ASNS的制备、表征和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,核/壳复合粒子的设计和可控构筑已成为新材料和表面科学领域的研究焦点。由于核/壳粒子相比于单一组分材料表现出更优越的理化性能(如机械、化学、电学、磁学和光学方面),而且,把贵重材料包覆在低廉的核体物质上可降低其生产成本。多种核/壳粒子已被制备出来,特别是壳层物为二氧化硅的复合粒子。水合二氧化硅外观呈白色,因在橡胶中有类似于炭黑的补强性能,所以俗称为白炭黑。它以密度小、比表面积大、分散性能好及优越的稳定性、补强性、增稠性和触变性等成为重要无机填料之一,广泛应用于橡胶、塑料、医药、涂料,日用化工等许多行业。因此,本课题根据“粒子设计”的新思想,探索白炭黑的绿色合成新工艺,以CaCO_3颗粒为核体、无定形SiO_2为壳层物试制出一种新型的白炭黑(我们称为ASNS,amorphous silica with novel particle structure)在某些应用中替代现有产品。在ASNS的生产工艺中,传统原料水玻璃、酸的消耗将减少90%以上,产品水洗、干燥的负担相应减轻,废水的生成量显著降低,基本上能够达到绿色化学和原子经济性的要求。并探索出一种新颖、快捷、可靠的测定无定形二氧化硅对碳酸钙包覆程度的新方法。这种核/壳材料测试技术的创新,对指导碳酸钙@白炭黑粒子的制备,确定最佳工艺条件,明确新产品的技术指标,都具有重要的实际应用价值。本文的主要工作如下:
     1.总结、分析了核/壳结构粒子的基本特性、制备方法、形成机理、表征方法和主要应用。这对核/壳复合材料的制备、结构性能和包覆机理的研究具有重要的指导意义。
     2.对三个不同厂家所生产的牙膏用二氧化硅磨擦剂的外观、pH值、热失重率、吸水量、硫酸盐含量、表观密度等六个方面的理化性质进行了测试和比较。
     3.研究了用非均相成核法在CaCO_3颗粒表面包覆无定形SiO_2的工艺。对影响包覆效果的Na2SiO_3溶液浓度、pH值、温度、CaCO_3颗粒的分散、物料混合方式等因素深入剖析。并从热力学和动力学方面探讨其包覆机理。
     4.研究了水溶液中亚甲基蓝(MB)与白炭黑之间的相互作用,考察了吸附时间、亚甲基蓝初始浓度、温度、pH值、盐的加入等因素对白炭黑吸附MB的影响,并探讨了吸附机理。实验结果表明,吸蓝量随初始浓度的增大而增大,随体系温度和盐浓度的升高而减小。还发现MB在较高pH条件下,因水解或形成二聚体对可见光的吸收率随pH升高不断降低的现象。根据此现象,本文提出,当pH值增大,白炭黑对MB吸附量增大的原因有两个:一是pH值越大,白炭黑表面负电荷量越多,因此对阳离子染料MB的吸附量增大;二是在高pH下,MB自身水解或形成二聚体导致吸附量测定结果偏高。由于MB是表征吸附剂吸附性能最常用的染料之一,该发现对于其它吸附体系的研究也具有参考价值。
     . 5.研究了碳酸钙对水溶液中亚甲基蓝的吸附作用,实验结果表明,碳酸钙对亚甲基蓝不吸附。因此,根据对MB的吸附性能不同可区分白炭黑和碳酸钙。6.采用亚甲基蓝吸附法测定无定形SiO_2对CaCO_3的包覆量和包覆率。这种快速、简
     便、直观、准确的测定方法对于指导核/壳粒子的生产具有重要的参考价值。
In recent years, the design and controllable constructing of core-shell composite particles have become the focus of a study on a new materials and surface science. Various types of core-shell particles have emerged, especially, the shell material such as silica. Because such particles with core-shell structure often exhibit superior physicochemical properties (e.g. mechanical,chemical,electrical,magnetic and optical) to their single component counterparts, moreover, coating expensive shells on the inexpensive cores materials can lower the cost of the functional materials . With white external appearance,hydrated silicon dioxide has the similar function of reinforcing ability in rubber to carbon,so it is usally called white carbon black .For its low density,high specific surface area, fine dispersion,superior stability , reinforcing ability,thickening property and thixotropy inereasing etc.Silica has been one kind of important inorganic fillers, and widely used in many fields, such as rubber , plastic,medicine, pigment ,toothpaste and daily chemical industry. Thus, under the "particle design" new ideas,to attempts to regard amorphous SiO_2 as shell materials,regard CaCO_3 partiele as core materials to prepare a kind of new-type silica-gel filler, to explored the green synthetic process of silica, to produce a new type of silica (the amorphous silica with novel particle structure is called ASNS) as substitute for it’s existing products in some applications. It is the production process of ASNS that reduced the consumption of traditional raw materials of sodium silicate and acid by more than 90 percent, and reduced significantly the cost of washing and drying of products, and met basically the requirement of green chemistry and atom economy .We put forward a novel, rapid, reliable new method on determining the coated effect of calcium carbonate coated with amorphous silicon dioxide. It had practical application value for new measurement techniques of this core-shell material to guide the preparation of calcium carbonate @ silica,and to determine optimum conditions,and to definite technical index of a new product,and to establish enterprise standard. The main work of this dissertation are summed up as follows:
     1. In this paper we summarized and analyzed the basic characteristics, preparation method, formation mechanism, characterization methods and main application of core-shell particles. Which is of certain guiding significance for studying the preparation, structural performace and coating mechanism of core-shell composite materials.
     2. We tested and compared physicochemical properties (including the appearance , pH value, heat rate of weight loss, water absorption , sulphate content, the apparent density )of three kinds of silica using for toothpaste abrasives produced by three different manufacturers.
     3. The technology of coating SiO_2 on the surface of CaCO_3 particles was studied by heterogeneous nucleation method. The influences of the solution concentration of Na2SiO_3 , the pH value, temperature of the system, the dispersion of CaCO_3 particles, blending way and adding rate were made a thorough analysis. The coating mechanism was studied through thermodynamics and dynamics.
     4. Studying on interaction of methylene blue(MB) in aqueous solution and silica, The effects of initial mass concentration of MB,adsorption time, temperature,pH value,salt on the MB adsorption of silical were also investigated. Experimental results have shown that increasing initial mass concentration of MB favors the adsorption while the acidic pH , temperature and salt go against the adsorption.It was found that the absorbance of visible light of methylene blue(MB) solution decreased at high pH beeause of hydrolysis or forming dimmer of MB. On the basis of this finding,we proposed that there were two reasons for the increasing removal of MB onto silica with the increasing pH value : One was the increasing negative charge on the silica surface with pH increasing and the other was the hydrolysis or dimmer forming of MB which causing the removal increase. As MB is one of the most popular dyes for characterization of various adsorbents, this finding may be also taken as reference to other adsorption system studies.
     5. The adsorption effect of the aqueous solution of methylene blue on calcium carbonate has been investigated. Experimental results have shown that no adsorption of methylene blue on calcium carbonate occurred. Therefore, according to different adsorption performances distinguishing between silica and calcium carbonate.
     6.The determination of the coating quantity and coating ratio of CaCO_3/SiO_2 core-shell particles by methylene blue spectrophotometric method. This rapid, simple, direct and accurate determination method has important reference value to guide the production of core-shell particles.
引文
[1] 张均林,严彪,王德平. 材料科学基础[M]. 北京: 化学工业出版社,2006:9,285.
    [2] 陶杰,姚正军,薛烽. 材料科学基础[M]. 北京: 化学工业出版社,2006:127.
    [3] 张佐光. 功能复合材料[M]. 北京: 化学工业出版社,2004:1-7.
    [4] Zhong C J, Maye M M. Core-shell assemblyed nanoparticles as catalysts[J]. Adv Mater,20 01,13: 1507-1511.
    [5] Henglein A. Preparation and optical absorption spectra of Au core Pt shell and Au shell Pt core colloidal nanoparticles in aqueous solution[J]. J Phys Chem B, 2000, 104:2201-2203.
    [6] Ji T, Lirtsman V G, Avny Y, et al. Preparation, characterization, and application of Au-shell polystyrene beads and Au-shell/magnetic beads[J]. Adv Mater, 2001, 13:1253-1256.
    [7] Monteiro O C, Esteves A C,Trindade T.The synthesis of SiO2@CdS nanocomposites using single-molecule precursors[J]. Chem Mater, 2002, 14: 2900-2904.
    [8] Kamata K, Lu Y, Xia Y N. Synthesis and characterization of monodispersed core-shellspherical colloids with movable cores[J]. J Am Chem Soc, 2003, 125:2384-2385.
    [9] Mandal S, Mandale A B,Sastry M. Keggin ion-mediated synthesis of aqueous phase-pure Au@Pd and Au@Pt core-shell nanoparticles[J]. J Mater Chem, 2004, 14: 2868-2871.
    [10] 陈金媛,彭图治.磁性纳米 TiO2/Fe3O4 光催化复合材料的制备及性能[J].化学学报,2004,62(20):2093-2097.
    [11] Y Qi,M Chen,S Liang,et al.Hydrophobation and self-assembly of core-shell Au@SiO2 nonoparticles[J]. Colloids and Surface A :Physicochem.Eng.Aspects,2007,302: 383-387.
    [12] 杨忠强,刘凤岐. 无机有机核壳材料研究进展[J]. 化学通报, 2004,3:163-169.
    [13] 张艳萍,褚莹. 模板法合成核壳功能材料[J]. 化学进展, 2007,19(1):35-39.
    [14] 李凤生. 特种超细粉体制备技术及应用[M]. 北京: 国防工业出版社,2002:208.
    [15] 吴人洁. 复合材料[M]. 天津: 天津大学出版社,2000:305,355.
    [16] 田春贵. 核壳结构的纳米粒子的制备与表征[D]. 吉林: 东北师范大学,2004.
    [17] 刘威,钟伟,都有为. 核/壳结构复合纳米材料研究进展[J].材料导报,2007,21(3): 59-62.
    [18] 刘波,庄志强,刘勇,等. 粉体的表面修饰与表面包覆方法的研究[J]. 中国陶瓷工业, 2004,11(1):50-54,31.
    [19] 付延明,李凤生.包覆式超细复合粒子的制备[J].火炸药学报,2002(1):33-35.
    [20] 陈加娜,叶红齐,谢辉玲. 超细粉体表面包覆技术综述[J]. 安徽化工,2006,140 (2):12-15.
    [21] 刘雪东,卓震.机械化学法粉体表面改性的发展与应用[J].江苏石油化工学院学报,2002,14(4):32-35.
    [22] 王富祥,盖国胜,吴绍军. 机械化学法制备超细复合粒子现状[J]. 有色矿冶,2005, 21(7):52-54.
    [23] 顾华志,洪彦若,汪厚植,等.Ca(OH)2-CaCO3 复合粉体粉磨过程中的机械化学效应[J].硅酸盐通报,2004(4):11-14.
    [24] 贾德昌,周玉,雷廷权,等. 复合材料 Al/Al4C3/Al2O3 组织结构与力学性能[J]. 稀有金属,1998,22(2):81-83.
    [25] 李凤生,崔平,杨毅,等. 微纳米粉体后处理技术及应用[M]. 北京: 国防工业出版社,2005:190-205.
    [26] 吴人洁. 复合材料[M]. 天津: 天津大学出版社,2000:266,277-285.
    [27] 黄剑锋. 溶胶-凝胶原理与技术[J]. 北京: 化学工业出版社,2005:5-7.
    [28] 黄祥卉,陈振华.γ-Fe2O3/SiO2纳米复合粉体的制备[J]. 无机材料学报,2005,20 (3):685-691.
    [29] 童国秀,王维,官建国. SiO2纳米壳的厚度对羰基铁/ SiO2核壳复合粒子的性能影响[J].无机材料学报,2006,21(6):1461-1465.
    [20] 王洁欣,文利雄,和平,等. 新型球形纳米空心 SiO2 的模板合成方法研究[J]. 化学学报,2005,63(14):1298-1302.
    [31] 施用睎,邵磊,陈建峰. SiO2 包覆纳米 CaCO3 的透射电镜表征[J]. 分析测试学报,2006,25(3):103-105.
    [32] 张从容,赵康.泡沫铝用 SiO2/TiH2 包覆型发泡剂的制备[J].热加工工艺,2004(3): 39-40.
    [33] V K Lamer, R H Dinegar. Theory production and mechanism of formation of monodispe- rsed hydrosols[J]. J.Am.Chem.Soc,1950,72: 4847-4854.
    [34] 曹冉,李红霞. 非均匀成核法石墨表面改性的研究[J]. 耐火材料,2006,40(3): 161-164.
    [35] 魏明坤,肖辉,刘利. Al2O3 包覆石墨颗粒的制备及表征[J]. 硅酸盐学报,2004,32(8):916-919.
    [36] 赖伟,张绪平. TiH2颗粒表面包覆 SiO2膜的正交试验研究[J]. 煤矿机械, 2006,27 (7):49-51.
    [37] 方吉祥,杨志懋,丁秉钧. SiO2/TiH2 包覆粉体的制备及其释氢特性[J]. 高等学校化学学报,2005,26(7):1225-1227.
    [38] Yang J, Jose M F,Weng W.Dispersion properties of silicon nitride powder coated with yttrium and aluminium precursors [J].J Colloid Interf Sci,1998,(206): 274-280.
    [39] Y F Tang,Z D Ling, Y N Lu. Preparation of composite coating particles ofα- Al2O3/SiO2 by heterogeneous nucleation-and-growth processing[J]. J.Mater. Letters,2002,56: 446-449.
    [40] Ohmori M, Matijevic E. Preparation and properties of uniform coated inorganic colloidal particles 8 silica on iron[J].J Colloid Interface Sci, 1993, 160: 288-292.
    [41] http//www. multiphase. newcastle. edu. au/ papers/ 1998/ penpolcharoen. pdf.
    [42] 肖锋,叶建东,王迎军. 超声技术在无机材料合成与制备中的应用[J].硅酸盐学报, 2002,30(5):615-618.
    [43] 陈志刚,陈彩凤,刘 苏. 超声场中湿法制备 Al2O3 纳米粉工艺研究[J].硅酸盐学报, 2003,2:213
    [44] Zhong Z Y,Mastai Y,KoltypinY, et al. Sonochemical coating of nanosized nickel on alumina submicrospheres and the interaction between the nickel and nickel oxide with the substrate[J]. Chem Mater, 1999, 11: 2350-2359.
    [45] 张福安. 核壳型纳米复合半导体的制备及其形貌控制研究[D].杭州: 浙江大学,2006.
    [46] A.Gedanken,R.Reisfeld,E.Sominski,et al. Sonochemical Preparation and Characterizatio- n of Europium Oxide Doped in and Coated on ZrO2 and Yttrium-Stabilized Zirconium(YSZ)[J]. J.Phy.Chem.B,1998,102: 2722-2732.
    [47] V G Pol,R Reisfeld,A Gedanken. Sonochemical Synthesis and Optical Properties of Europium Oxide Nanolayer Coatd on Titania[J].Chem.Mater, 2002,14: 3920-3924.
    [48] A Dhas,A Zaban,A Gedanken. Surface Synthesis of Zinc Sulfide Nanoparticle on Silica Microspheres:Sonochemical Preparation,Characteriztaion and Optical Properties[J]. Chem.Mater,1999,11: 806-813.
    [49] 姚 超, 高国生,林西平. 氢氧化铝对纳米 TiO2 的表面包覆[J]. 应用化学, 2005, 22(7):759-763.
    [50] 姚 超,吴凤芹,林西平,等.超声场中纳米 TiO2表面包覆氧化硅的研究[J].无机化学学报, 2005,21(1):59-64.
    [51] 陈磊,陈建敏,周惠娣.微乳化技术在无机纳米材料制备中的应用及发展[J].材料科学与工程学报,2004,22(1):138~141.
    [52] S Y Chang,L Liu.Preparation and Properties of Tailored Morpholohy,Monodisperse Coll- idal Silica-Cadmium Sulfide Nanocomposites[J]. J.Am.Chem.Soc, 1994,116: 6739- 6744.
    [53] X A Fu,S Qutubuddin. Synthesis of titania-coated silica nanoparticles using a nonionic water-in-oil microemulsion[J]. Colloids and Surface A:Physicochem. Eng.Aspects,2001, (179): 65-70.
    [54] 朱以华,李春忠,吴秋芳. 流化床反应器中 α-FeOOH 粒子表面水解包覆 SiO2过程研究[J].高等学校化学学报, 20(1):119-121.
    [55] 李凤生,崔平,杨毅,等. 微纳米粉体后处理技术及应用[M]. 北京: 国防工业出版社,2005:360-385.
    [56] 颜鲁婷,司文捷,刘莲云. 自组装纳米超薄膜研究及其应用[J]. 材料科学工程学报,2007,105(1):139-143.
    [57] 袁俊杰,周树学,游波,等. 纳米二氧化硅包覆颜料黄的研究[J]. 高等学校化学学报,2005,26(11):1998-2001
    [58] 王毅,谈勇,丁少华. Au 和 SiO2多壳结构的制备和表征[J]. 化学学报,2006,64(22): 2291-2295.
    [59] 谢风宽,陈晓磊,庄书娟. 液相沉积法表面包覆改性纳米陶瓷微粒及机理研究进展[J]. 材料导报,2006,20(5):153-158.
    [60] 王利剑,郑水林. 我国无机包覆型复合粉体制备研究现状[J]. 化工矿物与加工,2005,1:5-7.
    [61] 孙秀果,贾振斌,魏雨.纳米级二氧化钛包硅过程及形成机理研究[J].河北师范大学学报(自然科学版), 2002,11:598
    [62] 孔德玉,王家邦,韦苏,等.纳米 SiO2包覆 Al2O3浓悬浮体制备及其凝胶注模成型[J].硅酸盐学报, 2004,4:442
    [63] 崔爱莉, 王亭杰,金涌. TiO2表面包覆SiO2和Al2O3的机理和结构分析[J]. 高等化学学报,1998,19(11):1727-1729.
    [64] 张淑霞,李建保,张波,等.TiO2 颗粒表面无机包覆的研究进展[J].化学通报,2001,2: 71-75.
    [65] Homola A M, Rice S L [P]. US Patent :4280918,1981.
    [66] 覃操,王亭杰,金涌. 液相沉积法制备TiO2颗粒表面包覆SiO2纳米膜[J].物理化学学报, 2002, 18(10):884-889.
    [67] 崔爱莉,王亭杰,金涌,等.二氧化钛表面包覆氧化硅纳米膜的热力学研究[J].高等学校化学学报, 2001,22(9):1543-1545.
    [68] 杨玉芬,盖国胜,樊世民. 矿物填料表面无机包覆改性研究[J]. 中国矿业大学学报,2005,34(3):279-283.
    [69] 廖振华,陈建军,姚可夫,等.磁性纳米TiO2/SiO2/Fe3O4光催化剂的制备及表征[J].无机材料学报,2004,19(4):749-754.
    [70] Kim S W, Kim M, Lee W Y, et al. Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions[J]. J Am Chem Soc, 2002, 124: 7642-7 643.
    [71] X Lxu ,S A Asher.Sythesis and Utilizaion of Monodisperse Hollow Polymeric Particles in Photonic Crystals[J]. J.Am.Chem.Soc,2004,25: 7940-7945.
    [72] 胡永红,容建华,刘应亮. SiO2/Ag 核壳结构纳米粒子的制备及表征[J]. 化学学报,2005,64(24):2189-2193.
    [73] Mandal S,Mandale A B,Sastry M. Keggin ion-mediated synthesis of aqueous phase pure Au@Pd andAu@Ptcore-shell nanoparticles[J].J Mater Chem,2004,14: 2868-2871.
    [74] 俞英,周震涛. 核壳纳米晶二硒化镉/硫化镉的合成及荧光法测定溶菌酶[J]. 分析化学,2005,33(5):650-652.
    [75] 李朝辉,王柯敏,谭蔚泓,等.硅壳包覆的核壳型量子点荧光纳米颗粒的制备及其在细胞识别中的应用[J].科学通报, 2005, 50(13):1318-1322.
    [76] Hari B,Y H Zhang,H B Yang,et al. Preparation characteristics of Calcium carbonate/Sili- ca nanoparticles with core-shell structure[J]. Colloids and Surfaces A,2007,294: 8-13.
    [77] 罗穗莲,潘慧铭,王跃林. 超细碳酸钙表面处理及其在RTV硅橡胶中的应用(二)[J].中国胶粘剂, 2005,14(3):5-7.
    [78] 岳林海,蔡菊香,华益苗. SiO2包覆超细 CaCO3的结构和机理分析[J]. 浙江大学学报(理学版),2002,29(1):68-72.
    [79] 陈国斌. 硅灰石粉的包膜改性研究[J]. 稀有金属与硬质合金, 2002, 30(3): 26-28.
    [80] 尹 荔 松 . 高 岭 土 微 粉 与 纳 米 TiO2 表 面 复 合 改 性 研 究 [J]. 中 国 粉 体 技术,2001,7(3):19-22.
    [81] 黄佳木,吴美升,盖国胜. 纳米 SiO_2 包覆硅灰石粉填充改性聚丙烯的研究[J].化学建材,2003,6:30-32.
    [82] 黄之杰,朱焕勤,尚振锋. 云母钛珠光颜料的包膜及其在涂料中的使用性能[J]. 涂料工业, 2006,(2):58-61.
    [83] 中国科学技术协会主编. 2006~2007 材料科学学科发展报告[M]. 北京: 中国科学技术出版社,2007:31.
    [84] 黄惠忠. 表面化学分析[M]. 上海: 华东理工大学出版社,2007:1-6.
    [85] 周良玉,尹荔松,周克省. 白炭黑的制备表面改性及应用研究进展[J]. 材料导报,2003, 17(11):56-59.
    [86] 赵柄国,郭 锴,谢小平. 白炭黑制备工艺对比表面积和吸油值的影响[J]. 无机盐工业, 2006,38(5):23-26.
    [87] 吴雪文,张海波,韩团辉,等. 传统沉淀法制备白炭黑的研究进展[J]. 无机盐工业,2006, 38(4):9-10,45.
    [88] 杨 波,何 慧,周扬波. 气相法白炭黑的研究进展[J]. 化工进展,2005,24(3): 372-377.
    [1] 林钻煌,唐献兰.牙膏中磨擦剂的系统分析[J].牙膏工业.2002,3:32-34.
    [2] 王勤.牙膏用沉淀二氧化硅的性质及其应用研究[J].牙膏工业,2004,2:37-41.
    [3] 王勤,胥莉.牙膏磨料的磨损性[J].牙膏工业.2003,3:17.
    [4] 李刚.牙膏磨擦剂的理化特性和常用类型[J].牙膏工业.2003,4:37-39.
    [5] 刘良,梁琳,谢伟杰.牙膏中的活性原料综述[J].牙膏工业.1996,1:33.
    [6] 沈海燕.牙膏中黏合剂和磨擦剂概述[J].牙膏工业.1996,1:33-34.
    [7] 重庆牙膏厂.晨光二氧化硅在我厂牙膏中的应用[J].牙膏工业.2001,4:49.
    [8] 中华人民共和国经工业行业标准.牙膏用二氧化硅[J].牙膏工业.1998,3:26-29.
    [1] 许莹,沈毅. 沉淀法制备纳米白炭黑工艺参数的控制[J].化工矿物与加工,2004,7:15-17.
    [2] 李国庭,王金阁,刘鸿雁. 硫酸沉淀法制备高补强白炭黑[J].非金属矿,2000,23(2):24-26.
    [3] 丁希楼,张国栋. 高岭土颗粒包覆二氧化钛膜的工艺及机理研究[J].非金属矿,2004,27 (1): 11-13.
    [4] 杨玉芬,盖国庆.矿物填料表面无机包覆改性研究[J] .中国矿业大学学报,200,34(3):279- 283 .
    [5] 覃 操,王亭杰. 液相沉积法制备 TiO2 颗粒表面包覆 SiO2 纳米膜[J].物理化学报,2002, 18(10):884-889.
    [6] 关 毅,程琳俨. 非均相沉淀在无机包覆中的应用[J].材料导报,2006,20(7):88-90.
    [7] 岳林海,蔡菊香,华益苗. SiO2 包覆超细 CaCO3 的结构和机理分析[J]. 浙江大学学报(理学版),2002,29(1): 68-72.
    [8] 施用睎,邵磊,陈建峰. SiO2 包覆纳米 CaCO3 的透射电镜表征[J]. 分析测试学报,2006,25(3): 103-105.
    [9] Iler R K. The Chemistry of Silica. New York: Wiley Publication Inc, 1979:127.
    [10] 师昌绪,李恒德,周 廉主编. 材料科学与工程手册[M]. 北京:2003,122-124.
    [11] 崔爱莉, 王亭杰,金涌. TiO2 表面包覆 SiO2 和 Al2O3 的机理和结构分析[J]. 高等化学学报,1998,19(11): 1727-1729.
    [12] 崔爱莉,王亭杰,金 甬. 二氧化钛表面包覆氧化硅纳米膜的热力学研究[J].高等学校化学学报,2001,22(9):1543-1545 .
    [13] 饶东生. 硅酸盐物理化学[M]. 北京: 冶金工业出版社,1991,39-42.
    [14] 戴安邦,陈荣三. 硅酸及其盐的研究[J]. 化学通报,1963,29: 384-389.
    [15] 崔爱莉,王亭杰,金涌. 纳米 TiO2 颗粒表面包覆 SiO2 纳米膜的动力学模型[J]. 高等学校化学学报,2000,21:1560-1562.
    [1] 杨明华. 无机功能材料[M]. 北京: 化学工业出版社,2007,324-326.
    [2] 周良玉,尹荔松,周克省. 白炭黑的制备表面改性及应用研究进展[J]. 材料导报,2003,17 (11): 56-59.
    [3] 马慧斌,宁延生,朱春雨. 沉淀白炭黑化学指标与胶料物理性能的关系[J].无机盐工业,2004,36(6): 46-48.
    [4] 赵柄国,郭 锴,谢小平. 白炭黑制备工艺对比表面积和吸油值的影响[J].无机盐工业,2006,38(5): 23-26.
    [5] 张庆军,莫文玲,王占乐. 沉淀法制备纳米白炭黑的结构及性质的研究[J]. 硅酸盐通报,2005,4: 118-121.
    [6] 吴雪文,张海波,韩团辉,等. 传统沉淀法制备白炭黑的研究进展[J].无机盐工业,2006,38(4): 9-10,45.
    [7] 唐文武,李哓强, 王进文. 乙丙橡胶应用技术[M]. 北京: 化学工业出版社,2005:111-11 2.
    [8] 冯圣玉,张洁,李美江等. 有机硅高分子及其应用[]M]. 北京:化学工业出版社,2004,83- 85.
    [9] 黄惠忠. 表面化学分析[M]. 上海: 华东理工大学出版社,2007,4-6.
    [10] 赵振国. 吸附作用应用原理[M]. 北京: 化学工业出版社,2005,200-393.
    [11] 彭书传,王诗生,陈天虎. 坡缕石对水中亚甲基蓝的吸附动力学[J]. 硅酸盐学报,2006,34(6):733738
    [12] 张红漫,陈国松,陶 鑫. 水溶液中亚甲基蓝分子聚集状态的研究[J].分析科学学报,2004,20(6):573-575.
    [13] Calzaferri.G, Gfeller.N.Thionion in the cage of zeolite L[J]. Phys.Chem,1992,96:3428-34 35.
    [14] 王茹林,张国梅,杨 郁. 亚甲蓝与中性及电荷型β-环糊精的包合特性[J]. 分析化学研究简报,2003,31(2):205~207.
    [15] M.Do?an, M.Alkan. Kinetics and mechanism of removal of methylene blue by adsorption onto perlite[J]. Journal of Hazardous Materials B.2004,109:141-148.
    [16] M.A.Al-Ghouti,M.A.M.Khraisheh,S.J.Allen.The removal of dyes fromt extile wastewater: a study of the Physical characteristics and adsorption mechanisms of diatomaceous earth. [J ]Journal of Environmental Management, 2003(69): 229-238.
    [17] 瑞恩 P.施瓦茨巴赫,菲利普 M,施格文,迪特尔 M.英博登. 环境有机化学[M]. 王连生等译.北京:2003,103-276.
    [18] 近藤精一,石川达雄,安部郁夫.吸附科学[M]. 李国希译.2005.17-30,247-249.
    [19] 曹明礼,曹明贺. 非金属纳米矿物材料[M]. 北京:2005,97-98.
    [20] D.W.Fuerstenau,Pradip. Zeta potentials in the flotation oxide and silicate minerals[J]. Ad- vance in Colloid and Interface Science,2005,114-115:9-26.
    [21] Palheiros I.B,Duarte A.C,Oliveira J.P.The influence of pH,ionic strength and chloride co- ncentration on the adsorption of cadmium by sediment Water Sci.Teehnol.1989(21): 1873-1876.
    [22] 任 俊,沈 健,卢寿慈. 颗粒分散科学与技术[M].北京:2005,56-98.
    [23] Давыдов В Я, Киселев А В,Лыгин В И,Журн Физ Хим, 1963,37:469.
    [24] 黄文强. 吸附分离材料[M]. 北京: 化学工业出版社, 2005:1-3.
    [25] Freundlich.H.M.F.Uber die adsorption in lasungen[J].Journal of Research in Physical Chemistry & Chemical Physics,1906,57:385-470.
    [26] 胡福增,陈国荣,杜永娟. 材料表界面[M]. 上海: 华东理工大学出版社,2007,5
    [27] 颜肖慈,罗明道. 界面化学[M]. 北京: 化学工业出版社,2005,154-155.
    [28] Schindler P W. Anderson M A. Adsorption of inorganics at soild-liquid interfaces[M].19 81,1-49.
    [29] 复旦大学编. 物理化学实验[M].北京: 人民教育出版社,1979,157.
    [30] G.H?hner,A.Marti,N.P.Spencer. Orientation and electronic structure of methylene blue on mica:A near edge X-ray absorption fine structure spectroscopy studyJ, Chem Phys,1996, 104:7749.
    [31] 赵立艳,王学恺,郭玉国. 亚甲基蓝在云母表面吸附状态的研究[J]. 物理化学学报,2003, 19(10):896-901.
    [1] 董建萍,纪先兰,雷炎武. 碳酸钙填充塑料成本分析[J].化学工业,2007,25(9):32-37.
    [2] 罗穗莲,潘慧铭,王跃林. 超细碳酸钙表面处理及其在 RTV 硅橡胶中的应用(二)[J].中国 胶粘剂, 2005,14(3): 5-7.
    [3] 岳林海,水 淼,徐铸德. 超细碳酸钙微晶结构与热分解特性[J].高等学校化学学报 2000,10:1555-1559.
    [4] Krysztafkiewicz A,Rager B. Surface modification of dispersed rubber fillers and pigments by titanate proadhesive and hydrophobic compounds[J].Colloid Polym Sci,1994,272: 1547- 1559.
    [5] 唐艳军,李友明,胡大为.纳米CaCO3的改性表面结构与流变行为研究[J].化学学报, 2007,65(20):2291-2298.
    [6] Abd A,Hakim E.Stability of modified surface calcium carbonate in the nonpolar medium [J].Colloid & Polymer Science,1991,269(6):628-632.
    [7] 王训遒,周铭,蒋登高,等.复合偶联剂改性纳米碳酸钙工艺研究[J].化工矿物与加工, 2005(4):9-12.
    [8] V.Ramasamy,K.Anandalakshmi. The determination of kaolinite clay content in limestones of western Tamil Nadu by methylene blue adsorption using UV–vis spectroscopy[J]. Avai- lable online at www.sciencedirect.com.
    [9] J .H.Potgieter,C.A.Strydom .Determination of the clay index of limestone with methylene blue adsorption using UV–VIS spectrophotometric method[J].Cement Concrete Res.1999, 29:1815-1817.
    [10] 曹明礼,曹明贺. 非金属纳米矿物材料[M]. 北京: 化学工业出版社,2005,97-98.
    [11] 赵振国. 吸附作用应用原理[M]. 北京: 化学工业出版社,2005,200–393.
    [12] 任 俊,沈 健,卢寿慈. 颗粒分散科学与技术[M]. 北京: 化学工业出版社,2005,56-98.
    [1] 中国科学技术协会主编.2006-2007 材料科学学科发展报告[M].北京:中国科学技术出版社,2007,31-32.
    [2] 黄惠忠. 表面化学分析[M].上海: 华东理工大学出版社,2007,1-6.
    [3] 沃丁柱主编. 复合材料大全[M].北京: 化学工业出版社,2001,232-234.
    [4] 李凤生,崔 平,杨 毅. 微纳米粉体后处理技术及应用[M].北京:国防工业出版社,2005,8-11.
    [5] 郑水林. 超微粉体加工技术与应用[M].北京: 化学工业出版社. 2004,237-253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700