包覆式ZrB_2-YAG-Al_2O_3陶瓷的制备及其性能评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硼化锆具有极高的熔点、硬度、化学稳定性、良好的导电导热性等优良特性,因此在航空航天、耐火、切削、电极等领域有广泛的应用前景。但是,ZrB_2难以烧结致密、高温下易氧化及抗热震能力差,使其实用化难以实现。如何获得高致密ZrB_2陶瓷并提高其高温抗氧化性和抗热震性,是当今ZrB_2陶瓷研究的一个热点。
     本论文提出将烧结致密化和提高抗氧化能力一体化解决的思路:将ZrB_2原料粉体表面改性,制备出具有包覆结构的ZrB_2陶瓷。具体来讲,就是在ZrB_2粉体表面包覆易烧结、不氧化的陶瓷粉体Y_2O_3-Al_2O_3,再通过放电等离子烧结(SPS)制备出具有YAG包覆ZrB_2和YAG-Al_2O_3包覆ZrB_2结构的ZrB_2-YAG和ZrB_2-YAG-Al_2O_3陶瓷。
     首先,采用化学沉淀法制备Al(OH)_3-Y(OH)_3包覆ZrB_2粉体。对影响ZrB_2分散稳定性的因素和Al(OH)_3-Y(OH)_3包覆ZrB_2效果的因素进行了分析。研究了浆体浓度、分散剂种类及含量、分散方式及时间和pH值对ZrB_2分散稳定性的影响。得出了适宜的分散条件:分散剂为2vol%的PMAA、超声时间为10min和pH值为9。研究了ZrB_2分散稳定性、pH值、溶液浓度、滴定速度和反应时间对ZrB_2包覆效果的影响。得出了适宜的包覆条件:分散剂2vol%-PMAA,超声10min、pH=9、溶液浓度为Al~(3+)=0.017mol/L,Y~(3+)=0.01mol/L、滴定速度为0.05ml/s、反应时间60min。
     其次,采用SPS烧结工艺制备了ZrB_2-YAG和ZrB_2-YAG-Al_2O_3陶瓷。研究了ZrB_2-YAG的致密化过程以及工艺参数对致密化和陶瓷性能的影响。ZrB_2-YAG烧结时的收缩主要是由ZrB_2表面包覆的Al_2O_3-Y_2O_3收缩以及反应生成的YAG收缩造成的。通过对烧结温度、烧结压力以及保温时间对陶瓷致密度、弹性模量和断裂韧性的影响研究,得到了优化的制备工艺:烧结温度为1700℃、烧结压力为20MPa和保温时间为4min。由包覆粉体原料烧结的陶瓷致密度明显高于纯ZrB_2陶瓷,所制备的ZrB_2-YAG和ZrB_2-YAG-Al_2O_3陶瓷具有包覆式显微结构。含30%YAG的ZrB_2-YAG陶瓷的相对密度、杨氏模量和断裂韧性分别为98.3%、426GPa和4.15MPam~(1/2),表明YAG的加入可以实现ZrB_2在较低的温度(1700℃)下的致密化。YAG-Al_2O_3含量为30wt%时,SPS最优工艺制备ZrB_2-YAG-Al_2O_3陶瓷的相对密度、杨氏模量和断裂韧性分别为98.8%、435GPa和4.23MPam~(1/2),表明随着Al_2O_3比例增大,陶瓷不但更容易致密化,而且力学性能也有所提高。此外,为了对比,用机械混合原料采用相同烧结工艺制备了ZrB_2-YAG和ZrB_2-YAG-Al_2O_3陶瓷。结果表明由包覆型原料制备的陶瓷断裂韧性更高,说明了具有包覆结构的材料具有更好的机械性能。
     研究了ZrB_2-YAG和ZrB_2-YAG-Al_2O_3陶瓷在700—1600℃的高温氧化性能。结果表明:相同SPS条件下制备的纯ZrB_2陶瓷900℃就出现较明显的氧化增重,而ZrB_2-YAG和ZrB_2-YAG-Al_2O_3陶瓷出现明显氧化增重的温度为1200℃。在相同氧化条件下,随陶瓷中不能氧化的相(YAG或YAG-Al_2O_3)含量增大,氧化层越薄。随Al_2O_3含量的增加,陶瓷表现出更好的抗氧化能力,尤其是在更高的温度下(>1300℃)。此时Al_2O_3与B_2O_3在表面形成较致密的氧化阻挡层(Al_(18)B_4O_(33))。由包覆粉体原料制备的陶瓷与由机械混合粉体制备的陶瓷相比氧化层变薄,说明包覆结构能够在一定程度上改善陶瓷的抗氧化能力。
Zirconium diboride(ZrB_2)is a desirable combination of high melting temperature, resistance to chemical attack,and other physical properties that make it attractive for these applications for aerospace,refractorily,cutting and electrode fields.However, ZrB_2 is hard to sintering densification,easily oxidized and bad thermal shock resistantce in the high-temperature conditions to impact high-temperature properties, which makes it difficultly realize for extensive use.How to achieve the high-density ZrB_2 ceramic,improve oxidation resistance and thermal shock resistantce of ZrB_2 ceramic at high temperature conditions,which already became hot point for researchers of various countries.
     In this paper,the train of thought that resolving sintering densification and improving oxidation resistance was proposed.Y_2O_3-Al_2O_3 composite powders were coated on the surface of ZrB_2 particles to form Y_2O_3-Al_2O_3/ZrB_2 composite powders with coating structure and easy sintering densification,ZrB_2-YAG and ZrB_2-YAG-Al_2O_3 ceramics with coating structure were prepared through spark plasma sintering(SPS).
     First,Al(OH)_3-Y(OH)_3/ZrB_2 composite particles were synthesized by the chemical precipitation method.The dispersibility of ZrB_2 particles and the conditions of synthesizing Al(OH)_3-Y(OH)_3/ZrB_2 composite particles were investigated.Through analysis,the optimum conditions of the dispersibility of ZrB_2 particles in the ZrB_2 suspension are the dispersant(PMAA)content with the 2vol%of ZrB_2 suspension,the ultrasonic dispersion for 10 minutes and pH=9,respectively.The conditions of synthesizing Al(OH)_3-Y(OH)_3/ZrB_2 composite particles with the better coating quality are that ZrB_2 particles is under dispersion conditons(the dispersant(PMAA) content with the 2vol%of ZrB_2 suspension and the ultrasonic dispersion for 10 minutes),pH=9,the appropriate concentration(Al~(3+)=0.017mol/L,Y~(3+)=0.01mol/L)of solution,titration speed for 0.05ml/s and reaction time for 60 minutes,respectively.
     Second,the sintering densification of ZrB_2-YAG and ZrB_2-YAG-Al_2O_3 ceramics were investigated.Through analysis,the optimization sintering technology for preparing ZrB_2-YAG and ZrB_2-YAG-Al_2O_3 ceramics with the SPS is sintering temperature for 1700℃,sintering pressure for 20MPa and holding time for 4min. Relative density of ZrB_2-YAG and ZrB_2-YAG-Al_2O_3 ceramics are increased with increasing YAG and YAG-Al_2O_3 content.Relateive density,Young's modulus and fracture toughness of 70wt%ZrB_2-YAG ceramics are 98.3%,426GPa and 4.15MPam~(1/2),respectively.The results show ZrB_2 ceramics realizes densification under the lower sintering temperature(1700℃)through adding YAG.Relateive density,Young's modulus and fracture toughness of 70%wtZrB_2-YAG-Al_2O_3 ceramics are 98.8%,435GPa and 4.23MPam~(1/2),respectively.Relative density and mechainic properities of ZrB_2-YAG-Al_2O_3 ceramics are increased with increasing Al_2O_3 content.Besides,ZrB_2-YAG ceramics and ZrB_2-YAG-Al_2O_3 ceramics were prepared with mixing raw materials through same conditions,the mechainical properities of sintered ceramics with coated raw materials are higher than that of sintered ceramics for mixed raw materials,which shows ceramics with coated structure possess better mechainical properities.
     Finally,the oxidation resistances of pure ZrB_2,ZrB_2-YAG and ZrB_2-YAG-Al_2O_3 ceramics from 700℃to 1600℃were studied.Pure ZrB_2 ceramics are shown distinct oxidation weigh gain at 900℃,however,ZrB_2-YAG and ZrB_2-YAG-Al_2O_3 ceramics are shown distinct oxidation weigh gain at 1200℃,which shows oxidation resistance of ZrB_2-YAG and ZrB_2-YAG-Al_2O_3 ceramics are increased with increasing YAG and YAG-Al_2O_3 content.Oxidation resistance of ZrB_2-YAG-Al_2O_3 ceramics is increased with increasing Al_2O_3 proportion,especially for higher temperature(above 1300℃), because Al_2O_3 react with B_2O_3 to form compacter oxidation resistance layer (Al_(18)B_4O_(33)).Through comparative analysis,oxidation resistance of sintered ceramics with coated raw materials is better than that of sintered ceramics with mixed raw materials,which indicates that ceramics with coated structure improves the high temperature oxidation resistance.
引文
[1]K.Upadhya,J.M.Yang,W.P.Hoffmann.Materials for ultra-high temperature structural applications.American Ceramic Society Bulletin,1997,76(12):51-56
    [2]A.Bronson,Y.T.Ma,R.Mutso.Compatibility of refractory metal boride/oxide composites at ultra-high temperatures.Journal of Electrochemistry Society,1992,139(11):3183-3196
    [3]丘哲明.固体火箭发动机材料与工艺.北京:宇航出版社,1995:111-113
    [4]G.M.Song,Z.Yu,Y.J.Wang.Effect of carbide particles on the ablation properties of tungsten composite.Materials Characterization,2003,50:293-303
    [5]K.Oshimi,S.Nakatani,N.Nomura.Thermal expansion,strength and oxidation resistance of Mo/Mo_5SiB_2 in-situ composites at elevated temperatures.Intermetallics,2003,11:787-794
    [6]Y.M.Yoko,R.Yoshikazu,S.Nakazawa.High temperature strength of Ir-based refractory super alloys.Journal of Japan Institute Metal,2000,64(11):1068-1075
    [7]B.Fischer,D.F.Lupton,D.Freund.Stress-rupture strength of rhenium at very high temperatures.TMS Annual Meeting,Rhenium and Rhenium Alloys,1997:311-320
    [8]J.J.Diaz.Pure rhenium metal.IEEE Potentials,1996,15(1):37-39
    [9]E.K.Ohriner.Rhenium and iridium.TMS Annual Meeting,Rhenium and Rhenium Alloys,1997:409-423
    [10]K.T.Kim,J.J.Wang,G.Welsch.Chemical vapor deposition(CVD)of rhenium.Materials Letters,1991,12(1-2):43-46
    [11]C.Duriez.Rhenium oxidation by steam athigh temperatures.Oxidation of Metals,2004,61(1-2):49-67.
    [12]G.J.Zhang.Reactive hot pressing of ZrB_2-SiC composites.Journal the American Ceramic Society,2000,83:2330-2332
    [13]C.B.Bargeron,R.C.Benson,R.W.Newman.Oxidation mechanisms of hafnium carbide and hafnium diboride in the temperature range 1400 to 2100℃.Johns Hopkins APL Technical Digest,1993,14(1):29-36
    [14]C.B.Bargeron,R,C.Benson.X-ray microanalysis of a hafnium carbide film oxidized athigh temperature.Surface Coatings and Technology,1998,36(1):111-115
    [15]G.R.Holcomb,G.R.Pierre.Application of a counter-current gaseous diffusion model to the oxidation of hafnium carbide at 1 200 to 1530℃.Oxidation of Metals,1993,40(1-2):109-118
    [16]E.L.Courtright,J.T.Prater,G.R.Holcomb,G.R.Pierre,R.A.Rapp.Oxidation of hafnium carbide and hafnium carbide with additions of tantalum and praseodymium.Oxidation of Metals,1991,36(5,6):423-437
    [17]李贺军,罗瑞盈,杨峥.炭/炭复合材料在航空领域的应用研究现状.材料工程,1997,8:8-10
    [18]朱小旗.抗氧化炭/炭复合材料的制备性能及机理研究:[博士论文].西安:西北工业大学,1995
    [19]吴人沽.复合材料.天津:天津大学出版社,2000:330-346
    [20]W.G.Fahrenholtz,G.E.Hilmas.Refractory diborides of zirconium and hafnium.Journal of the American Ceramic Society,2007,90:1347-1364
    [21]吕春燕,顾华志,汪厚植.ZrB_2系陶瓷材料的研究进展.材料导报,2003,17(9):246-249
    [22]赵海雷,王俭,李文超.ZrB_2-刚玉莫来石复合材料氧化动力学的研究.耐火材料,1998,32(6):322-325
    [23]W.G.Fahrenholtz.The ZrB_2 volatility diagram.Journal of the American Ceramic Society,2005,88:3509-3512
    [24]程秀梅.含碳耐火材料中添加ZrB_2的性状和效果.国外耐火材料,1994,11:52-57
    [25]冯大淦.非金属热电偶及其热电性能.自动化仪表,1994,15(7):8-12
    [26]S.Norasetthekul.Use of zirconium diboride-copper as an electrode in plasma applications.Journal of Materials Science,1999,34:1261-1270
    [27]E.Raddich,D.D.Allred.Chemically vapor-deposited ZrB_2 as a selective solar absorber.Thin Solid Films,1981,83:393-398
    [28]黄金昌.ZrO_2-ZrB_2复合材料的发展.稀有金属快报,2003.5:21-23
    [29]王皓,王为民,辜萍.热压烧结TiB_2-ZrB_2固溶复合陶瓷的结构研究.硅酸盐学报.2002,30(4):486-490
    [30]韩杰才,胡平,张幸红.超高温材料的研究进展.固体火箭技术,2005,28(4):289-294
    [31]F.Monteverde.Ultra-high temperature HfB_2-SiC ceramics consolidated by hot-pressing and spark plasma sintering.Journal of Alloys and Compounds,2007,428:197-205
    [32]周长灵,程之强,刘福田.硼化锆基碳化硅复相陶瓷.硅酸盐学报,2006,34(8):1017-1021
    [33]A.L.Chamberlain,W.G.Fahrenholtz,G.E.Hilmas.Pressureless sintering of zirconium diboride.Journal of the American Ceramic Society,2006,89:450-456
    [34]A.K.Khanra,M.Godkhindi.Comparative Studies on sintering behavior of self-propagating high-temperature synthesized ultra-fine titanium diboride powder.Journal of the American Ceramic Society,2005,88:1619-1621
    [35]田庭燕,张玉军,张娜.二硼化锆系复合材料研究进展.现代技术陶瓷,2005,4:21-23
    [36]G.I.Zhang,M.Ando.Boron carbide and nitride as reactants for in situ synthesis of boride-containing ceramic composites.Journal of the European Ceramic Society,2004,24:171-178
    [37]T.Tsuchida.Mechanical activation assisted self-propagating high-tempermre synthesis of ZrC and ZrB_2 in air form Zr/B/C powder mixtures.Journal of European Ceramic Society,2004,24:45-51
    [38]K.H.Kim.The effect of lanthanum on the fabrication of ZrB_2-ZrC composites by spark plasma sintering.Materials Characterization,2003,50(1):31-37
    [39]M.M.Opeka,I.G.Talmy.Mechanical thermal and oxidation properties of refractory hafnium and zirconium compounds.Journal of European Ceramic Society,1999,19:2405-2414
    [40]熊金松,王玺堂.ZrB_2在无机非金属材料中的应用现状.武汉科技大学学报(自然科学版),2006,29(3):229-232
    [41]F.Mnnteverde.Advances in microstructure and mechanical properties of zirconium diboride based ceramics.Materials Science and Engineering A,2003.346:310-319
    [42]李金平,韩杰才,李庆芬.ZrB_2-SiCw超高温陶瓷材料的研究.兵器材料科学与工程,2006,29(1):53-56
    [43]B.Basu,J.Vleugels,V.D.Biest.Development of ZrO_2-ZrB_2 composites.Journal of Alloys and Compound;2002,334:200-204
    [44]K.Sang,C.Kim.Fabrication and microstructure evaluation of ZrB_2/ZrC/Zr composites by liquid infiltration.Journal of Materials Science,1994,29:5309-5315
    [45]E.J.Opila,M.C.Halbig.Oxidation of ZrB_2-SiC.Ceramic Engineering Science Processing,2001,22(3):221-228
    [46]A.L.Chamberlain,W.G.Fahrenholtz,G.E.Hilmas.Oxidation of ZrB_2-SiC ceramics under atmospheric and reentry conditions.Refractory Applied Transition,2005,1(2):1-8
    [47]E.Opila,S.Levine,J.Lorincz.Oxidation of ZrB_2 and HfB_2-based ultra-High temperature ceramics:Effect of Ta additions.Journal of Materials Science,2004.39(19):5969-5977
    [48]D.Sciti,M.Brach,A.Bellosi.Oxidation behavior of a pressureless sintered ZrB_2-MoSi_2ceramic composite.Journal of Materials Research,2005,20(4):922-930
    [49]I.G.Talmy,J.A.Zaykoski,M.M.Opeka,A.H.Smith.Properties of ceramics in the system ZrB_2-Ta_5 Si_3.Journal of Materials Research,2006,21(10):2593-2599
    [50]I.G.Talmy,J.A.Zaykoski,M.M.Opeka,S.Dallek.Oxidation of ZrB_2 Ceramics Modified With SiC and Group Ⅳ-Ⅵ Transition Metal Borides.pp.144-153 in High Temperature Corrosion and Materials Chemistry,Ⅲ,Edited by M.McNallan,E.Opila.The Electrochemical Society,Pennington,N J,2001
    [51]F.Ivanauskas,A.Kareiva,B.Lapcun.On the modelling of solid state reactions synthesis of YAG.Journal of Mathematical Chemistry.2005,37(4):365-376
    [52]M.Zarzecka,M.M.Bucko,J.B.Miecznik,K.Haberko.YAG powder synthesis by the modified citrate process.Journal of the European Ceramic Society,2007,27:593-597
    [53]S.J.Wang,Y.B.Xua,P.X.Lua.Synthesis of yttrium aluminum garnet(YAG)from an ethylenediaminetetraacetic acid precursor.Materials Science and Engineering B,2006,127:203-206
    [54]R.M.Laine,J.Marchal,It.P.Sun.A new YAG phase produced by liquid-feed flame spray pyrolysis.Advanced Materials,2005,17(7):830-833
    [55]卢红霞.纳米氧化铝粉体和氧化铝/金属复合陶瓷的制备及其性能表征.[博士学位论文]郑州:郑州大学,2006
    [56]J.Li,Y.B.Pan,C.S.Xiang.Low temperature synthesis of ultrafine α-Al_2O_3 powder by a simple aqueous sol-gel process.Ceramics International,2006,32:587-591
    [57]J.X.Zhang,F.Ye,D.L.Jiang.Properties of Al_2O_3 ceramics consolidated with sulfanilic acid.Ceramics International,2007,33:401-404
    [58]S.Cava,S.M.Tebcherani,I.A.Souza.Structural characterization of phase transition of Al_2O_3 nanopowders obtained by polymeric precursor method.Materials Chemistry and Physics,2007,103:394-399
    [59]高濂,李炜群,王宏志.YAG-Al_2O_3纳米复合材料的制备和力学性能.无机材料学报,2000,15(6):1107-1110
    [60]张巨先,高陇桥,李发.包覆型陶瓷粉体的研究进展.硅酸盐通报,2000,2:53-56
    [61]A.Basch,B.Gollas,R.Horn.Substrate-induced coagulation(SiC)of nano-disperse carbon black in non-aqueous media:a method of manufacturing highly conductive cathode materials for Li ion batteries by self-assembly.Journal of Applied Electrochemistry,2005,35(2):169-176
    [62]K.Hayashi,K.Iwasaki,H.Morii.Carbon-coated non-magnetic iron oxide particles for the substrate of multi-layered magnetic recording media.Journal of Nanoparticle Research,2001,3:149-156
    [63]K.D.Kim,H.J.Bae,H.T.Kim.Synthesis and growth mechanism of TiO_2-coated SiO_2 fine particles.Colloids and Surfaces,2003,221(1):163-173
    [64]J.Han,E.Kumacheva.Monodispersed silica-titanyl sulfate microspheres.Langrnuir,2001,17:7912-7917
    [65]E.Mine,A.Yamada,Y.Kobayashi.Direct coating of gold nano-particles with silica by a seeded polymerization technique.Journal of Colloid and Interface Science,2003,264(2):385-390
    [66]A.M.Homola,M.RLorenz,H.Sussner.Ultrathin particulate magnetic recording Media.Journal of Applied Physics,1987,61:3898-3902
    [67] E. Caruso, H. Lichtenfeld, E. Donath. Investigation of electrostatic interactions in polyelectrolyte multilayer films: Binding of anionic fluorescent probes to layers assembled onto colloids. Macromolecules, 1999, 32: 2317-2328
    [68] H. T. Cui, G. Y. Hong. Coating of Y_2O_3: Eu with polystyrene and its characterization. Journal of Materials Science Letters, 2002, 21: 81-83
    [69] W. S. Chung, S. Y. Chang, S. J. Lin. Electroless nickel plating on SiC powder with hypophosphite as a reducing agent. Plating and Surface Finishing. 1996, 6: 68-74
    [70] J. Andrew, Y. Mai. The nanoparticle-coating process: A potential sol-gel route to homogeneous nanocomposites. Materials Science Engineering A, 1999, 265: 202-207
    [71] V. Hardikar, E. Matijevic. Coating of nanosize silver particles with silica. Journal of Colloid Interface Science, 2000, 221: 133-136
    [72] D. Voltzke, S. Cablenz, H. P. Abicht. Surface modification of barium titanate powder particles. Materials Chemistry and Physics, 1999, 61(2): 110-116
    [73] C. Yang, W. Y. Shih. Effects of boehmite-coating thickness on the consolidation and theological properties of boehmite-coated SiC suspensions. Journal of the American Ceramic Society, 2001, 84: 2834-2840
    [74] N. Zhang, Q. K. Cai, H. Q. Ru. Coating of SiC powder with nano YAG phase. Journal of Rare Earths, 2005, 23(3): 299-303
    [75] Y. M. Kong, S. Kim, H. E. Kim. Reinforcement of hydroxyapatite bioceramic by addition of ZrO_2 coated with Al_2O_3. Journal of the American Ceramic Society, 1999, 82: 2963-3031
    [76] M. L. Fisher, M. Colic, M. P. Rao. Effect of silica nanoparticle size on the stability of alumina/silica suspensions. Journal of the American Ceramic Society, 2001, 84: 713-718
    [77] H. Du, Z. Q. Liu, F. Q. Liu. The characterization of polymer microspheres composited with Fe_2O_3 in nano-scale. Chemical Journal of Chinese Universities, 1997, 18(9): 1565-1571
    [78] S. C. Tang, Z. Q. Lin, G. D. Shen. Kineticst udieson PBA/PMMA core-shell emulsion polymerization.China Synthetic Rubber Industry, 2002, 25(4): 252-256
    [79] X. L. Li, Q. Peng. J. X. Yi. Near monodisperse TiO_2 nanoparticles and nanorods. Chemistry-A European Journal. 2006, 12 (8): 2383-2391
    [80] D. L. Liu. Densification of zirconia from submicron-sized to nano-sized powder particles. Journal of Materials Science Letters, 1998, 17: 467-469
    [81] L. Q. Jiang, L. Gao. Effect of tiron adsorption on the colloidal stability of nano-sized alumina suspension. Materials Chemistry and Physics, 2003, 80: 157-161
    [82] M. Anand, P. W. Bell, X. Fan. Synthesis and steric stabilization of silver nanoparticles in neat carbon dioxide solvent using fluorine-free compounds. Journal of Physical Chemistry B. 2006,110(30): 14693-14701
    [83]J.A.Lewis.Colloidal processing of ceramics.Journal of the American Ceramic Society,2000,83:2341-2359
    [84]N.Yao,G.X.Xiong,S.S.Sheng.Ultrasound as a tool to synthesize nano-sized silica-alumina catalysts with controlled mesoporous distribution by a novel sol-gel process.Catalysis Letters,2002,78:37-41
    [85]C.C.Kwan,W.H.Chu,S.Shimabayashi.Effect of polyvinylpyrrolidone and sodium lauroyl isethionate on kaolinite suspension in an aqueous phase.Chemical & Pharmaceutical Bulletin,2006,54(8):1082-1087
    [86]H.David,A.Orlando.A new ceramic forming process-gelcasting.Physics Today,1998,22:877-880
    [87]J.Ren,S.Song,A.Valdivieso.Dispersion of silica fines in water-ethanol suspensions.Journal of Colloid and Interface Science,2001,238:279-286
    [88]L.L.Zou,Y.Y.Wu,Y.H.Liang.Study on heterocoagulation applied to graphite treatment.Journal of Wuhan University of Science and Technology.2001,24(4):342-345
    [89]S.P.Rao,S Tripathy,A.M.Raichur.Dispersion studies of sub-micron zirconia using dolapix CE64.Colloids and Surfaces A,2007,302:553-558
    [90]C.Goalard,A.Samimi,L.Galet.Characterization of the dispersion behavior of powders in liquids.Particle & Particle Systems Characterization.2006,23:154-158
    [91]张宁,茹红强,巩甘雷.pH值对Al(OH)_3和Y(OH)_3共沉淀包覆SiC颗粒的影响.材料与冶金学报,2002,1(1):57-60
    [92]张巨先,候耀永,高陇桥.非均匀成核法涂覆改性纳米SiC粉体表面研究.硅酸盐学报,1998,26(6):762-767
    [93]A.V.Radha,R V.Kamath.Aging of trivalent metal hydroxide/oxide gels in divalent metal salt solutions:Mechanism of formation of layered double hydroxides(LDHs).Bulletin of Materials Science,2003,26(7):661-666
    [94]曹冉,李红霞.非均匀成核法石墨表面改性的研究.耐火材料,2006,40(3):161-164
    [95]C.Yao,G.S.Gao,X.P.Lin.Studies on Nano-sized TiO_2 coated with aluminum Hydroxide.Chinese Journal of Applied Chemistry,2005,22(7):759-763
    [96]M.Duc,F.Adekola.Influence of kinetics on the determination of the surface reactivity of oxide suspensions by acid-base titration.Journal of Colloid and Interface Science,2006,303(1):49-55
    [97]M.Wei.Kinetics of slow collapse process:Thermodynamic description of rate constants.Applied Surface Science,2006,253(3):1469-1472
    [98]A.Krause,M.Uhlemann.A Study of nucleation,growth,texture and phase formation of electrodeposited cobalt layers and the influence of magnetic fields.Thin Solid Films,2006,515(4):1694-1700
    [99]Z.Grubac,M.Hukovic.Nucleation of copper on an assembly of carbon microelectrodes.Materials Letters,2007,61(3):794-798
    [100]陈智慧.钇铝石榴石纳米粉体及YAG透明陶瓷的制备研究.[博士论文].北京:中国科学院理化技术研究所,2007
    [101]L.Dubrovinsky,N.Dubrovinskaia,W.A.Crichton.Noblest of all metals is structurally unstable at high pressure.Physic Review Letters,2007,98(4):045503
    [102]O.Adiguzel.Smart materials and the influence of atom sizes on martensite microstructures in copper-based shape memory alloys.Journal of Materials Processing Technology,2007,185(1-3):120-124
    [103]R.Chaim.Densification mechanisms in spark plasma sintering of nanocrystalline ceramics.Materials Science and Engineering A,2007,443:25-32
    [104]全建峰,陈大明.纳米YAG/Al_2O_3复相陶瓷材料性能与微观结构研究.真空电子技术,2006.4:8-13
    [105]C.H.Xu.Preparation and performance of an advanced multiphase composite ceramic material.Journal of the European Ceramic Society,2005,25:605-611
    [106]J.Wan,R.G.Duan,A.K.Mukherjee.Spark plasma sintering of silicon nitride/silicon carbide nanocomposites with reduced additive amounts.Scripta Materialia,2005,53:663-667
    [107]H.J.Ryu,Y.W.Lee,S.H.Cha.Sintering behaviour and microstructures of carbides and nitrides for the inert matrix fuel by spark plasma sintering.Journal of Nuclear Materials,2006,352:341-348
    [108]D.Sciti,A.Bellosi.Effects of additives on densification,microstructure and properties of liquid-phase sintered silicon carbide.Journal of Materials Science.2000,35:3849-3855
    [109]李霞.掺钕钇铝石榴石激光陶瓷的制备及性能表征.[博士论文].济南:山东大学,2005
    [110]D.Sciti,F.Monteverde,S.Guicciardi.Microstructure and mechanical properties of ZrB_2-MoSi_2 ceramic composites produced by different sintering techniques.Materials Science and Engineering A,2006,434:303-309
    [111]X.X.Huang,G.W.Wen,X.M.Cheng.Oxidation behavior of Al_4SiC_4 ceramic up to 1700℃.Corrosion Science,2007,49:2059-2070
    [112]A.Rezaie,W.G.Fahrenholtz,G.E.Hilmas.Oxidation of zirconium diboride-silicon carbide at 1500℃ at a low partial pressure of oxygen.Journal of the American Ceramic Society,2006,89:3240-3245
    [113]W.G.Fahrenholtz.Thermodynamic analysis of ZrB_2-SiC oxidation:Formation of a SiC-depleted region.Journal of the American Ceramic Society,2007,90:143-148
    [114]T.A.Parthasarathy,R.A.Rapp,M.Opeka.A model for the oxidation of ZrB_2,HfB_2 and TiB_2.Acta Materialia,2007,55:5999-6010
    [115]A.Rezaie,W.G.Fahrenholtz,G.E.Hilmas.Evolution of structure during the oxidation of zirconium diboride-silicon carbide in air up to 1500℃.Journal of the European Ceramic Society,2007,27:2495-2501
    [116]R.L.Gao,G.H.Min,H.S.Yu.Fabrication and oxidation behavior of LaB_6-ZrB_2composites.Ceramics International,2005,31:15-19
    [117]D.Sciti,M.Brach,A.Bellosi.Long-term oxidation behavior and mechanical strength degradation of a pressurelessly sintered ZrB_2-MoSi_2 ceramic.Scripta Materialia,2005,53:1297-1302
    [118]C.M.Chen,L.T.Zhang,W.C.Zhou.Microstructure,mechanical performance and oxidation mechanism of boride in situ composites.Composite Science and Technology,2001,61:971-975
    [119]王宏志,高濂,李炜群.非均相沉淀法制备Al_2O_3-YAG复相陶瓷.无机材料学报,2000,15(1):169-173
    [120]M.Brach,D.Sciti,A.Balbo.Short-term oxidation of a ternary composite in the system AIN-SiC-ZrB_2.Journal of the European Ceramic Society,2005,25:1771-1780
    [121]J.D.Cawley,J.W.Halloran,A.R.Cooper.Oxygen tracer diffusion in single-crystal alumina.Journal of the American Ceramic Society,1991,74:2086-2092
    [122]W.Zhou,Y.G.Zhao,W.Li.Oxidation behavior of the Y_2O_3-modified aluminide coating on Ti-6Al-4V alloy.Materials Science and Engineering A,2007,458:34-38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700