基于受体结构的虚拟筛选在先导化合物发现中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于受体结构的虚拟筛选(分子对接)在新型先导化合物的发现中具有重要意义。为了提高配体结合自由能计算的精度,我们在前人工作的基础上系统研究了基于经典物理学原理的MM-PB/SA方法。本论文主要包括以下几个方面:
     1.我们发现在MM-PB/SA方法中存在“溶剂真空”等问题,通过固定外壳层溶剂分子和多次平衡补水可以显著提高其预测能力,并且在不同类型的药物靶标上都具有良好的适用性。
     2.为了将这种能够更精确计算结合能的方法用于寻找先导化合物的实践工作中,我们按照兼顾效率和准确性的原则,发展了一套逐级虚拟筛选的策略,并以传统抗癌靶点——微管蛋白作为研究对象来检验该策略的实用性。针对秋水仙素结合位点,逐级虚拟筛选方法从超过100000个不同的类药性分子中产生了63个候选化合物,我们从中挑选出9个结构相似、预测作用模式相同的化合物进行实验验证,5个分子被确认为阳性化合物,进一步的构效关系研究验证了计算预测的作用模式。同时,先导化合物在细胞水平上有抑制肿瘤细胞增殖的能力,并且证明能作用于秋水仙素位点。
     3.我们进一步发展了组合虚拟筛选的方法来寻找多靶标配体分子,以BCR-ABL融合蛋白作为研究对象,针对ATP结合位点寻找能够同时抑制野生型和耐药型(T315I突变)的ABL激酶抑制剂。从组合虚拟筛选自动产生的18个共有噻吩母核结构的化合物中,我们挑选出9个作用模式相同的候选分子进行实验验证,3个化合物被证明有明显的双抑制活性。和正常的Ba/F3细胞系相比,先导化合物能够显著抑制ABL(野生型和耐药型)驱动的细胞增殖,同时对其他肿瘤细胞系也都有一定的抑制作用。
     4.在以上两个不同靶点(微管蛋白和ABL激酶)的筛选结果中,有相同先导化合物被证实为双靶标配体分子。在该基础上,我们发现了ATP结合位点和秋水仙素位点在口袋形状和与小分子的作用模式上存在很大的相似性,而这种特征是传统的基于比对的结构分析方法很难揭示的。
Structure-based virtual screening (molecular docking) plays important role indiscovering novel lead compounds. To improve the accuracy of ligand bindingfree-energy calculation, we systematically investigated physics-based MM-PB/SAmethod based on previous published work. This thesis mainly includes the followingaspects:
     1. Current default MM-PB/SA protocol may be improved, including the setup ofsolvent model and the adjustments of parameters. We demonstrated that the optimizedMM-PB/SA protocol significantly improves the prediction power in data setcontaining three representative drug targets.
     2. To impletement MM-PB/SA method in the practice of lead compounddiscovery, we developed a hierarchical virtual screening strategy to strike thebanlance between efficiency and accuracy. We evaluated the performance of thisstrategy in the case of tubulin. Our hierarchical strategy generated63candidatesautomatically from more than100000diverse drug-like compounds.9molecules withsimilar strcture and predicted binding modes were selected for experimental test,among which5were active. Further structure-activity relationship study validated ourcomputational model.
     3. We further developed combinatorial virtual screening method to exploremulti-target inhibitors. Using BCR-ABL protein as our model system, we aimed toidentify dual-inhibitors to target the ATP-site on both wild-type ABL kinase anddrug-resistance T315I mutant. Consequently,3of9candidates resulted from virtualscreening were experimentally validated as true binders with significantdual-inhibition activity. Encouragingly, the identified candidates inhibit proliferationof ABL-driven Ba/F3cell lines (both wild-type and drug-resistance) comparing withnormal Ba/F3cell line. These compounds also show inhibition on BCR-ABL highlyexpressed tumor cell, such as K562.
     4. Interestingly, one same lead compound was identified to target both tubulinand ABL kinase. Thus, we discovered the similar binding characteristics between twocompletely dissimilar binding sites, colchicine site in Tubulin and ATP binding site inABL kinase. Importantly, these characteristics can’t be revealed by conventionalsequence or structural similarity analysis.
引文
[1]Cramer, F., Emil Fischer's Lock-and-Key Hypothesis after100years-Towards aSupracellular Chemistry. In Perspectives in Supramolecular Chemistry, John Wiley&Sons, Ltd.:2007; pp1-23.
    [2]Chen, X.; Ji, Z. L.; Chen, Y. Z., TTD: Therapeutic Target Database. Nucleic AcidsRes2002,30(1),412-5.
    [3]Knox, C.; Law, V.; Jewison, T.; Liu, P.; Ly, S.; Frolkis, A.; Pon, A.; Banco, K.; Mak,C.; Neveu, V.; Djoumbou, Y.; Eisner, R.; Guo, A. C.; Wishart, D. S., DrugBank3.0:a comprehensive resource for 'omics' research on drugs. Nucleic Acids Res2011,39(Database issue), D1035-41.
    [4]Pratt, J.; Winchester, C.; Dawson, N.; Morris, B., Advancing schizophrenia drugdiscovery: optimizing rodent models to bridge the translational gap. Nat Rev DrugDiscov2012,11(7),560-79.
    [5]Quon, K.; Kassner, P. D., RNA interference screening for the discovery ofoncology targets. Expert Opin Ther Targets2009,13(9),1027-35.
    [6]Hong-Geller, E.; Micheva-Viteva, S. N., Functional gene discovery using RNAinterference-based genomic screens to combat pathogen infection. Curr DrugDiscov Technol2010,7(2),86-94.
    [7]Jorgensen, W. L., Efficient drug lead discovery and optimization. Acc Chem Res2009,42(6),724-33.
    [8]Sun, C.; Petros, A. M.; Hajduk, P. J., Fragment-based lead discovery: challengesand opportunities. J Comput Aided Mol Des2011,25(7),607-10.
    [9]Shoichet, B. K.; McGovern, S. L.; Wei, B.; Irwin, J. J., Lead discovery usingmolecular docking. Curr Opin Chem Biol2002,6(4),439-46.
    [10]Hartshorn, M. J.; Murray, C. W.; Cleasby, A.; Frederickson, M.; Tickle, I. J.; Jhoti,H., Fragment-based lead discovery using X-ray crystallography. J Med Chem2005,48(2),403-13.
    [11]Bhattachar, S. N.; Deschenes, L. A.; Wesley, J. A., Solubility: it's not just forphysical chemists. Drug Discov Today2006,11(21-22),1012-8.
    [12]Bahl, A.; Barton, P.; Bowers, K.; Caffrey, M. V.; Denton, R.; Gilmour, P.; Hawley,S.; Linannen, T.; Luckhurst, C. A.; Mochel, T.; Perry, M. W.; Riley, R. J.; Roe, E.;Springthorpe, B.; Stein, L.; Webborn, P., Scaffold-hopping with zwitterionic CCR3antagonists: identification and optimisation of a series with good potency andpharmacokinetics leading to the discovery of AZ12436092. Bioorg Med Chem Lett2012,22(21),6694-9.
    [13]Goldstein, D. M.; Gray, N. S.; Zarrinkar, P. P., High-throughput kinase profilingas a platform for drug discovery. Nat Rev Drug Discov2008,7(5),391-7.
    [14]Hertzberg, R. P.; Pope, A. J., High-throughput screening: new technology for the21st century. Curr Opin Chem Biol2000,4(4),445-51.
    [15]Broach, J. R.; Thorner, J., High-throughput screening for drug discovery. Nature1996,384(6604Suppl),14-6.
    [16]Kuntz, I. D., Structure-based strategies for drug design and discovery. Science1992,257(5073),1078-82.
    [17]Peng, H.; Huang, N.; Qi, J.; Xie, P.; Xu, C.; Wang, J.; Yang, C., Identification ofnovel inhibitors of BCR-ABL tyrosine kinase via virtual screening. Bioorg MedChem Lett2003,13(21),3693-9.
    [18]Ghosh, S.; Nie, A.; An, J.; Huang, Z., Structure-based virtual screening ofchemical libraries for drug discovery. Curr Opin Chem Biol2006,10(3),194-202.
    [19]Shoichet, B. K., Virtual screening of chemical libraries. Nature2004,432(7019),862-5.
    [20]Doman, T. N.; McGovern, S. L.; Witherbee, B. J.; Kasten, T. P.; Kurumbail, R.;Stallings, W. C.; Connolly, D. T.; Shoichet, B. K., Molecular docking andhigh-throughput screening for novel inhibitors of protein tyrosine phosphatase-1B.J Med Chem2002,45(11),2213-21.
    [21]Hann, M. M.; Oprea, T. I., Pursuing the leadlikeness concept in pharmaceuticalresearch. Curr Opin Chem Biol2004,8(3),255-63.
    [22]Cao, R.; Liu, M.; Yin, M.; Liu, Q.; Wang, Y.; Huang, N., Discovery of noveltubulin inhibitors via structure-based hierarchical virtual screening. J Chem InfModel2012,52(10),2730-40.
    [23]Huang, N.; Nagarsekar, A.; Xia, G.; Hayashi, J.; MacKerell, A. D., Jr.,Identification of non-phosphate-containing small molecular weight inhibitors of thetyrosine kinase p56Lck SH2domain via in silico screening against the pY+3binding site. J Med Chem2004,47(14),3502-11.
    [24]Powers, R. A.; Morandi, F.; Shoichet, B. K., Structure-based discovery of a novel,noncovalent inhibitor of AmpC beta-lactamase. Structure2002,10(7),1013-23.
    [25]MacKerell, A. D.; Bashford, D.; Bellott; Dunbrack, R. L.; Evanseck, J. D.; Field,M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.;Kuczera, K.; Lau, F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.;Prodhom, B.; Reiher, W. E.; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.;Straub, J.; Watanabe, M.; Wiorkiewicz-Kuczera, J.; Yin, D.; Karplus, M., All-AtomEmpirical Potential for Molecular Modeling and Dynamics Studies of Proteins. TheJournal of Physical Chemistry B1998,102(18),3586-3616.
    [26]Karplus, M.; Petsko, G. A., Molecular dynamics simulations in biology. Nature1990,347(6294),631-9.
    [27]Karplus, M.; McCammon, J. A., Molecular dynamics simulations of biomolecules.Nat Struct Biol2002,9(9),646-52.
    [28]Raha, K.; Merz Jr, K. M.; David, C. S., Chapter9Calculating Binding FreeEnergy in Protein-Ligand Interaction. In Annual Reports in ComputationalChemistry, Elsevier:2005; Vol. Volume1, pp113-130.
    [29]Kollman, P. A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.;Lee, T.; Duan, Y.; Wang, W.; Donini, O.; Cieplak, P.; Srinivasan, J.; Case, D. A.;Cheatham, T. E.,3rd, Calculating structures and free energies of complexmolecules: combining molecular mechanics and continuum models. Acc Chem Res2000,33(12),889-97.
    [30]Kuntz, I. D.; Blaney, J. M.; Oatley, S. J.; Langridge, R.; Ferrin, T. E., A geometricapproach to macromolecule-ligand interactions. J Mol Biol1982,161(2),269-88.
    [31]Shoichet, B. K.; Kuntz, I. D., Protein docking and complementarity. J Mol Biol1991,221(1),327-46.
    [32]Shoichet, B. K.; Kuntz, I. D., Matching chemistry and shape in molecular docking.Protein Eng1993,6(7),723-32.
    [33]Meng, E. C.; Gschwend, D. A.; Blaney, J. M.; Kuntz, I. D., Orientationalsampling and rigid-body minimization in molecular docking. Proteins1993,17(3),266-78.
    [34]Gschwend, D. A.; Kuntz, I. D., Orientational sampling and rigid-bodyminimization in molecular docking revisited: on-the-fly optimization anddegeneracy removal. J Comput Aided Mol Des1996,10(2),123-32.
    [35]Shoichet, B. K.; Stroud, R. M.; Santi, D. V.; Kuntz, I. D.; Perry, K. M.,Structure-based discovery of inhibitors of thymidylate synthase. Science1993,259(5100),1445-50.
    [36]De Voss, J. J.; Ortiz de Montellano, P. R., Computer-Assisted, Structure-BasedPrediction of Substrates for Cytochrome P450cam. Journal of the AmericanChemical Society1995,117(14),4185-4186.
    [37]Kitchen, D. B.; Decornez, H.; Furr, J. R.; Bajorath, J., Docking and scoring invirtual screening for drug discovery: methods and applications. Nat Rev DrugDiscov2004,3(11),935-49.
    [38]Ewing, T. J.; Makino, S.; Skillman, A. G.; Kuntz, I. D., DOCK4.0: searchstrategies for automated molecular docking of flexible molecule databases. JComput Aided Mol Des2001,15(5),411-28.
    [39]Goodsell, D. S.; Olson, A. J., Automated docking of substrates to proteins bysimulated annealing. Proteins1990,8(3),195-202.
    [40]Meng, E. C.; Shoichet, B. K.; Kuntz, I. D., Automated docking with grid-basedenergy evaluation. Journal of Computational Chemistry1992,13(4),505-524.
    [41]Lorber, D. M.; Shoichet, B. K., Flexible ligand docking using conformationalensembles. Protein Science1998,7(4),938-950.
    [42]Wei, B. Q.; Baase, W. A.; Weaver, L. H.; Matthews, B. W.; Shoichet, B. K., Amodel binding site for testing scoring functions in molecular docking. J Mol Biol2002,322(2),339-55.
    [43]Eldridge, M. D.; Murray, C. W.; Auton, T. R.; Paolini, G. V.; Mee, R. P., Empiricalscoring functions: I. The development of a fast empirical scoring function toestimate the binding affinity of ligands in receptor complexes. J Comput Aided MolDes1997,11(5),425-45.
    [44]Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; Mainz, D.T.; Repasky, M. P.; Knoll, E. H.; Shelley, M.; Perry, J. K.; Shaw, D. E.; Francis, P.;Shenkin, P. S., Glide: a new approach for rapid, accurate docking and scoring.1.Method and assessment of docking accuracy. J Med Chem2004,47(7),1739-49.
    [45]Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G., A Fast Flexible Docking Methodusing an Incremental Construction Algorithm. Journal of Molecular Biology1996,261(3),470-489.
    [46]Muegge, I.; Martin, Y. C., A general and fast scoring function for protein-ligandinteractions: a simplified potential approach. J Med Chem1999,42(5),791-804.
    [47]Klebe, G., Virtual ligand screening: strategies, perspectives and limitations. DrugDiscov Today2006,11(13-14),580-94.
    [48]Jacobson, M. P.; Friesner, R. A.; Xiang, Z.; Honig, B., On the role of the crystalenvironment in determining protein side-chain conformations. J Mol Biol2002,320(3),597-608.
    [49]Jacobson, M. P.; Pincus, D. L.; Rapp, C. S.; Day, T. J.; Honig, B.; Shaw, D. E.;Friesner, R. A., A hierarchical approach to all-atom protein loop prediction.Proteins2004,55(2),351-67.
    [50]Huang, N.; Kalyanaraman, C.; Irwin, J. J.; Jacobson, M. P., Physics-based scoringof protein-ligand complexes: enrichment of known inhibitors in large-scale virtualscreening. J Chem Inf Model2006,46(1),243-53.
    [51]Huang, N.; Kalyanaraman, C.; Bernacki, K.; Jacobson, M. P., Molecularmechanics methods for predicting protein-ligand binding. Phys Chem Chem Phys2006,8(44),5166-77.
    [52]Okimoto, N.; Futatsugi, N.; Fuji, H.; Suenaga, A.; Morimoto, G.; Yanai, R.; Ohno,Y.; Narumi, T.; Taiji, M., High-performance drug discovery: computationalscreening by combining docking and molecular dynamics simulations. PLoSComput Biol2009,5(10), e1000528.
    [53]Shoichet, B. K.; Kobilka, B. K., Structure-based drug screening forG-protein-coupled receptors. Trends Pharmacol Sci2012,33(5),268-72.
    [54]Cherezov, V.; Rosenbaum, D. M.; Hanson, M. A.; Rasmussen, S. G.; Thian, F. S.;Kobilka, T. S.; Choi, H. J.; Kuhn, P.; Weis, W. I.; Kobilka, B. K.; Stevens, R. C.,High-resolution crystal structure of an engineered human beta2-adrenergic Gprotein-coupled receptor. Science2007,318(5854),1258-65.
    [55]Kolb, P.; Rosenbaum, D. M.; Irwin, J. J.; Fung, J. J.; Kobilka, B. K.; Shoichet, B.K., Structure-based discovery of beta2-adrenergic receptor ligands. Proc Natl AcadSci U S A2009,106(16),6843-8.
    [56]Lin, X.; Huang, X.-P.; Chen, G.; Whaley, R.; Peng, S.; Wang, Y.; Zhang, G.; Wang,S. X.; Wang, S.; Roth, B. L.; Huang, N., Life Beyond Kinases: Structure-BasedDiscovery of Sorafenib as Nanomolar Antagonist of5-HT Receptors. Journal ofMedicinal Chemistry2012,55(12),5749-5759.
    [57]Rastelli, G.; Degliesposti, G.; Del Rio, A.; Sgobba, M., Binding estimation afterrefinement, a new automated procedure for the refinement and rescoring of dockedligands in virtual screening. Chem Biol Drug Des2009,73(3),283-6.
    [58]Wang, J.; Kang, X.; Kuntz, I. D.; Kollman, P. A., Hierarchical DatabaseScreenings for HIV-1Reverse Transcriptase Using a Pharmacophore Model, RigidDocking, Solvation Docking, and MM鈭扨B/SA. Journal of Medicinal Chemistry2005,48(7),2432-2444.
    [59]Little, M.; Seehaus, T., Comparative analysis of tubulin sequences. CompBiochem Physiol B1988,90(4),655-70.
    [60]Nogales, E.; Wolf, S. G.; Downing, K. H., Structure of the alpha beta tubulindimer by electron crystallography. Nature1998,391(6663),199-203.
    [61]Nogales, E.; Wang, H. W., Structural mechanisms underlyingnucleotide-dependent self-assembly of tubulin and its relatives. Curr Opin StructBiol2006,16(2),221-9.
    [62]Meurer-Grob P Fau-Kasparian, J.; Kasparian J Fau-Wade, R. H.; Wade, R. H.,Microtubule structure at improved resolution. Biochemistry2001,40(27),8000-8.
    [63]Jordan, M. A.; Wilson, L., Microtubules as a target for anticancer drugs. Nat RevCancer2004,4(4),253-65.
    [64]Akhmanova, A.; Steinmetz, M. O., Tracking the ends: a dynamic protein networkcontrols the fate of microtubule tips. Nat Rev Mol Cell Biol2008,9(4),309-22.
    [65]Gundersen, G. G.; Cook, T. A., Microtubules and signal transduction. Curr OpinCell Biol1999,11(1),81-94.
    [66]Stanton, R. A.; Gernert, K. M.; Nettles, J. H.; Aneja, R., Drugs that targetdynamic microtubules: A new molecular perspective. Medicinal Research Reviews2011,31(3),443-481.
    [67]Walczak, C. E.; Cai, S.; Khodjakov, A., Mechanisms of chromosome behaviourduring mitosis. Nat Rev Mol Cell Biol2010,11(2),91-102.
    [68]Walczak Ce Fau-Cai, S.; Cai S Fau-Khodjakov, A.; Khodjakov, A.,Mechanisms of chromosome behaviour during mitosis. Nat Rev Mol Cell Biol2010,11(2),91-102.
    [69]Hayden, J. H.; Bowser, S. S.; Rieder, C. L., Kinetochores capture astralmicrotubules during chromosome attachment to the mitotic spindle: directvisualization in live newt lung cells. J Cell Biol1990,111(3),1039-45.
    [70]Chen, W.; Zhang, D., Kinetochore fibre dynamics outside the context of thespindle during anaphase. Nat Cell Biol2004,6(3),227-31.
    [71]Mitchison, T. J., Polewards microtubule flux in the mitotic spindle: evidence fromphotoactivation of fluorescence. J Cell Biol1989,109(2),637-52.
    [72]Rieder, C. L.; Schultz, A.; Cole, R.; Sluder, G., Anaphase onset in vertebratesomatic cells is controlled by a checkpoint that monitors sister kinetochoreattachment to the spindle. J Cell Biol1994,127(5),1301-10.
    [73]Shelby, R. D.; Hahn, K. M.; Sullivan, K. F., Dynamic elastic behavior ofalpha-satellite DNA domains visualized in situ in living human cells. J Cell Biol1996,135(3),545-57.
    [74]Jordan, M. A.; Wendell, K.; Gardiner, S.; Derry, W. B.; Copp, H.; Wilson, L.,Mitotic block induced in HeLa cells by low concentrations of paclitaxel (Taxol)results in abnormal mitotic exit and apoptotic cell death. Cancer Res1996,56(4),816-25.
    [75]Yvon, A. M.; Wadsworth, P.; Jordan, M. A., Taxol suppresses dynamics ofindividual microtubules in living human tumor cells. Mol Biol Cell1999,10(4),947-59.
    [76]Kelling, J.; Sullivan, K.; Wilson, L.; Jordan, M. A., Suppression of centromeredynamics by Taxol in living osteosarcoma cells. Cancer Res2003,63(11),2794-801.
    [77]Wani, M. C.; Taylor, H. L.; Wall, M. E.; Coggon, P.; McPhail, A. T., Plantantitumor agents. VI. The isolation and structure of taxol, a novel antileukemic andantitumor agent from Taxus brevifolia. J Am Chem Soc1971,93(9),2325-7.
    [78]Dumontet, C.; Jordan, M. A., Microtubule-binding agents: a dynamic field ofcancer therapeutics. Nat Rev Drug Discov2010,9(10),790-803.
    [79]Risinger, A. L.; Giles, F. J.; Mooberry, S. L., Microtubule dynamics as a target inoncology. Cancer Treat Rev2009,35(3),255-61.
    [80]Nogales, E., Structural insights into microtubule function. Annu Rev Biochem2000,69,277-302.
    [81]Derry, W. B.; Wilson, L.; Jordan, M. A., Substoichiometric binding of taxolsuppresses microtubule dynamics. Biochemistry1995,34(7),2203-11.
    [82]Jordan, M. A.; Margolis, R. L.; Himes, R. H.; Wilson, L., Identification of adistinct class of vinblastine binding sites on microtubules. J Mol Biol1986,187(1),61-73.
    [83]Singer, W. D.; Jordan, M. A.; Wilson, L.; Himes, R. H., Binding of vinblastine tostabilized microtubules. Mol Pharmacol1989,36(3),366-70.
    [84]Jordan, M. A.; Thrower, D.; Wilson, L., Mechanism of inhibition of cellproliferation by Vinca alkaloids. Cancer Res1991,51(8),2212-22.
    [85]Hastie, S. B., Interactions of colchicine with tubulin. Pharmacol Ther1991,51(3),377-401.
    [86]Jordan, M. A.; Toso, R. J.; Thrower, D.; Wilson, L., Mechanism of mitotic blockand inhibition of cell proliferation by taxol at low concentrations. Proc Natl AcadSci U S A1993,90(20),9552-6.
    [87]Gascoigne, K. E.; Taylor, S. S., How do anti-mitotic drugs kill cancer cells? J CellSci2009,122(Pt15),2579-85.
    [88]Skibbens, R. V.; Skeen, V. P.; Salmon, E. D., Directional instability of kinetochoremotility during chromosome congression and segregation in mitotic newt lung cells:a push-pull mechanism. J Cell Biol1993,122(4),859-75.
    [89]Waters, J. C.; Mitchison, T. J.; Rieder, C. L.; Salmon, E. D., The kinetochoremicrotubule minus-end disassembly associated with poleward flux produces a forcethat can do work. Mol Biol Cell1996,7(10),1547-58.
    [90]Tozer, G. M.; Kanthou, C.; Parkins, C. S.; Hill, S. A., The biology of thecombretastatins as tumour vascular targeting agents. Int J Exp Pathol2002,83(1),21-38.
    [91]Kanthou, C.; Tozer, G. M., The tumor vascular targeting agent combretastatinA-4-phosphate induces reorganization of the actin cytoskeleton and earlymembrane blebbing in human endothelial cells. Blood2002,99(6),2060-9.
    [92]Tozer, G. M.; Prise, V. E.; Wilson, J.; Cemazar, M.; Shan, S.; Dewhirst, M. W.;Barber, P. R.; Vojnovic, B.; Chaplin, D. J., Mechanisms associated with tumorvascular shut-down induced by combretastatin A-4phosphate: intravitalmicroscopy and measurement of vascular permeability. Cancer Res2001,61(17),6413-22.
    [93]Tozer, G. M.; Kanthou, C.; Baguley, B. C., Disrupting tumour blood vessels. NatRev Cancer2005,5(6),423-35.
    [94]Ren, R., Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenousleukaemia. Nat Rev Cancer2005,5(3),172-83.
    [95]Abelson, H. T.; Rabstein, L. S., Lymphosarcoma: virus-inducedthymic-independent disease in mice. Cancer Res1970,30(8),2213-22.
    [96]Laneuville, P., Abl tyrosine protein kinase. Semin Immunol1995,7(4),255-66.
    [97]Ben-Neriah, Y.; Bernards, A.; Paskind, M.; Daley, G. Q.; Baltimore, D.,Alternative5' exons in c-abl mRNA. Cell1986,44(4),577-86.
    [98]Van Etten, R. A.; Jackson, P.; Baltimore, D., The mouse type IV c-abl geneproduct is a nuclear protein, and activation of transforming ability is associatedwith cytoplasmic localization. Cell1989,58(4),669-78.
    [99]Deininger, M. W.; Goldman, J. M.; Lydon, N.; Melo, J. V., The tyrosine kinaseinhibitor CGP57148B selectively inhibits the growth of BCR-ABL-positive cells.Blood1997,90(9),3691-8.
    [100]Kohn, D. B.; Bauer, G.; Rice, C. R.; Rothschild, J. C.; Carbonaro, D. A.; Valdez,P.; Hao, Q.; Zhou, C.; Bahner, I.; Kearns, K.; Brody, K.; Fox, S.; Haden, E.; Wilson,K.; Salata, C.; Dolan, C.; Wetter, C.; Aguilar-Cordova, E.; Church, J., A clinicaltrial of retroviral-mediated transfer of a rev-responsive element decoy gene intoCD34(+) cells from the bone marrow of human immunodeficiency virus-1-infectedchildren. Blood1999,94(1),368-71.
    [101]Campbell, S. L.; Khosravi-Far, R.; Rossman, K. L.; Clark, G. J.; Der, C. J.,Increasing complexity of Ras signaling. Oncogene1998,17(11Reviews),1395-413.
    [102]Downward, J., Targeting RAS signalling pathways in cancer therapy. Nat RevCancer2003,3(1),11-22.
    [103]Datta, S. R.; Brunet, A.; Greenberg, M. E., Cellular survival: a play in three Akts.Genes Dev1999,13(22),2905-27.
    [104]Druker, B. J.; Tamura, S.; Buchdunger, E.; Ohno, S.; Segal, G. M.; Fanning, S.;Zimmermann, J.; Lydon, N. B., Effects of a selective inhibitor of the Abl tyrosinekinase on the growth of Bcr-Abl positive cells. Nat Med1996,2(5),561-6.
    [105]Gambacorti-Passerini, C.; le Coutre, P.; Mologni, L.; Fanelli, M.; Bertazzoli, C.;Marchesi, E.; Di Nicola, M.; Biondi, A.; Corneo, G. M.; Belotti, D.; Pogliani, E.;Lydon, N. B., Inhibition of the ABL kinase activity blocks the proliferation ofBCR/ABL+leukemic cells and induces apoptosis. Blood Cells Mol Dis1997,23(3),380-94.
    [106]Bedi, A.; Zehnbauer, B. A.; Barber, J. P.; Sharkis, S. J.; Jones, R. J., Inhibition ofapoptosis by BCR-ABL in chronic myeloid leukemia. Blood1994,83(8),2038-44.
    [107]O'Hare, T.; Deininger, M. W.; Eide, C. A.; Clackson, T.; Druker, B. J., Targetingthe BCR-ABL signaling pathway in therapy-resistant Philadelphiachromosome-positive leukemia. Clin Cancer Res2011,17(2),212-21.
    [108]Drugs of choice for cancer. Treat Guidel Med Lett2003,1(7),41-52.
    [109]Kantarjian, H.; Giles, F.; Wunderle, L.; Bhalla, K.; O'Brien, S.; Wassmann, B.;Tanaka, C.; Manley, P.; Rae, P.; Mietlowski, W.; Bochinski, K.; Hochhaus, A.;Griffin, J. D.; Hoelzer, D.; Albitar, M.; Dugan, M.; Cortes, J.; Alland, L.; Ottmann,O. G., Nilotinib in Imatinib-Resistant CML and Philadelphia Chromosome-PositiveALL. New England Journal of Medicine2006,354(24),2542-2551.
    [110]Talpaz, M.; Shah, N. P.; Kantarjian, H.; Donato, N.; Nicoll, J.; Paquette, R.;Cortes, J.; O'Brien, S.; Nicaise, C.; Bleickardt, E.; Blackwood-Chirchir, M. A.; Iyer,V.; Chen, T.-T.; Huang, F.; Decillis, A. P.; Sawyers, C. L., Dasatinib inImatinib-Resistant Philadelphia Chromosome-Positive Leukemias. New EnglandJournal of Medicine2006,354(24),2531-2541.
    [111]Eide, C. A.; Adrian, L. T.; Tyner, J. W.; Mac Partlin, M.; Anderson, D. J.; Wise, S.C.; Smith, B. D.; Petillo, P. A.; Flynn, D. L.; Deininger, M. W.; O'Hare, T.; Druker,B. J., The ABL switch control inhibitor DCC-2036is active against the chronicmyeloid leukemia mutant BCR-ABLT315I and exhibits a narrow resistance profile.Cancer Res2011,71(9),3189-95.
    [112]Druker, B. J.; Guilhot, F.; O'Brien, S. G.; Gathmann, I.; Kantarjian, H.;Gattermann, N.; Deininger, M. W.; Silver, R. T.; Goldman, J. M.; Stone, R. M.;Cervantes, F.; Hochhaus, A.; Powell, B. L.; Gabrilove, J. L.; Rousselot, P.; Reiffers,J.; Cornelissen, J. J.; Hughes, T.; Agis, H.; Fischer, T.; Verhoef, G.; Shepherd, J.;Saglio, G.; Gratwohl, A.; Nielsen, J. L.; Radich, J. P.; Simonsson, B.; Taylor, K.;Baccarani, M.; So, C.; Letvak, L.; Larson, R. A., Five-year follow-up of patientsreceiving imatinib for chronic myeloid leukemia. N Engl J Med2006,355(23),2408-17.
    [113]Gorre, M. E.; Mohammed, M.; Ellwood, K.; Hsu, N.; Paquette, R.; Rao, P. N.;Sawyers, C. L., Clinical resistance to STI-571cancer therapy caused by BCR-ABLgene mutation or amplification. Science2001,293(5531),876-80.
    [114]Shah, N. P.; Nicoll, J. M.; Nagar, B.; Gorre, M. E.; Paquette, R. L.; Kuriyan, J.;Sawyers, C. L., Multiple BCR-ABL kinase domain mutations confer polyclonalresistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase andblast crisis chronic myeloid leukemia. Cancer Cell2002,2(2),117-25.
    [115]Roumiantsev, S.; Shah, N. P.; Gorre, M. E.; Nicoll, J.; Brasher, B. B.; Sawyers,C. L.; Van Etten, R. A., Clinical resistance to the kinase inhibitor STI-571inchronic myeloid leukemia by mutation of Tyr-253in the Abl kinase domain P-loop.Proceedings of the National Academy of Sciences2002,99(16),10700-10705.
    [116]Hantschel, O.; Superti-Furga, G., Regulation of the c-Abl and Bcr-Abl tyrosinekinases. Nat Rev Mol Cell Biol2004,5(1),33-44.
    [117]Wang, J.; Morin, P.; Wang, W.; Kollman, P. A., Use of MM-PBSA inreproducing the binding free energies to HIV-1RT of TIBO derivatives andpredicting the binding mode to HIV-1RT of efavirenz by docking and MM-PBSA.J Am Chem Soc2001,123(22),5221-30.
    [118]Huo, S.; Wang, J.; Cieplak, P.; Kollman, P. A.; Kuntz, I. D., Molecular dynamicsand free energy analyses of cathepsin D-inhibitor interactions: insight intostructure-based ligand design. J Med Chem2002,45(7),1412-9.
    [119]Bea, I.; Jaime, C.; Kollman, P., Molecular recognition by beta-cyclodextrinderivatives: molecular dynamics, free-energy perturbation and molecularmechanics/Poisson-Boltzmann surface area goals and problems. TheoreticalChemistry Accounts2002,108(5),286-292.
    [120]Masukawa, K. M.; Kollman, P. A.; Kuntz, I. D., Investigation ofNeuraminidase-Substrate Recognition Using Molecular Dynamics and Free EnergyCalculations. Journal of Medicinal Chemistry2003,46(26),5628-5637.
    [121]Brown, S. P.; Muchmore, S. W., High-throughput calculation of protein-ligandbinding affinities: modification and adaptation of the MM-PBSA protocol toenterprise grid computing. J Chem Inf Model2006,46(3),999-1005.
    [122]Hou, T.; Wang, J.; Li, Y.; Wang, W., Assessing the performance of theMM/PBSA and MM/GBSA methods.1. The accuracy of binding free energycalculations based on molecular dynamics simulations. J Chem Inf Model2011,51(1),69-82.
    [123]Brown, S. P.; Muchmore, S. W., Rapid Estimation of Relative Protein-LigandBinding Affinities Using a High-Throughput Version of MM-PBSA. Journal ofChemical Information and Modeling2007,47(4),1493-1503.
    [124]Kuhn, B.; Gerber, P.; Schulz-Gasch, T.; Stahl, M., Validation and Use of theMM-PBSA Approach for Drug Discovery. Journal of Medicinal Chemistry2005,48(12),4040-4048.
    [125]Weis, A.; Katebzadeh, K.; Soderhjelm, P.; Nilsson, I.; Ryde, U., LigandAffinities Predicted with the MM/PBSA Method: Dependence on the SimulationMethod and the Force Field. Journal of Medicinal Chemistry2006,49(22),6596-6606.
    [126]Michel, J.; Verdonk, M. L.; Essex, J. W., Protein-Ligand Binding AffinityPredictions by Implicit Solvent Simulations: A Tool for Lead Optimization?Journal of Medicinal Chemistry2006,49(25),7427-7439.
    [127]Sims, P. A.; Wong, C. F.; McCammon, J. A., A computational model of bindingthermodynamics: the design of cyclin-dependent kinase2inhibitors. J Med Chem2003,46(15),3314-25.
    [128]Pearlman, D. A., Evaluating the molecular mechanics poisson-boltzmann surfacearea free energy method using a congeneric series of ligands to p38MAP kinase. JMed Chem2005,48(24),7796-807.
    [129]Weis, A.; Katebzadeh, K.; Soderhjelm, P.; Nilsson, I.; Ryde, U., Ligand affinitiespredicted with the MM/PBSA method: dependence on the simulation method andthe force field. J Med Chem2006,49(22),6596-606.
    [130]Wang, R.; Fang, X.; Lu, Y.; Wang, S., The PDBbind database: collection ofbinding affinities for protein-ligand complexes with known three-dimensionalstructures. J Med Chem2004,47(12),2977-80.
    [131]Schmidt, M.; Bastians, H., Mitotic drug targets and the development of novelanti-mitotic anticancer drugs. Drug Resist Updat2007,10(4-5),162-81.
    [132]Massarotti, A.; Coluccia, A.; Silvestri, R.; Sorba, G.; Brancale, A., The tubulincolchicine domain: a molecular modeling perspective. ChemMedChem2012,7(1),33-42.
    [133]Singh, P.; Rathinasamy, K.; Mohan, R.; Panda, D., Microtubule assemblydynamics: an attractive target for anticancer drugs. IUBMB Life2008,60(6),368-75.
    [134]Kavallaris, M., Microtubules and resistance to tubulin-binding agents. Nat RevCancer2010,10(3),194-204.
    [135]Risinger, A. L.; Giles, F. J.; Mooberry, S. L., Microtubule dynamics as a target inoncology. Cancer Treat Rev2009,35(3),255-261.
    [136]Yoshimatsu, K.; Yamaguchi, A.; Yoshino, H.; Koyanagi, N.; Kitoh, K.,Mechanism of action of E7010, an orally active sulfonamide antitumor agent:inhibition of mitosis by binding to the colchicine site of tubulin. Cancer Res1997,57(15),3208-13.
    [137]Bacher, G.; Nickel, B.; Emig, P.; Vanhoefer, U.; Seeber, S.; Shandra, A.; Klenner,T.; Beckers, T., D-24851, a novel synthetic microtubule inhibitor, exerts curativeantitumoral activity in vivo, shows efficacy toward multidrug-resistant tumor cells,and lacks neurotoxicity. Cancer Res2001,61(1),392-9.
    [138]Wienecke, A.; Bacher, G., Indibulin, a novel microtubule inhibitor, discriminatesbetween mature neuronal and nonneuronal tubulin. Cancer Res2009,69(1),171-7.
    [139]Kanthou, C.; Tozer, G. M., Microtubule depolymerizing vascular disruptingagents: novel therapeutic agents for oncology and other pathologies. Int J ExpPathol2009,90(3),284-94.
    [140]D'Amato, R. J.; Lin, C. M.; Flynn, E.; Folkman, J.; Hamel, E.,2-Methoxyestradiol, an endogenous mammalian metabolite, inhibits tubulinpolymerization by interacting at the colchicine site. Proc Natl Acad Sci U S A1994,91(9),3964-8.
    [141]Chen, J.; Liu, T.; Dong, X.; Hu, Y., Recent development and SAR analysis ofcolchicine binding site inhibitors. Mini Rev Med Chem2009,9(10),1174-90.
    [142]Hsieh, H. P.; Liou, J. P.; Mahindroo, N., Pharmaceutical design of antimitoticagents based on combretastatins. Curr Pharm Des2005,11(13),1655-77.
    [143]Tron, G. C.; Pirali, T.; Sorba, G.; Pagliai, F.; Busacca, S.; Genazzani, A. A.,Medicinal chemistry of combretastatin A4: present and future directions. J MedChem2006,49(11),3033-44.
    [144]Chaudhary, A.; Pandeya, S. N.; Kumar, P.; Sharma, P. P.; Gupta, S.; Soni, N.;Verma, K. K.; Bhardwaj, G., Combretastatin a-4analogs as anticancer agents. MiniRev Med Chem2007,7(12),1186-205.
    [145]Lu, Y.; Chen, J.; Xiao, M.; Li, W.; Miller, D. D., An overview of tubulininhibitors that interact with the colchicine binding site. Pharm Res2012,29(11),2943-71.
    [146]Schneider, G., Virtual screening: an endless staircase? Nat Rev Drug Discov1402010,9(4),273-6.
    [147]Chiang, Y. K.; Kuo, C. C.; Wu, Y. S.; Chen, C. T.; Coumar, M. S.; Wu, J. S.;Hsieh, H. P.; Chang, C. Y.; Jseng, H. Y.; Wu, M. H.; Leou, J. S.; Song, J. S.; Chang,J. Y.; Lyu, P. C.; Chao, Y. S.; Wu, S. Y., Generation of ligand-based pharmacophoremodel and virtual screening for identification of novel tubulin inhibitors withpotent anticancer activity. J Med Chem2009,52(14),4221-33.
    [148]Kim, N. D.; Park, E. S.; Kim, Y. H.; Moon, S. K.; Lee, S. S.; Ahn, S. K.; Yu, D.Y.; No, K. T.; Kim, K. H., Structure-based virtual screening of novel tubulininhibitors and their characterization as anti-mitotic agents. Bioorg Med Chem2010,18(19),7092-100.
    [149]Barbier, P.; Dorleans, A.; Devred, F.; Sanz, L.; Allegro, D.; Alfonso, C.;Knossow, M.; Peyrot, V.; Andreu, J. M., Stathmin and interfacial microtubuleinhibitors recognize a naturally curved conformation of tubulin dimers. J BiolChem2010,285(41),31672-81.
    [150]Dorleans, A.; Gigant, B.; Ravelli, R. B.; Mailliet, P.; Mikol, V.; Knossow, M.,Variations in the colchicine-binding domain provide insight into the structuralswitch of tubulin. Proc Natl Acad Sci U S A2009,106(33),13775-9.
    [151]Leynadier, D.; Peyrot, V.; Sarrazin, M.; Briand, C.; Andreu, J. M.; Rener, G. A.;Temple, C., Jr., Tubulin binding of two1-deaza-7,8-dihydropteridines with differentbiological properties: enantiomers NSC613862(S)-(-) and NSC613863(R)-(+).Biochemistry1993,32(40),10675-82.
    [152]Bowdon, B. J.; Waud, W. R.; Wheeler, G. P.; Hain, R.; Dansby, L.; Temple, C.,Jr., Comparison of1,2-dihydropyrido[3,4-b]pyrazines(1-deaza-7,8-dihydropteridines) with several other inhibitors of mitosis. Cancer Res1987,47(6),1621-6.
    [153]de Ines, C.; Leynadier, D.; Barasoain, I.; Peyrot, V.; Garcia, P.; Briand, C.; Rener,G. A.; Temple, C., Jr., Inhibition of microtubules and cell cycle arrest by a new1-deaza-7,8-dihydropteridine antitumor drug, CI980, and by its chiral isomer, NSC613863. Cancer Res1994,54(1),75-84.
    [154]Castoldi, M.; Popov, A. V., Purification of brain tubulin through two cycles ofpolymerization-depolymerization in a high-molarity buffer. Protein Expr Purif2003,32(1),83-8.
    [155]Charbaut, E.; Curmi, P. A.; Ozon, S.; Lachkar, S.; Redeker, V.; Sobel, A.,Stathmin family proteins display specific molecular and tubulin binding properties.J Biol Chem2001,276(19),16146-54.
    [156]Yoshida, S.; Katayama, E.; Kuwae, A.; Mimuro, H.; Suzuki, T.; Sasakawa, C.,Shigella deliver an effector protein to trigger host microtubule destabilization,which promotes Rac1activity and efficient bacterial internalization. EMBO J2002,21(12),2923-35.
    [157]McGovern, S. L.; Helfand, B. T.; Feng, B.; Shoichet, B. K., A specificmechanism of nonspecific inhibition. J Med Chem2003,46(20),4265-72.
    [158]Hsieh, J. H.; Yin, S.; Liu, S.; Sedykh, A.; Dokholyan, N. V.; Tropsha, A.,Combined application of cheminformatics-and physical force field-based scoringfunctions improves binding affinity prediction for CSAR data sets. J Chem InfModel2011,51(9),2027-35.
    [159]Hsieh, J. H.; Yin, S.; Wang, X. S.; Liu, S.; Dokholyan, N. V.; Tropsha, A.,Cheminformatics meets molecular mechanics: a combined application ofknowledge-based pose scoring and physical force field-based hit scoring functionsimproves the accuracy of structure-based virtual screening. J Chem Inf Model2012,52(1),16-28.
    [160]Sawyers, C., Targeted cancer therapy. Nature2004,432(7015),294-7.
    [161]Morphy, R.; Kay, C.; Rankovic, Z., From magic bullets to designed multipleligands. Drug Discov Today2004,9(15),641-51.
    [162]Savona, M.; Talpaz, M., Getting to the stem of chronic myeloid leukaemia. NatRev Cancer2008,8(5),341-50.
    [163]Frank, D. A.; Varticovski, L., BCR/abl leads to the constitutive activation of Statproteins, and shares an epitope with tyrosine phosphorylated Stats. Leukemia1996,10(11),1724-30.
    [164]Neshat, M. S.; Raitano, A. B.; Wang, H. G.; Reed, J. C.; Sawyers, C. L., Thesurvival function of the Bcr-Abl oncogene is mediated by Bad-dependent and-independent pathways: roles for phosphatidylinositol3-kinase and Raf. Mol CellBiol2000,20(4),1179-86.
    [165]Puil, L.; Liu, J.; Gish, G.; Mbamalu, G.; Bowtell, D.; Pelicci, P. G.; Arlinghaus,R.; Pawson, T., Bcr-Abl oncoproteins bind directly to activators of the Rassignalling pathway. EMBO J1994,13(4),764-73.
    [166]Frantz, S., Drug discovery: playing dirty. Nature2005,437(7061),942-3.
    [167]Storey, S., Chronic myelogenous leukaemia market. Nat Rev Drug Discov2009,8(6),447.
    [168]Muller, B. A., Imatinib and its successors--how modern chemistry has changeddrug development. Curr Pharm Des2009,15(2),120-33.
    [169]Daley, G. Q., Gleevec resistance: lessons for target-directed drug development.Cell Cycle2003,2(3),190-1.
    [170]Wei, D.; Jiang, X.; Zhou, L.; Chen, J.; Chen, Z.; He, C.; Yang, K.; Liu, Y.; Pei, J.;Lai, L., Discovery of multitarget inhibitors by combining molecular docking withcommon pharmacophore matching. J Med Chem2008,51(24),7882-8.
    [171]Morphy, R.; Rankovic, Z., Designed multiple ligands. An emerging drugdiscovery paradigm. J Med Chem2005,48(21),6523-43.
    [172]Gozalbes, R.; Simon, L.; Froloff, N.; Sartori, E.; Monteils, C.; Baudelle, R.,Development and experimental validation of a docking strategy for the generationof kinase-targeted libraries. J Med Chem2008,51(11),3124-32.
    [173]Ma, X. H.; Shi, Z.; Tan, C.; Jiang, Y.; Go, M. L.; Low, B. C.; Chen, Y. Z.,In-silico approaches to multi-target drug discovery: computer aided multi-targetdrug design, multi-target virtual screening. Pharm Res2010,27(5),739-49.
    [174]Seeliger, M. A.; Young, M.; Henderson, M. N.; Pellicena, P.; King, D. S.; Falick,A. M.; Kuriyan, J., High yield bacterial expression of active c-Abl and c-Srctyrosine kinases. Protein Sci2005,14(12),3135-9.
    [175]Zhang, J.; Adrian, F. J.; Jahnke, W.; Cowan-Jacob, S. W.; Li, A. G.; Iacob, R. E.;Sim, T.; Powers, J.; Dierks, C.; Sun, F.; Guo, G. R.; Ding, Q.; Okram, B.; Choi, Y.;Wojciechowski, A.; Deng, X.; Liu, G.; Fendrich, G.; Strauss, A.; Vajpai, N.;Grzesiek, S.; Tuntland, T.; Liu, Y.; Bursulaya, B.; Azam, M.; Manley, P. W.; Engen,J. R.; Daley, G. Q.; Warmuth, M.; Gray, N. S., Targeting Bcr-Abl by combiningallosteric with ATP-binding-site inhibitors. Nature2010,463(7280),501-6.
    [176]Fancelli, D.; Moll, J.; Varasi, M.; Bravo, R.; Artico, R.; Berta, D.; Bindi, S.;Cameron, A.; Candiani, I.; Cappella, P.; Carpinelli, P.; Croci, W.; Forte, B.; Giorgini,M. L.; Klapwijk, J.; Marsiglio, A.; Pesenti, E.; Rocchetti, M.; Roletto, F.; Severino,D.; Soncini, C.; Storici, P.; Tonani, R.; Zugnoni, P.; Vianello, P.,1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazoles: identification of a potent Aurora kinaseinhibitor with a favorable antitumor kinase inhibition profile. J Med Chem2006,49(24),7247-51.
    [177]Modugno, M.; Casale, E.; Soncini, C.; Rosettani, P.; Colombo, R.; Lupi, R.;Rusconi, L.; Fancelli, D.; Carpinelli, P.; Cameron, A. D.; Isacchi, A.; Moll, J.,Crystal structure of the T315I Abl mutant in complex with the aurora kinasesinhibitor PHA-739358. Cancer Res2007,67(17),7987-90.
    [178]Chan, W. W.; Wise, S. C.; Kaufman, M. D.; Ahn, Y. M.; Ensinger, C. L.; Haack,T.; Hood, M. M.; Jones, J.; Lord, J. W.; Lu, W. P.; Miller, D.; Patt, W. C.; Smith, B.D.; Petillo, P. A.; Rutkoski, T. J.; Telikepalli, H.; Vogeti, L.; Yao, T.; Chun, L.;Clark, R.; Evangelista, P.; Gavrilescu, L. C.; Lazarides, K.; Zaleskas, V. M.; Stewart,L. J.; Van Etten, R. A.; Flynn, D. L., Conformational control inhibition of theBCR-ABL1tyrosine kinase, including the gatekeeper T315I mutant, by theswitch-control inhibitor DCC-2036. Cancer Cell2011,19(4),556-68.
    [179]Puttini, M.; Coluccia, A. M.; Boschelli, F.; Cleris, L.; Marchesi, E.;Donella-Deana, A.; Ahmed, S.; Redaelli, S.; Piazza, R.; Magistroni, V.; Andreoni,F.; Scapozza, L.; Formelli, F.; Gambacorti-Passerini, C., In vitro and in vivoactivity of SKI-606, a novel Src-Abl inhibitor, against imatinib-resistant Bcr-Abl+neoplastic cells. Cancer Res2006,66(23),11314-22.
    [180]Levinson, N. M.; Boxer, S. G., Structural and spectroscopic analysis of thekinase inhibitor bosutinib and an isomer of bosutinib binding to the Abl tyrosinekinase domain. PLoS One2012,7(4), e29828.
    [181]Karaman, M. W.; Herrgard, S.; Treiber, D. K.; Gallant, P.; Atteridge, C. E.;Campbell, B. T.; Chan, K. W.; Ciceri, P.; Davis, M. I.; Edeen, P. T.; Faraoni, R.;Floyd, M.; Hunt, J. P.; Lockhart, D. J.; Milanov, Z. V.; Morrison, M. J.; Pallares, G.;Patel, H. K.; Pritchard, S.; Wodicka, L. M.; Zarrinkar, P. P., A quantitative analysisof kinase inhibitor selectivity. Nat Biotechnol2008,26(1),127-32.
    [182]Wells, S. A., Jr.; Gosnell, J. E.; Gagel, R. F.; Moley, J.; Pfister, D.; Sosa, J. A.;Skinner, M.; Krebs, A.; Vasselli, J.; Schlumberger, M., Vandetanib for the treatmentof patients with locally advanced or metastatic hereditary medullary thyroid cancer.J Clin Oncol2010,28(5),767-72.
    [183]Huse, M.; Kuriyan, J., The conformational plasticity of protein kinases. Cell2002,109(3),275-82.
    [184]Liu, Y.; Gray, N. S., Rational design of inhibitors that bind to inactive kinaseconformations. Nat Chem Biol2006,2(7),358-64.
    [185]Azam, M.; Latek, R. R.; Daley, G. Q., Mechanisms of autoinhibition andSTI-571/imatinib resistance revealed by mutagenesis of BCR-ABL. Cell2003,112(6),831-43.
    [186]Allen, F. H., The Cambridge Structural Database: a quarter of a million crystalstructures and rising. Acta Crystallogr B2002,58(Pt3Pt1),380-8.
    [187]Chandrakumar, K.; Kokila, M. K.; Puttaraja; S.Mohan; Shetty, K. S. M.,2-(Acetylamido)-N-(4-chlorophenyl)-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxamide. Acta Crystallogr Sect E: Struct Rep Online2005,61, o2444-o2446.
    [188]Kumar, K. C.; Kokila, M. K.; Puttaraja; Mohan, S.; Shetty, K. S. M.; Kulkarni,M. V.,2-Acetamido-N-(2-chlorophenyl)-4,5,6,7-tetrahydrobenzothiophene-3-carboxamide.Acta Crystallogr Sect E: Struct Rep Online2005,61, o304-o306.
    [189]Patch, R. J.; Baumann, C. A.; Liu, J.; Gibbs, A. C.; Ott, H.; Lattanze, J.; Player,M. R., Identification of2-acylaminothiophene-3-carboxamides as potent inhibitorsof FLT3. Bioorg Med Chem Lett2006,16(12),3282-6.
    [190]Wolanin, K.; Magalska, A.; Kusio-Kobialka, M.; Podszywalow-Bartnicka, P.;Vejda, S.; McKenna, S. L.; Mosieniak, G.; Sikora, E.; Piwocka, K., Expression ofoncogenic kinase Bcr-Abl impairs mitotic checkpoint and promotes aberrantdivisions and resistance to microtubule-targeting agents. Mol Cancer Ther2010,9(5),1328-38.
    [191]Greene, L. M.; Kelly, L.; Onnis, V.; Campiani, G.; Lawler, M.; Williams, D. C.;Zisterer, D. M., STI-571(imatinib mesylate) enhances the apoptotic efficacy ofpyrrolo-1,5-benzoxazepine-6, a novel microtubule-targeting agent, in bothSTI-571-sensitive and-resistant Bcr-Abl-positive human chronic myeloid leukemiacells. J Pharmacol Exp Ther2007,321(1),288-97.
    [192]Wasylyk, C.; Zheng, H.; Castell, C.; Debussche, L.; Multon, M. C.; Wasylyk, B.,Inhibition of the Ras-Net (Elk-3) pathway by a novel pyrazole that affectsmicrotubules. Cancer Res2008,68(5),1275-83.
    [193]Zhang, C.; Yang, N.; Yang, C. H.; Ding, H. S.; Luo, C.; Zhang, Y.; Wu, M. J.;Zhang, X. W.; Shen, X.; Jiang, H. L.; Meng, L. H.; Ding, J., S9, a novel anticanceragent, exerts its anti-proliferative activity by interfering with both PI3K-Akt-mTORsignaling and microtubule cytoskeleton. PLoS One2009,4(3), e4881.
    [194]Wallace, A. C.; Laskowski, R. A.; Thornton, J. M., LIGPLOT: a program togenerate schematic diagrams of protein-ligand interactions. Protein Eng1995,8(2),127-34.
    [195]Xie, L.; Bourne, P. E., Detecting evolutionary relationships across existing foldspace, using sequence order-independent profile-profile alignments. Proc Natl AcadSci U S A2008,105(14),5441-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700