D. Smithe, and M. Friedman. The triaxial klystron [C]. AIP Conf. Proc.1999,474:373-3.
    [28] M. Friedman, and V. Serlin. Generation of a large diameter intense relativisticelectron beam for the triaxial relativistic klystron amplifier [J]. Rev. Sci. Instrum.,1995,66(6):3488-3493.
    [29]刘庆想. L波段长脉冲渡越管振荡器理论和实验研究[R].中国国防科技报告,ZW-K-9900058,1999.
    [30]陈代兵,刘庆想,等.X波段五腔渡越管振荡器的理论和实验研究[J].强激光与粒子束,2005,17(1):93-98.
    [31]何琥. X波段六腔渡越辐射振荡器的理论和实验研究[D].绵阳:中国工程物理研究院,2003:8-13,42-62.
    [32] M. Friedman, J. Krall, Y.Y. Lau, and V. Serlin. Efficient generation ofmultigigawatt rf power by a klystronlike amplifier [J]. Rev. Sci. Instrum.,1990,61(1):171-181.
    [33] M. Friedman, J. Krall, Y.Y. Lau, V. Serlin. Externally modulated intenserelativistic electron beams [J]. J. Appl. Phys.,1988,64(7):3353-3379.
    [34] M. Friedman, V. Serlin, M. Lampe, R. Hubbard, D. Colombant, and S. Slinker.Intense Electron Beam Modulation by Inductively Loaded Wide Gaps forRelativistic Klystron Amplifiers [J]. Phys. Rev. Lett.,1995,74(2):322-325.
    [35] M. Friedman, R. Fernsler, S. Slinker, R. Hubbard, and M. Lampe. EfficientConversion of the Energy of Intense Relativistic Electron Beams into rf Waves [J].Phy. Rev. Lett.,1995,75(6):1214-1217.
    [36] R. J. Barker and E. Schamiloglu. High-power microwave sources andtechnologies [M]. New York: IEEE Press,2001.
    [37] V. Serlin and M. Friedman. Development and optimization of the relativisticklystron amplifier [J]. IEEE Trans. Plasma Sci.1994,22(5):692-700.
    [38] J. Pasour, D. Smithe, L. Ludeking, and M. Friedman. High-power, annular-beamklystron amplifiers [J]. AIP Conf. Proc.2002,625:15-20.
    [39] M. Friedman, J. Pasour, and D. Smithe. Modulating electron beams for an X bandrelativistic klystron amplifier [J]. Appl. Phys. Lett.1997,71(25):3724-3726.
    [40] R. W. Lemke. Dispersion analysis of symmetric transverse magnetic modes in asplit cavity oscillator [J]. J. Appl. Phys.,1992,72(9):4422-4428.
    [41] C. B. Wallace. A foilless diode driven split cavity oscillator [J]. IEEE MTT-SDigest,1992:233-236.
    [42] I. V. Konoplev, A. W. Cross, P. Maclnnes, W. He, C. G. Whyte, A. D. R. Phelps,C. W. Robertson, K. Ronald, and A. R. Young. High-current oversized annularelectron beam formation for high-power microwave research [J]. Appl. Phys. Lett.2006,89(17):171503.
    [43] M. Friedman. Propagation of an intense relativistic electron beam in an annularchannel [J]. J. Appl. Phys.,1996,80(3):1263-1267.
    [44] J. A. Nation and M. Read. Limiting currents in unneutralized relativistic electronbeams [J]. Appl. Phys. Lett.,1973,23(8):426-428.
    [45] J. R. Thompson and M. L. Sloan. Limiting currents of an unneutralizedmagnetized electron beam in a cylindrical drift tube [J]. Phys. Fluids,1978,21(11):2032-2037.
    [46] H. C. Chen and H. S. Uhm. Diocotron instability of an intense relativistic electronbeam in an accelerator [J]. Physical Review A,1985,32(3):1657-1662.
    [47] Y. Y. Lau and J. W. Luginsland. Beam breakup instability in an annular electronbeam [J]. J. Appl. Phys.,1993,74(9):5877-5879.
    [48]曹亦兵.低阻无箔渡越辐射振荡器的研究[D].长沙:国防科技大学研究生院,2008.
    [49]贺军涛,曹亦兵,张建德.一种轴向渡越时间振荡器[P].国防发明专利.专利号: ZL200810076844.9.
    [50] R. W. Lemke, M. C. Clark, and B. M. Marder. Theoretical and experimentalinvestigation of a method for increasing the output power of a microwave tubebased on the split-cavity oscillator [J]. J. Appl. Phys.,1994,75(10):5423-5432.
    [51] W. Song, Y. Lin, G. Liu, and H. Shao. Theoretical investigation of an electronbeam propagating through a wide gap cavity [J]. Chin. Phys. B,2008,17(3):939-942.
    [52] M. Friedman. Extraction of radio frequency from electromagnetic surface wavesguided by metallic strips [J]. Rev. Sci. Instrum.,2000,71(2):551-553.
    [53] A. N. Vlasov, A. G. Shkvarunets, J. C. Rodgers et al. Overmoded GW-ClassSurface-Wave Microwave Oscillator [J]. IEEE Trans. Plasma Sci.,2000,28(3):550-560.
    [54] Y. Y. Lau, M. Friedman, J. Krall, and V. Serlin. Relativistic klystron amplifiersdriven by modulated intense relativistic electron beams [J]. IEEE Trans. PlasmaSci.,1990,18(3):553-569.
    [55] X. Ge, H. Zhong, B. Qian et al. An L-band coaxial relativistic backward waveoscillator with mechanical frequency tunability [J]. Appl. Phys. Lett.,2010,97(10):101503.
    [56] X. Ge, H. Zhong, B. Qian et al. Asymmetric-mode competition in a relativisticbackward wave oscillator with a coaxial slow-wave structure [J]. Appl. Phys. Lett.,2010,97(24):241501.
    [57]范植开.渡越管振荡器的理论研究与原理性实验[D].绵阳:中国工程物理研究院,1999.
    [58] A. Wexler. Solution of waveguide discontinuities by modal analysis [J]. IEEETrans. Microwave Theory and Techniques,1967,15(9):508-517.
    [59] R. F. Huang and D. M. Zhang. Application of mode matching method to analysisof axisymmetric coaxial discontinuity structures used in permeability and/orpermittivity measurement [J]. Progress in Electromagnetics Research,2007,67:205-230.
    [60]聂在平,周永祖,柳清伙.多区域柱面分层介质中的电磁散射—电磁波测井分析[J].电子学报,1992,20(9):12-21.
    [61]何炳发.微波理论中含Bessel函数的超越方程的解[J].现代雷达,1993,15(5):79-92.
    [62]张克潜,李德杰.微波与光电子学中的电磁理论[M].北京:电子工业出版社,2001:437-460.
    [63]吴鸿适.微波电子学原理[M].北京:科学出版社,1987:265-284.
    [64] G. M. Branch. Electron beam coupling in interaction gaps of cylindrical symmetry[J]. IRE Trans. Electron Devices,1961,8(3):193-207.
    [65]刘锡三.高功率脉冲技术[M].北京:国防工业出版社,2005:57-62.
    [66]曹亦兵,贺军涛,张建德,令钧溥.低阻无箔渡越辐射振荡器励磁系统[J].强激光与粒子束.2012,24(11):2709-2712.
    [67] Y. Fan, H. Zhong, Z. Li, H. Yang, T. Shu, and H. Zhou. A metal-dielectriccathode [J]. J. Appl. Phys.,2008,104(2):023304.
    [68] A. V. Gunin, V. F. Landl, S. D. Korovin, G. A. Mesyats, I. V. Pegel, and V. V.Rostov. Experimental Studies of Long-Lifetime Cold Cathodes for High-PowerMicrowave Oscillators [J]. IEEE Trans. Plasma Sci.,2000,28(3):537-541.
    [69] R. B. Miller. Mechanism of explosive electron emission for dielectric fiber (velvet)cathodes [J]. J. Appl. Phys.,1998,84(7):3880-3889.
    [70] A. Roy, R. Menon, K. V. Nagesh, and D. P. Chakravarthy. High-current densityelectron beam generation from a polymer velvet cathode [J]. J. Phys. D: Appl.Phys.,2010,43(36):365202.
    [71] A. Roy, A. Patel, R. Menon, A. Sharma, and D. P. Chakravarthy. Emissionproperties of explosive field emission cathodes [J]. Phys. Plasmas,2011,18(10):103108.
    [72] D. Shiffler, M. Haworth, K. Cartwright, R. Umstattd, M. Ruebush, S. Heidger, M.Lacour, K. Golby, D. Sullivan, P. Duselis, and J. Luginsland. Review of ColdCathode Research at the Air Force Research Laboratory [J]. IEEE Trans. PlasmaSci.,2008,36(3):718-728.
    [73] J. H. Booske. Plasma physics and related challenges of millimeter-wave-to-terahertz and high power microwave generation [J]. Phys. Plasmas,2008,15(5):055502.
    [74] J. He, Y. Cao, J. Zhang, and J. Ling. Effects of intense relativistic electron beamon the microwave generation in a foilless low-impedance transit-time oscillator [J].IEEE Trans. Plasma Sci.,2012,40(6):1622-1631.
    [75] J. Walter, J. Mankowski, and J. Dickens. Imaging of the Explosive EmissionCathode Plasma in a Vircator High-Power Microwave Source [J]. IEEE Trans.Plasma Sci.,2008,36(4):1388-1389.
    [76] L. Cohen. Time-Frequency Analysis [M]. Upper Saddle River, NJ: Prentice-HallPTR,1995.
    [77] B. Torre. Introduction to the special issue on wavelet and time-frequency analysis[J]. J. Math. Phys.,1998,39:3949-3953.
    [78] C. W. Peters, R. L. Jaynes, Y. Y. Lau, R. M. Gilgenbach, W. J. Williams, J. M.Hochman, W. E. Cohen, and J. I. Rintamaki. Time-frequency analysis ofmodulation of high-power microwaves by electron-beam voltage fluctuations [J].Physical Review E,1998,58(5):6880-6883.
    [79] F. Hegeler, M. D. Partridge, E. Schamiloglu, and C. T. Abdallah. Studies ofRelativistic Backward-Wave Oscillator Operation in the Cross-Excitation Regime[J]. IEEE Trans. Plasma Sci.,2000,28(3):567-575.
    [80] B. W. Hoff, P. J. Mardahl, R. M. Gilgenbach, M. D. Haworth, D. M. French, Y. Y.Lau, and M. Franzi. Microwave window breakdown experiments and simulationson the UM/L-3relativistic magnetron [J]. Rev. Sci. Instrum.,2009,80(9):094702.
    [81] N. A. Surplice and R. J. D’Arcy. Reduction in the work function of stainless steelby electric fields [J]. J. Phys. F: Met, Phys.,1972,2(1): L8.
    [82] S. Suzuki, C. Bower, Y. Watanabe, and O. Zhou. Work functions and valenceband states of pristine and Cs-intercalated single-walled carbon nanotube bundles[J]. Appl. Phys. Lett.,2000,76(26):4007-4009.
    [83] D. Marchand, C. Fretigny, M. Lagues, F. Batallan, Ch. Simon, I. Rosenman, andR. Pinchauxs. Three-dimensional band structure of graphite studied byangle-resolved photoemission using ultraviolet synchrotron radiation [J]. Phys.Rev. B,1984,30(8):4788-4795.
    [84] F. Maeda, T. Takahashi, H. Ohsawa, S. Suzuki, and H. Suematsu.Unoccupied-electronic-band structure of graphite studied by angle-resolvedsecondary-electron emission and inverse photoemission [J]. Phys. Rev. B1988,37(9):4482-4488.
    [85] X. Ge, H. Zhong, B. Qian, J. Zhang, L. Liu, L. Gao, C. Yuan, and J. He,Asymetric-mode competition in a relativistic backward wave oscillator with acoaxial slow-wave structure [J]. Appl. Phys. Lett.,2010,97(24):241501.
    [86] K. Tanaka, K. Minami, X. Zheng, Y. Carmel, A. N. Vlasov, and V. L. Granatstein.Propagating quasi-TE modes in a vacuum axisymmetric corrugated-wallwaveguide [J]. IEEE Trans. Plasma Sci.,1998,26(3):940-946.
    [87] J. D. Kraus and R. J. Marhefka. Antennas for all applications [M]. McGraw-HillCompanies, Inc.,2002.
    [88] L. Laurent, G. Caryotakis, G. Scheitrum, D. Sprehn, N. C. Luhmann. Pulsed RFbreakdown studies [C]. Proceedings of SPIE, Intense microwave pulses VII,2000,4031:110-120.
    [89] C. Chang, H. Shao, C.H. Chen, C.X. Tang, and W.H. Huang. Single and repetitiveshort-pulse high-power microwave window breakdown [J]. Phys. Plasmas,2010,17(5):053301.
    [90] Krile J. T., Neuber A. A., Krompholz H.G., and Gibson T.L. Monte Carlosimulation of high power microwave window breakdown at atmosphericconditions [J]. Appl. Phys. Lett.,2006,89(20):201501.
    [91] Kuo S. P. and Zhang Y. S. A theoretical model for intense microwave pulsepropagation in an air breakdown environment [J]. Phys. Fluids B,1991,3(10):2906-2912.
    [92] Kuo S. P., Zhang Y. S., and Kossey P. Propagation of high-power microwavepulses in air breakdown environment [J]. J. Appl. Phys.1990,67(6):2762-2766.
    [93] A. A. Neuber, G. F. Edmiston, J. T. Krile, H. Krompholz, J. C. Dickens, and M.Kristiansen. Interface breakdown during high-power microwave transmission [J].IEEE Trans. Magnetics,2007,43(1):496-500.
    [94] G. Z. Liu, J. Y. Liu, W. H. Huang, J. S. Zhou, X. X. Song, and H. Ning. A studyof high power microwave air breakdown [J]. Chin. Phys.,2000,9(10):757-763.
    [95] W. Woo and J. S. Degroot. Microwave absorption and plasma heating due tomicrowave breakdown in the atmosphere [J]. Phys. Fluids,1984,27(2):475-487.
    [96]许福永,赵克玉.电磁场与电磁波[M].北京:科学出版社,2005:313-314.
    [97] I. V. Konoplev, A. W. Cross, P. Maclnnes et al. High-current oversized annularelectron beam formation for high-power microwave research [J]. Appl. Phys. Lett.,2006,89(17):171503.
    [98] A. Roy, R. Menon, S. Mitra, S. Kumar, V. Sharma, and K. V. Nagesh. Plasmaexpansion and fast gap closure in a high power electron beam diode [J]. Phys.Plasmas,2009,16(5):053103.
    [99] D. Shiffler, M. Ruebush, D. Zagar, M. Lacour, and M. Sena. Cathode and anodeplasmas in short-pulse explosive field emission cathodes [J]. J. Appl. Phys.,2002,91(9):5599-5603.
    [100] R. Xiao, J. Sun, S. Huo, X. Li, L. Zhang, X. Zhang, and L. Zhang. Plasmaexpansion and impedance collapse in a foil-less diode for a klystronlikerelativistic backward wave oscillator [J]. Phys. Plasmas,2010,17(12):123107.
    [101] J. W. Luginsland, Y. Y. Lau, R. J. Umstattd, and J. J. Watrous. Beyond theChild-Langmuir law: A review of recent results on multidimensionalspace-charge-limited flow [J]. Phys. Plasmas,2002,9(5):2371-2376.
    [102] J. Mondal, D. D. P. Kumar, A. Roy, S. Mitra, A. Sharma, S. K. Singh, G. V. Rao,K. C. Mittal, K. V. Nagesh, and D. P. Chakravarthy. Intense gigawatt relativisticelectron beam generation in the presence of prepulse [J]. J. Appl. Phys.,2007,101(3):034905.
    [103] E. N. Abdullin, G. P. Bazhenov, S. P. Bougaev, G. P. Erokhin, O. B. Ladyzhensky,S. M. Chesnokov. Generation of Quasi-Stationary Electron Beams on the Basis ofa Vacuum Discharge [J]. IEEE Trans. Plasma Sci.1985,13(5),338-339.
    [104] V. I. Engelko. Formation of stable long-pulse electron beams with the help ofexplosive emission cathodes [J]. Plasma Devices and Operations,2005,13(2):135-142.
    [105] J. Z. Gleizer, Y. Hadas, V. Tz. Gurovich, J. Felsteiner, and Ya. E. Krasik.High-current electron beam generation in a diode with a multicapillary dielectriccathode [J]. J. Appl. Phys.2008,103(4):043302.
    [106]杨祥林等.微波器件原理[M].北京:电子工业出版社,1985:219.
    [107] J. Zhang, H. H. Zhong, and L. Luo. A novel overmoded slow-wave high-powermicrowave (HPM) generator [J]. IEEE Trans. Plasma Sci.,2004,32(6):2236-2242.
    [108] J. Zhang, Z.X. Jin, J.H. Yang et al. Recent advance in long-pulse HPM sourceswith repetitive operation in S-, C-, and X-bands [J]. IEEE Trans. Plasma Sci.,2011,39(6):1438-1445.
    [109] Z. Jin, J. Zhang, J. Yang et al. A repetitive S-band long-pulse relativisticbackward-wave oscillator [J]. Rev. Sci. Instrum.,2011,82(8):084704.
    [110] Teng Y., Liu G., Shao H., and Tang C. A New Reflector Designed for EfficiencyEnhancement of CRBWO [J]. IEEE Trans. Plasma Sci.,2009,37(6):1062-1068.
    [111]张军.新型过模慢波高功率微波发生器研究[D].长沙:国防科技大学,2004.
    [112] J. Zhu, T. Shu, J. Zhang, G. Li, and Z. Zhang. A high power Ka band millimeterwave generator with low guiding magnetic field [J]. Phys. Plasmas,2010,17(8):083104.
    [113]张晓萍,钟辉煌,袁成卫.微波源中同轴提取区支撑杆的理论分析与设计[J].微波学报,2004,20(2):46-50.
    [114] J. He, Y. Cao, J. Zhang, T. Wang and J. Ling. Design of a dual-frequencyhigh-power microwave generator [J]. Laser and Particle Beams,2011,29(4):479-485.
    [115] T. Wang, J. Zhang, B. Qian, and X. Zhang. Dual-band relativistic backward waveoscillators based on a single beam and dual-beams [J]. Phys. Plasmas,2010,17(4):043107.
    [116] T. Wang, B. Qian, J. Zhang et al. Preliminary experimental investigation of adual-band relativistic backward wave oscillator with dual-beams [J]. Phys.Plasmas,2011,18(1):013107.
    [117]贺军涛,曹亦兵,张建德,令钧溥.级联型多波段轴向渡越时间振荡器[P].已申请国防专利.专利申请号:201218000269.1.
    [118] Y. Fan, H. Zhong, Z. Li et al. A double-band high-power microwave source [J]. J.Appl. Phys.2007,102(10):103304.
    [119] D. Chen, D. Wang, F. Meng, and Z. Fan. Bifrequency magnetically insulatedtransmission line oscillator [J]. IEEE Trans. Plasma Sci.,2009,37(1):23-29.
    [120] J. Ju, Y. Fan, H. Zhong, and T. Shu. A novel dual-frequency magneticallyinsulated transmission line oscillator [J]. IEEE Trans. Plasma Sci.,2009,37(10):2041-2047.
    [121] W. Song, J. Sun, H. Shao et al. Inducing phase locking of multiple oscillatorsbeyond the Adler’s condition [J]. J. Appl. Phys.2012,111(2):023302.
    [122] Y. Teng, W. Song, J. Sun et al. Phase locking of high power relativistic backwardwave oscillator using priming effect [J]. J. Appl. Phys.2012,111(4):043303.
    [123] W. Woo, J. Benford, D. Fittinghoff et al. Phase locking of highpower microwaveoscillators [J]. J. Appl. Phys.1989,65(2):861-866.
    [124] R. Xiao, C. Chen, W. Song et al. RF phase control in a high-powerhigh-efficiency klystron-like relativistic backward wave oscillator [J]. J. Appl.Phys.2011,110(1):013301.
    [125] M. J. Arman. Phase-locked radial klystron oscillators [J].1996IEEE InternationalConference,1996:288.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700