基于3S技术洪雅县退耕还林区竹林植被碳储量动态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
竹林生态系统是森林生态系统的重要组成部分,其碳储存能力超过树木,对减缓气候变暖的作用超过林木,目前中国竹林碳储量占森林总碳储量的比例已超过11%,成为生态系统的重要碳库单元。由于其具有较高的生产力,在退耕还林工程中得到大力栽植,竹林面积呈现不断增加的趋势,这就意味着竹林是一个不断增大的碳汇,研究竹林碳储量对正确评估竹林在全球碳平衡中的作用意义重大。
     本研究以洪雅县退耕还林区竹林为研究对象,以1999年为退耕还林分界点,将1999年以后竹林的增加量全部作为由退耕还林所营造的,在3S技术支持下,综合分析遥感影像数据、实测碳储量数据以及其他基础数据,建立遥感碳储量模型。在此基础上对华西雨屏区洪雅县退耕还林前期(1994-1999年)、中期(1999-2004年)、后期(2004-2007年)竹林面积、碳储量、碳密度及其时空动态进行研究。主要研究内容及成果如下:
     (1)通过碳储量与地形数据、波段光谱数据及其衍生数据之间相关性、共线性分析,选取elevation、aspect、p1、p2、p7、PC3、SAVI建立了遥感碳储量多元线性模型,并利用地统计学分析模块对模型进行优化。竹林碳储量优化模型为:C=82.869+0.011×elevation+0.013×aspect-1.602×P2-0.925×P7+0.837×PC3+2.942×SAVI模型精度为83.01%。
     (2)竹林面积动态研究。1994-2007年洪雅县竹林面积呈现逐渐增加的趋势,共增加了7571.79hm2,竹林面积的大幅增加主要发生在退耕还林工程实施中期。竹林面积空间动态表现为,随海拔以500m-1000m为分布重心呈正态分布,在<1000m区域呈逐年增加,在>1000m区域各年增减不一,总体减少,其中2004-2007年1000-1500m区域减少了1594.71 hm2;竹林面积随坡度呈正态分布,但比重峰值存在差异,1994、1999年以15°-25°为比重峰值,2004、2007年以25°-35°为比重峰值,竹林面积的增加主要发生在>25°区域,其增加量5205.33 hm2,占总增加量的68.75%;竹林面积随坡向分布差异不大,均表现为无坡向最少,其余坡向分布较均匀。竹林面积随坡向变化,除2004~2007年阳坡竹林面积略有减少外,其余坡向逐年增加。竹林面积动态分析结果表明:退耕还林工程的实施是洪雅县竹林面积大幅增加的主导因素,退耕还林工程的持续推进和竹林生长发育导致后期竹林面积的继续增长。竹林面积的空间格局变化则表明,竹林逐渐向低海拔、平缓坡发展,坡向对竹林分布的影响较小。
     (3)竹林碳储量动态研究。13年间洪雅县竹林碳储量呈现出持续增长的特征,增长速度表现为中期>后期>前期。竹林碳储量随海拔分布表现为海拔<1000m时,碳储量随海拔增加而逐渐增加,>1000m时,碳储量随海拔的增加而逐渐减少。各年<1000m区域碳储量均表现为增加,>1000m区域总体表现为减少,其中2004-2007年在1000-1500m区域减少最多,为5.22×104t;竹林碳储量随坡度分布表现为1994-1999年坡度<25°时,碳储量随坡度的增加而增加,反之则减小;2004-2007年坡度<35°时,碳储量随坡度的增加而增加,反之减小;竹林碳储量随坡向分布各年规律一致,均为阴坡>半阴坡>半阳坡>阳坡>无坡向;碳储量随坡向变化,总体表现为逐年增加趋势(2004~2007年阳坡除外)。竹林碳储量的空间格局变化与竹林面积的空间格局变化一致,呈现向低海拔、平缓坡以及各坡向均匀发展的趋势。
     (4)竹林碳密度介于33.25-33.76Mg C·hm-2,1994年和1999年竹林碳密度基本相同,1999-2007年其变化呈现出先降后升,总体略微下降的特点。
     (5)竹林碳汇效益研究。根据竹子采伐习惯,可近似认为竹子处于生长动态平衡中,结合竹林碳储量数据推算出竹林年固碳量和年固碳能力,初步估算退耕还林创造碳汇效益为0.77亿元,未来竹林碳汇将每年创造经济效益0.36亿元,每公顷竹林创造碳汇经济效益2053.79元。
Bamboo forest ecosystem is an important component of the ecosystem, in China, it's carbon storage accounted for the proportion of total forest carbon stock has more than 11%, and it become an important carbon unit of ecological system. The carbon storage and mitigation of climate warming capacity of bamboo are more than trees. Because of its high productivity, it was strongly planted in Forest Returned from Farmland, and then, bamboo area showed a rising trend, which means that bamboo is an increasing carbon sinks, study of bamboo carbon storage have a great significance on the correct assessment of the carbon balance in the world.
     We use 3S technology as a means, remote sensing image data、measured carbon stock data and other basic data as source data, builded remote sensing carbon storage models to study the carbon storage of bamboo in Forest Returned from Farmland, High Precipitation Area of Western China.Based the analyst data, the bamboo area、bamboo carbon storage、bamboo carbon density during early period (1994-1999), middle period (1999-2004), late period (2004-2007) and they temporal of spatial dynamics were researched. Main contents and results are as follows:
     (1) Through analysis the collinearity and correlation of terrain data, band spectrum data and derived data with carbon storage, elevation, aspect, pi, p2, p7, PC3, SAVI was selected to established a multivariate linear model of remote sensing carbon storage, and this model was optimized by Geostatistical analysis module. The Bamboo carbon storage optimization model's accuracy is 83.01%, and the model is C=82.869+0.0111×elevation+0.013×aspect-1.602xp2-0.925×p7+0.837×PC3+2.942×SAVI
     (2) Dynamics of bamboo area. The bamboo area of Hongya county during 1994-2007 showed a gradual increase, with a total increase of 7571.79 hm2, the substantial increase was occurred in the middle period of Forest Returned from Farmland. Spatial dynamic of bamboo area showed that:The bamboo area was normal distributed with elevation, the center was 500-1000m. While elevation< 1000m, the bamboo area was increasing year by year,> 1000m bamboo area changes each year varies, the overall decrease, which in 2004a-2007a the bamboo area of 1000-1500m region decrease 1594.71 hm2; Normal distribution with the slope of bamboo area, however, differences in the proportion of the peak, in 1994a and 1999a the proportion of the peak in the 15°-25°, but in 2004a and 2007a the proportion of the peak were in 25°-35°region, the increase of bamboo area mainly occurred in>25°region, the increase amount of 5205.33 hm2, with 68.75% of the total increment; Bamboo area with the slope direction is insignificant, appeared as no aspect at least, uniform distribution of the remaining slope. Bamboo area increased with the aspect year by year, in addition to 2004a-2007a of sunny slope. Bamboo area of dynamic analysis results showed that: The dominant factor of bamboo area substantial increase in Hongya county was Forest Returned from Farmland Project, with the promoting of project and bamboo growth, the bamboo area continued growth of late period. The spatial pattern changes of bamboo area showed that bamboo developed to low altitude, flat slope, and aspect made little effect on bamboo distribution.
     (3) Dynamics of bamboo carbon storage. The characteristic of bamboo carbon in Hongya county in the 13 years was continuous growth, the growth rate for middle period> late period> early period. The distribuion charcter of bamboo carbon storage was that:when elevation<1000m, the carbon storage increases with elevation increasing, while elevation> 1000m, the carbon storage decreases with elevation increasing,Changes in carbon storage over time showed,<1000m region are increasing,> 1000m region reduce the overall, which in 2004a-2007a have the largest reduction in 1000-1500m region, to 5.22×104t; Bamboo carbon storage distributed with the slope from 1994a-1999a showed that, when slope<25°, the carbon storage increased with the slope increase, and vice versa decrease.2004a-2007a, when slope<35°, the carbon storage increases with the slope incresed, conversely reduced; Bamboo carbon storage distributed with aspect in the same law for each year, the aspect are shady aspect>semi-shady aspect>semi-sunny aspect>sunny aspect>no aspect. The overall trend of carbon storage changes with the aspect showed increased year by year (except 2004a-2007a, sunny aspect).The spatial pattern of bamboo carbon storage changes same with the bamboo area changes, showing the low elevation, flat slope and the aspect uniform trend.
     (4) Bamboo carbon density ranged from 33.25-33.76 Mg C·hm-2, Which showed first decreased and then change up during 1994a-2007a, the characteristics of the overall decline slightly.
     (5) Bamboo carbon benefit. According to customary harvesting of bamboo, we can approximately take the growth of bamboo for a dynamic balance. Based on the bamboo carbon storage data, the amount of carbon and yearly carbon sequestration can be calculated. Preliminary estimates the carbon sequestration benefits form Forest Returned from Farmland Project was 0.77 billion, and in the future, the bamboo carbon sinks will create economic benefits for 0.36 million yuan per year. Which means, 2053.79 yuan per hectare.
引文
Bergen K M. Integration of remotely sensed radar imagery in modeling and mapping of forest biomass and net primary production. Ecol.Mod.,1999,12(2):257-274.
    Bharadwaj S P, Siva Subramanian, Sudhakar Manda, et al,. Bamboo livelihood development planning, monitoring and analysis through GIS and remote sensing. Journal of Bamboo and Rattan,2003,2 (4):453-461.
    Brown S I, Schroeder. Spatial patterns of aboveground production and mortality of woody biomass foreastern U. S. forests. Eco logical Applications,1999(9):968-980.
    Chander G, Markham B. Revised Landsat-5 TM radiometric calibration procedures and post-calibration dynamic ranges. IEEE Transactions on Geoscience and Remote Sensing,2003,41(11):2674-2677.
    Chen X G, Zhang X Q, Zhang Y P, et al,. Carbon sequestration potential of the stands under the Grain for Green Program in Yunnan Province China. Forest Ecology and Management,2009,258(3):1-8.
    Cilabert M A, Gandia S, Melia. Analyses of spectral-biophysical relationships for a corn canopy. Remote Sensing Environment,1996, (55):11-20.
    Clark R N, Swayze G A. Mapping minerals, amorphous materials,environmental materials, vegetation, water, ice, and snow, and othermaterials:The USGS Tricorder Algorithm. Summaries of the 5 th Annual JPL Airborne Earth Science Workshop. JPL Publication,1995.
    Congalton R G. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data, Remote Sens. Environ.,1991, (37):35-46.
    Dura D B, Hiura H. Expansion characteristics of bamboo stand and sediment disaster in South Western Japan. (CAB). Pakistan Journal of Biological Sciences,2006,9 (4):622-631.
    Ebermeyer. Estimating foliage biomass in a natural deciduous broad-leaved forest area in a mountainous district Satoshi Tatsuhara, and Hiroyuki Kurashige. Forest Ecology and Management,2001, (15): 141-148.
    Etheridge D M, Steele L P, Francey R J, et al,. Atmospheric methane between 1000 A. D. and present: evidence of anthropogenic emissions and climatic variability. Journal of Geophysical Research, 1998,103(15):979-993.
    Fang J Y, Chen A P, Peng C H, et al,. Changes in forest biomass carbon storage in China between 1949 and 1998. Science,2001,29(2):2320-2322.
    FANG J Y, WANG G G, LIU G H, et al,. Forest biomass of China:an estimation based on the biomass-volume relationship. Ecological Application,1998,(8):1084-1091.
    FANG J Y, WANG Z M. Forest biomass estimation at regional and global levels, with special reference to China's forest biomass. Ecological Research,2001,16:587-592.
    FAO. Production Yearbook. Food & Agric. Organization, Rome, ltaly:2006,1-348.
    Farrand W H, Singer R B, E Merenyi. "Retrieval of Apparent Surface Reflectance from AVIRIS Data:A Comparison of Empirical Line, Radiative Transfer, and Spectral Mixture Methods"Remote Sensing of Environment,1994,47:311-321.
    Fraser Gemmell. Estimating Conifer forest cover with Thematic Mapper. Data using reflectance model inversion and two spectral indices in a site with variable background characteristics. Remote sensing environment.1999,69:105-121.
    Houghton R A, Hackler J L. Changes in terrestrial carbon storage in the United States. Ⅰ:The roles of agriculture and forestry. Glob Ecol Biogeogr,2000,9:125-144.
    Huete A R. A soil-adjusted Vegetation index (SAVI). Remote Sensing Environment,1988, (25): 295-309.
    IGBP. The terrestrial carbon cycle:implication for the Kyoto Protocol. Science,1998.280:1393-1394.
    Kaufman Y J, Remer L A. Detection of forests using mid-IR reflectance:An application for aerosol studies. IEEE Transactions on Geoscience and Remote Sensing,1994,32:672-683.
    Khali Aziz, Hamzah. Mapping of bamboos area:remote sensing approach. Buletin Buluh (Malaysia), 1995,3(1):11-12.
    Laurent A, Carlo B, Piers R F, et al,. Eight glacial cycles from an Antarctic ice core. Nature,2004.42(9): 623-628.
    Linderman M, Liu J, Qi J, et al,. Using artificial neural networks to map the spatial distribution of understorey bamboo from remote sensing data. International Journal of Remote Sensing,2004,25 (9):1685-1700.
    Menon A R R. Remote sensing application in bamboo resource evaluation:a case study in Kerala. Bangkok (Thailand),1994,51-53.
    Moffat A S. Resurgent forests can be greenhouse gas sponges.Science,1997,27(7):315-316.
    Nair P V, Menon A R R. Estimation of bamboo resources in Kerala by remote sensing techniques. Current Science,1998,75 (3):209-210.
    NASA. Lansat 7 Science Data Users Handbook[EB/OL]. http//landsathandbook.gsfc.nasa.gov/hand book/handbook_htmls/chapterll/chapterl 1. html. NASA.2009-04-17.
    Nishikawa R, Murakami T, Yoshida S, et al,. Characteristic of temporal range shifts of bamboo stands according to adjacent landcover type. Journal of the Japanese Forest Society,2005,87(5):402-409.
    NOAA/CMDL. Climate Monitoring and Diagnostics Laboratory Summary. Report No.26 (2000-2001), http://www.cmdl.noaa.pov/publications/.2002.
    Ogawa H. Principle and methods of estimating primary production in forests//Shidei T, Kora T. Primary productivity of Japanese forests--productivity of terrestrial communities. Toky:University of Tokyo Press,1977:29-38.
    Pearson R L, Miller L D, Tucker. Hardenheld spectral radiometer to estimate gramineous biomass. Appl. Opt.1976, (2):416-418.
    Richardson A J, Wiegand C L. Distinguishing Vegetation From Soil Background Information. Photogramnetric Engineering and Remote Sensing.1977,43(12):1541-1552.
    Roujean J L, Neon F M. Estimation PAR absorbed by vegetation from bidirectional reflectance measurements.Remote Sensing Environnienl,1995, (51):375-384.
    S.K. Tripathi, A. Sumida, H. Shibata, et al,. Growth and substrate quality of fine root and soil nitrogen availability in a young Betula ermanii forest of northern Japan:Effects of the removal of understory dwarf bamboo (Sasa kurilensis).Forest Ecology and Management,2005,212, (3):278-290.
    Schulze E D, Wirth C, Heimann M. Managing forests after Kyoto. Science,2000,28(9):204-205.
    Somogyi Z, Cienciala E, Makipaa R, et al,. Indirect methods of large-scale forest biomass estimation. European Journal of Forest Research,2007,12(6):197-207.
    Somyot Saengnin. Application of remote sensing data for estimating bamboo forest production in Northern and Western part of Thailand. Bangkok (Thailand),1993.
    Torii A. Estimation of range expansion rate of bamboo stands using aerial photographs. Japanese Journal of Ecology,1998,48 (1):37-47.
    Turner D P, Koepper G J, Harmon M E, et al,. Acarbon budget for forests of the conterminous United States. Ecol Appl,1995(5):421-436.
    阿布都瓦斯提·吾拉木,秦其明,朱黎江.基于6S模型的可见光、近红外遥感数据的大气校正[J].北京大学学报(自然科学版),2004,04:107-114.
    白雪爽,胡亚林,曾德慧,等.半干旱沙区退耕还林对碳储量和分配格局的影响[J].生态学杂志,2008,27(10):1647-1652.
    卞萌,汪铁军,刘艳芳,等.用间接遥感方法探测大熊猫栖息地竹林分布[J].生态学报,2007,27(11):4824-4831.
    蔡华利.基于SVM的多源遥感分类的竹林信息提取方法研究[D].北京林业大学,2009.
    蔡丽莎,陈先刚,郭颖,等.贵州省退耕还林工程碳汇潜力预测[J].浙江林学院学报,2009,26(5):722-728.
    曹吉鑫,田赞,王小平,等.森林碳汇的估算方法及其发展趋势[J].生态环境学报,2009,18(5):2001-2005.
    陈存及,梁一池,邱尔发,等.毛竹种源新竹生长地理变异的趋势面分析[J].林业科学,2001,37(S1):11-17.
    陈冬花.西天山云杉林遥感生物量模型及其空间分布格局研究[D].新疆师范大学,2007.
    陈浩.基于3S技术的洪雅县退耕还林后景观格局动态研究[D].四川农业大学,2010.
    陈泮勤.地球系统碳循环[M].北京:科学出版社,2004.
    陈述彭,童庆禧,郭华东.遥感信息机理研究[M].北京:科学出版社,1998.
    陈先刚,张一平,张小全,等.过去50年中国竹林碳储量变化[J].生态学报,2008,28(11):5218-5227.
    陈先刚,赵晓惠,陆梅,等.四川省退耕还林工程林碳汇潜力研究[J].浙江林业科技.2009,29(5):19-28.
    陈小红.洪雅县退耕还林效益动态研究与综合评价[D].四川农业大学,2008.
    池宏康,陈维英,张海蕾.遥感数据的裸沙土壤线校正方法[J].地理学报,1999,4(5):444-461.
    池宏康,周广胜,许振柱,等.表观反射率及其在植被遥感中的应用[J].植物生态学报,2005,29(1):74-80.
    邓书斌.ENVI遥感图像处理方法[M].北京:科学出版社,2010.
    邓旺华,范少辉,官凤英.遥感技术在竹资源监测中的应用探讨[J].竹子研究汇刊,2008,27(3):8-11,16.
    邓旺华.竹林地面光谱特征及遥感信息提取方法研究[D].中国林业科学研究所,2009.
    丁丽霞.天目山国家级自然保护区毛竹林扩张遥感监测[J].浙江林学院学报,2006,23(3):297-300.
    樊智毅.基于遥感和地统计学的植被生物量估算和空间分析[D].中山大学,2007.
    范渭亮,杜华强,周国模,等.大气校正对毛竹生物量遥感估算的影响[J].应用生态学报,2010,21(1):1-8.
    方精云,陈安平.中国森林植被碳库的动态变化及其意义[J].植物学报,2001,43(9):967-973.
    方精云.北半球中高纬度的森林碳库可能远小于目前的估算[J].植物生态学报,2000,24(5):635-638.
    方晰,田大伦,项文化.速生阶段杉木人工林碳素密度、储量和分布[J].林业科学,2002,38(3):14-19.
    冯帅,李贤伟,赖元长,等.基于3S技术的竹林碳储量时空动态分析—以洪雅县退耕还林为例[A].第十一届全国森林培育学术研讨会论文集[C],四川雅安,2010:358-365.
    冯险峰,刘高焕,陈述彭,等.陆地生态系统净第一性生产力过程模型研究综述[J].自然资源学报,2004,19(3):369-378.
    冯宗炜,王效科,吴刚.中国森林生态系统的生物量[M].北京:科学出版社,1999.
    冯宗炜.中国森林生态系统的生物量和生产力[M].北京:科学出版社,1999.
    郭起荣,杨光耀,杜天真,等.中国竹林的碳素特征[J].世界竹藤通讯,2005,3(3):25-28.
    郭志华,彭少麟,王伯荪.利用TM数据提取粤西地区的森林生物量[J].生态学报,2002,22(11):1832-1839.
    国家测绘局.1:10000基础地理信息数据生产技术纲要[S].北京:国家测绘局.2001.
    胡亚林,曾德慧,姜涛.科尔沁沙地退耕杨树人工林生态系统C、N、P储量和分配格局[J].生态学报,2009,29(8):4206-4214.
    黄从德,张建,杨万勤,等.四川森林植被碳储量的时空变化[J].应用生态学报,2007,18(12):2687-2692.
    黄从德,张健,邓玉林,等.退耕还林地在植被恢复初期碳储量及分配格局研究[J].水土保持学报,2007,21(4):130-133.
    黄宗安.石竹各器官生物量回归模型研究[J].竹子研究汇刊,2000,19(4):53-57.
    辉朝茂,杨宇明.关于云南竹类植物多样性及其保护研究[J].林业科学,2003,39(1):]45-152.
    贾炅.森林下层植物资源的航空遥感分析——以川西针叶树下箭竹为例[J].北京师范大学学报(自然科学版),1993,29(3):416-421.
    蒋平平.基于RS的黄龙山林区森林景观格局变化研究——以黄龙山林业局蔡家川林场为例[D].西北农林科技大学,2008.
    赖广辉,肖斌,洪岩.华东天目山脉、黄山山脉、大别山脉竹类植物区系分析,兼论区系的起源与扩散[J].热带亚热带植物学报,2004,12(2):99-108.
    李高飞,任海.中国不同气候带各类型森林的生物量和净第一性生产力[J].热带地理,2004,24(4):306-311.
    李国砚,张仲元,郑艳芬,等MODIS影像的大气校正及在太湖蓝藻监测中的应用[J].湖泊科学,2008,20(2):160-166.
    李江,黄从德,张国庆.川西退耕还林地苦竹林碳密度、碳贮量及其空间分布[J].浙江林业科技,2006, 26(4):1-5.
    李克让.全球气候变化及其影响的研究进展和未来展望[J].地理学报,1996,51(增刊):1-14.
    李仁东,刘纪远.应用Landsat ETM数据估算鄱阳湖湿生植被生物量[J].地理学报,2001,56(5):532-540.
    李伟成,盛海燕,钟哲科.竹林生态系统及其长期定位观测研究的重要性[J].林业科学,2006,42(8):95-102.
    李贤伟,张健,胡庭兴,等著.退耕还林理论基础及林草模式的实践应用[M].北京:科学出版社,2009.
    李贤伟.退耕还林理论基础与技术研究[D].四川农业大学,2004.
    李玉强,赵哈林,陈银萍.陆地生态系统碳源与碳汇及其影响机制研究进展[J].生态学杂志,2005,24(1):37-42.
    李正才,傅懋毅,徐德应.竹林生态系统与大气二氧化碳减量[J].竹子研究汇刊,2003,22(4):1-6.
    李志恒,张一平.陆地生态系统物质交换模型[J].生态学杂志,2008,27(7):1207-1215.
    李志林,朱庆.数字高程模型[M].武汉:武汉大学出版社,2001.
    梁达丽,黄克福.台湾桂竹叶面积与生物量关系的研究[J].竹子研究汇刊,1994,13(1):42-46.
    林益明,李惠聪.麻竹种群生物量结构和能量分布[J].竹子研究汇刊,2000,19(4):36-41.
    刘健,余坤勇,亓兴兰,等.基于专家分类知识库的林地分类[J].福建农林大学学报(自然科学版),2006,35(1):42-46,
    刘恩斌,李永夫.周国模,等.生物量精确估算模型与参数辨识方法及应用[J].生态学报,2010,30(10):2549-2561.
    刘恩斌,周国模,姜培坤.生物量统一模型构建及非线性偏最小二乘辩识——以毛竹为例[J].生态学报,2009,29(10):5561-5569.
    刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J].生态学报,2000,20(5):733-740.
    刘华,雷瑞德.我国森林生态系统碳储量和碳平衡的研究方法及进展[J].西北植物学报,2005,25(4):835-843.
    刘江华,徐学选,杨光,等.黄土丘陵区小流域次生灌丛群落生物量研究[J].西北植物学报,2003,23(8):1362-1366.
    刘喜云,孙向阳,夏朝宗,等.东北地区森林植被生产力遥感定量估测[J].林业资源管理,2007,12(6):78-83.
    刘燕华,葛全胜,何凡能,等.应对国际CO2减排压力的途径及我国减排潜力分析[J].地理学报,2008,63(7):675-682.
    刘应芳,黄从德,陈其兵.蜀南竹海风景区毛竹林生态系统碳储量及其空间分配特征[J].四川农业大学学报,2010,28(2):136-140.
    刘振华,赵英时,宋小宁MODIS卫星数据地表反照率反演的简化模式[J].遥感技术与应用,2004,19(6):78-81.
    吕凤军,郝跃生,李川平,等.基于FLAASH模块的遥感数据大气校正应用研究[J].河北地质,2007,(2):23-26.
    吕海燕,徐斌,杨秀春,等.锡林郭勒草原产草量与碳储量的遥感估测[J].安徽农业科学,2010,38(32):18466-18468.
    罗天样,李文华,冷允法,等.青藏高原自然植被总生物量的估算与净初级生产量的潜在分布[J].地理研究,1998,17(4):337-341.
    罗云建,张小全,侯振宏,等.我国落叶松林生物量碳计量参数的初步研究[J].植物生态学报,2007,31(6):1111-1118.
    罗云建,张小全,王效科,等.森林生物量的估算方法及其研究进展[J]林业科学.2009,45(8):129-134.
    马乃训,陈红星.优良经济竹种生物量的研究[J].竹子研究汇刊,1994,13(1):31-41.
    茅荣正,倪绍祥,蒋建军LANDSAT-7 ETM+影像大气校正算法IDL的实现[J].测绘通报,2004,(1):8-10.
    彭少麟,郭志华,下伯荪.RS和GIS在植被生态学中的应用及其前景[J].生态学杂志,1999,18(5):52-64.
    秦自生,张焱,马恒银.冷箭竹生物生产量的研究[J].四川师范学院学报,1989:10(3):209-213.
    任国业.大熊猫主食竹的彩红外遥感判读技术探讨[J].遥感信息,1990,(4):15-17.
    任国业.大熊猫主食竹资源的遥感调查[J].遥感信息,1980,(2):34-35.
    施拥军,徐小军,杜华强,等.基于BP神经网络的竹林遥感监测研究[J].浙江林学院学报,2008,25(4):417-421.
    孙成权,高峰,曲建升.全球气候变化的新认识——IPCC第三次气候变化评价报告概览[J].自然杂志,2002,24(2):56-64.
    孙玉军,张俊,韩爱惠,等.兴安落叶松(Larix gmelini)幼中龄林的生物量与碳汇功能[J].生态学报,2007,27(5):1756-1762.
    唐守正,张会儒,胥辉.相容性生物量模型的建立及其估计方法研究[J].林业科学,2000,36(1):19-27.
    田国良.热红外遥感[M].北京:电子工业出版社,2006.
    田庆久,郑兰芬,童庆禧.基于遥感影像的大气辐射校正和反射率反演方法[J].应用气象学报,1998,9(4),456-461.
    同小娟,张劲松,孟平,等.华北低丘山地人工林生态系统净碳交换与气象因子的关系[J].生态学报,2009,29(12):6638-6645.
    王兵,魏文俊,邢兆凯,等.中国竹林生态系统的碳储量[J].生态环境,2008,17(4):1680-1684.
    王春梅,刘艳红,邵彬,等.量化退耕还林后土壤碳变化[J].北京林业大学学报,2007,29(3):112-119.
    王建,潘竟虎,等.基于遥感卫星图像的ATCOR2快速大气较正模型及应用[J].遥感技术与应用,2002,17(4):193-197.
    王钧.基于SOPT-5影像的退耕还林林地面积监测方法研究[D].四川农业大学,2010.
    王敏,李贵才,仲国庆,等.区域尺度上森林生态系统碳储量的估算方法分析[J].林业资源管理,2010,(2):107-112.
    王淑君,管东生.神经网络模型森林生物量遥感估测方法的研究[J].生态环境,2007,16(1):108-111.
    王维枫.森林生物量模型综述[J].西北林学院学报,2008,23(2):58-63.
    王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究[J].应用生态学报,2001,12(1):13-16.
    王秀云,孙玉军.森林生态系统碳储量估测方法及其研究进展[J].世界林业研究,2008,21(5):26-29.
    王秀珍,黄敏峰,李云梅,等.水稻地上鲜生物量的高光谱遥感估算模型研究[J].作物学报,2003,29(6):815-821.
    王岩.遥感定量反演的大气校正方法分析研究[D].东北林业大学,2008.
    王勇军,黄从德,王宪帅,等.慈竹林生态系统碳储量及其空间分配特征[J].福建林业科技,2009,36(2):06-09.
    王政权.地统计学及其在生态学中的应用[M].北京:科学出版社,1999.
    魏安世,林寿明,李志洪.基于TM数据的森林植物碳储量估测方法研究[J].中南林业调查规划,2006,25(4):4447.
    吴小山,黄从德.退耕还林地桦木林生态系统碳素密度、贮量与空间分布[J].生态学杂志,2007,26(3):323-326.
    邢素丽.半干旱区森林植被生物量遥感估测方法研究[D].石家庄:中国科学院石家庄农业现代化研究所,2004.
    徐春燕,冯学智.TM图像大气校正及其对地物光谱响应特征的影响分析[J].南京大学学报(自然科学),2007,43(3):309-317.
    徐希孺,金丽芳,赁常恭,等.利用NOAA-CCT估算内蒙古草场产草量的原理和方法[J].地理学报,1985,40(4):333-344.
    徐小军,杜华强,周国模,等.基于遥感植被生物量估算模型自变量相关性分析综述[J].遥感技术与应用,2008,23(2):239-247.
    徐小军.基于LANDSAT TM影像毛竹林地上部分碳储量估算研究[D].浙江林学院,2009.
    徐新良,曹明奎.森林生物量遥感估算与应用分析[J].地理信息科学,2006,8(4):122-128.
    薛红喜,李琪,王云龙,等.克氏针茅草原生态系统生长季碳通量变化特征[J].农业环境科学学报2009,28(8):1742-1747.
    颜梅春,张友静,鲍艳松.基于灰度共生矩阵法的IKONOS影像中竹林信息提取[J].遥感信息,2004,(2):31-34.
    杨海军,邵全琴,陈卓奇,等.森林碳蓄积量估算方法及其应用分析[J].地球信息科学,2007,9(4):5-12.
    杨洪晓,吴波,张金屯,等.森林生态系统的固碳功能和碳储量研究进展[J].北京师范大学学报:自然科学版,2005,41(2):172-177.
    杨丽韫,罗天祥,吴松涛.长白山原始阔叶红松林不同演替阶段地下生物量与碳、氮贮量的比较[J].应用生态学报,2005,16(7):1195-1199.
    杨昕,王明星,黄耀.地——气间碳通量气候响应的模拟Ⅰ:近百年来气候变化.生态学报,2002,22(2): 270-277.
    易同培,史军义,马丽莎,等.云南南部箬竹属(禾本科)一新种——金平箬竹[J].植物分类学报,2007,45(5):693-700.
    应天玉,李明泽,范文义.哈尔滨城市森林碳储量的估算[J].东北林业大学学报,2009,37(9):33-35.
    于贵瑞.全球变换与陆地生态系统碳循环和碳蓄积[M].北京:气象出版社,2003.
    余新晓,秦永胜,陈丽华.北京山地森林生态系统服务功能及其价值初步研究[J].生态学报,2004,22(5):783-786.
    张光富,宋永昌.浙江天童苦槠+白栎灌丛群落的生物量研究[J].武汉植物学研究,2001,19(2):101-106.
    张连义,张静祥,赛音吉亚,等.典型草原植被生物量遥感监测模型——以锡林郭勒盟为例[J].草业科学,2008,25(4):31-36.
    张霞,朱启强,闵祥军.反演陆面温度的分裂窗口算法与应用分析[J].中国图象图形学报,1999,(7):68-72.
    张元元.大兴安岭地区森林生物量遥感模型的研究[D].东北林业大学,2009.
    赵林,殷鸣放,陈晓非,等.森林碳汇研究的计量方法及研究现状综述[J].西北林学院学报,2008,23(1):59-63.
    赵宪文,李崇贵,斯林,等.森林资源遥感估测的重要进展[J].中国工程科学,2001,3(8):15-28.
    赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003.
    郑金双,曹永慧,代全林,等.茶秆竹林叶面积指数与生物量关系的研究[J].竹子研究汇刊,2001,20(1):53-57.
    中国地理网.洪雅县[Z].2009. http://baike.chinageo.com/index.php?doc-innerlink-%e6%b4%aa%e9% 9b%85%e5%8e%bf
    中国植物志编委会.中国植物志[M].北京:科学出版社,1999.
    周广胜.全球碳循环[M].北京:气象出版社,2003.
    周国模,姜培坤.毛竹林的碳密度和碳储量及其空间分布[J].林业科学,2004,40(6):20-24.
    周健.遥感图像地物反射率反演[D].东北师范大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700