基于FORECAST模型不同轮伐期杉木人工林和云杉林碳储量的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于长时间对森林过度砍伐和人口增长带来的森林退化的巨大压力,我们需要可持续发展的思想来指导森林的经营管理。通过模型模拟进行新的管理体制的预测,可以使我们采取优化的措施来维持我们期望的生态系统价值。杉木林和云杉林是我国亚热带和西南林区的重要的森林生态系统,本文利用FORECAST模型模拟不同轮伐期对云杉林和杉木人工林碳储量的影响,为进一步深入研究我国乃至全球范围内的森林
     生态系统碳循环提供基础数据,同时为管理者制定合理的森林管理策略提供依据。研究不同轮伐期杉木人工林碳储量过程中发现短轮伐期(≤25年)的碳贮量较高,但是固碳能力较弱且土壤碳贮量呈现下降趋势;过长轮伐期(>50年),总碳贮量相对不高,且较好立地模拟表明其固碳能力亦有下降的趋势。25年轮伐期干材收获量最大,但不利于土壤有机碳的可持续,50年轮伐期有利于维持生态系统的碳贮量的相对稳定。且立地条件越好其碳贮量和固碳能力越高。选择较长轮伐期(25-50年)较有利于保持杉木人工林的可持续经营。
     云杉林的模拟结果显示,轮伐期为80年时茎干碳贮量和全树碳贮量的累积最高,但地力消耗较为严重。在森林皆伐的情况下,无论采取任何长度的轮伐期,其土壤碳贮量均呈现下降趋势,但是随着轮伐期的延长(不大于160年),其下降比例降低。轮伐期不大于160年时,年均固碳量随着轮伐期的延长而增大。且较好立地的碳贮量和固碳能力要优于较差立地。故而,从轮伐期和立地角度出发,保持长期立地生产力应选择较长轮伐期(120-160年)和较好立地为宜。从采伐方式上而言,粗放型采伐方式更加有利于碳储量的积累,且其固碳能力高于集约型采伐方式。在森林经济向集约型经济转变的今天,延长轮伐期无疑可以缩小两种采伐方式之间的差距,在一定程度上减少立地的损耗。
     云杉林的模拟结果与杉木人工林的模拟结果十分相似,单从经济效益而言,中等水平的轮伐长度有利于获得最大的经济效益,但地力消耗最为严重,这也凸显了经济效益与生态效益之间的矛盾。选择较长的轮伐期可以从一定程度上体现森林可持续发展的理念,且较长轮伐期的固碳能力高,对气候变暖这一全球问题,有一定的贡献。
As a long time on deforestation and the enormous pressure of population growth, we have no time to wait for a new management system to maintain the ecosystem value we expected. In the absence of a long concrete examples of the results of the case, the emergence and applications of the models provided us some possibilities for the response of the ecosystems to disturbances. In this paper we used
     FORECAST model to simulate the impacts of different rotations for the carbon storage of Chinese fir and spruce to provide some basic data for further study in China and the global carbon cycle of forest ecosystems,as well as to help forest managers to develop reasonable management strategies. Our results support that the shorter rotation (≤25 year) has the higher carbon storage, but carbon sequestration capacity is lower and soil organic carbon seems to decline. If the rotation length is too long(>50 year) ,it may cause lower carbon storage and in rich site its carbon sequestration capacity has the downward trend. It will get the most stem biomass but do not maintain the sustainable develop of soil organic carbon when the rotation is 25 year. When the rotation is 50 year, it can maintain the sustainability of the ecosystem carbon storage. So we considered that longer rotation (25 year~50 year) is relatively reasonable to keep the sustainable production in Chinese fir plantation based on the results. Results about spruce suggest that the accumulation of stem carbon and total tree carbon get to the
     maxium when the rotation length is 80 years,but it will consume more soil fertility.In the case of forest clear-cutting,no matter which rotation we choose,the soil carbon storage showed a downward trend,but with the rotation of the extension (not more than 160 years), the reducing proportion declines. When rotation is not more than 160 years, the average annual amount of carbon sequestration increased as the rotation length gets longer. And a better site for carbon storage and carbon sequestration is higher than worse ones. Therefore, from the perspective of rotation and site, maintaining long-term site productivity should choose a longer rotation periods (120-160 years) and better site. From the perspective of the harvesting styles, the extensive harvesting more conducive to the accumulation of carbon stocks and carbon fixation is higher than that intensive harvesting. At present, the forest economy changes to intensive economic ,and no doubt extending the rotation length can reduce the gap between the two harvesting styles, and can reduce the loss site.
     The simulation results of two stands are very similar. From the economic, the mid-level rotation length is conducive to the greatest economic benefit, but will consume the most serious soil fertility, it also highlights the contradiction between the economic benefits and ecological benefits. Selecting a longer rotation period can be reflected the concept of forest sustainable development, and longer rotation has higher carbon sequestration capacity, and has a certain contribution in the global problem of climate change.
引文
[1]翁友恒,王念奎.森林生态系统碳循环研究进展[J].林业勘察设计(福建),2010,1:43-46.
    [2]方晰.杉木人工林生态系统碳贮量与碳平衡的研究[D].中南林科院,2004:12-13.
    [3]陶波,葛全胜,李克让,邵雪梅.陆地生态系统碳循环研究进展[J].地理研究,2001,20(5):563-575.
    [4] YADVINDER MALHI AND JOHN GRACE.Tropical forests and atmospheric carbon dioxide tree[J].Trends in ecology&evolution,2000,15(8):332-337.
    [5]雷加富.中国森林生态系统经营[M].北京:中国林业出版社,2007.
    [6] FALKOWSKI P,SCHOLES R J,BOYLE E,CANADELL J,CANFIELD D,ELSER J,GRUBER N,HIBBARD K,HOGBERG P,LINDER S, MACKENZIE F T,MOORELLL B, PEDERSEN T,ROSENTHAL Y,SEITZINGER S,SMETACEK V,STEFFEN W. The global carbon cycle:A test of our knowledge of earth as a system[J].Science,2000,290(5490):291-296.
    [7] NAKAZAWA T.Variation and cycles of carbon dioxide and methane[J].Global Environmental Research,1997,2:5-14.
    [8]张修玉,许振成,宋巍巍,管东生.森林碳循环研究方法及其存在问题分析[J].环境科学与技术,2010,33(6E):225-331.
    [9] WOFSY S C , G OULLDEN M L , MUNGER J W, FAN S-M,BAKWIN P S,DAUBE B C,BASSOW S L,BAZZAZ F A . Next exchange of CO2 in a mid-latitude forest[J].Science,1993,260 : 1314-1317.
    [10] DIXON R K,BROWN S,HOUGHTON R A,SOLOMON A M,TREXLER M C,WISHIEWSKI J.Carbon pool and flux of global forest ecosystems[J].Science,1994,263:185-190.
    [11] APPS M J,KURZ W A,LUXMOORE R J,NILSSON L O, SEDJO R A,SCHMIDT R,SIMPSON L G,VINSON T S.Boreal Forests and tundra[J].Water,Air,and Soil Pollution,1993,70:39-53.
    [12] DELCOURT H R,HARRIS W F.Carbon budget of the southeastern U.S.Biota:analysis of historical change in trend from source to sink[J].Science,1980,210:321-323.
    [13] HOUGHTON R A.The flux of carbon from terrestrial ecosystems to the atmosphere in 1980 due to changes in land use:geographic distribution of the global flux[J].Tellus,1987,39B:122-139
    [14]方精云,陈安平,赵淑清,慈龙骏.中国森林生物量的估算:对Fang等Science一文( Science, 2001, 291: 2320-2322 )的若干说明[J].植物生态学报, 2002, 26(2): 243-249.
    [15]王绍强,周成虎,罗承文.中国陆地自然植被碳量空间分布特征探讨[J].地理科学进展,1999,18 (3):238 - 244 .
    [16]于占源,杨玉盛,陈光水.紫色土人工林生态系统碳库与碳吸存变化[J].应用生态学报,2004,15 ( 10) :1 837 -1 841 .
    [17]康惠宁,马钦彦,袁嘉祖.中国森林C汇功能基本估计[J].应用生态学报,1996,7(3):230 - 234 .
    [18] LEEMANS R,ZUIDEMA G.Evaluationg changes in land cover and their importance for global change[J].Tree,1995,10(2):76-81.
    [19] ESSER G.Sensitivity of global carbon pools and fluxes to human and potential climatic impacts[J].Tullus,1987,39B:245-260.
    [20] WALKER B H.Landscape to regional scale responses of terrestrial ecosystems to global change[J].AMBIO,1994,23(1):67-73.
    [21]汪业勖.陆地碳循环研究中的模拟方法[J].生态学报,1998,9(6):658-664.
    [22]刘平,马履一,段劼.森林动态计算机模拟模型研究[J].世界林业研究,2007,20(3):45-50.
    [23]曹吉鑫,田赟 ,王小平,孙向阳.森林碳汇的估算方法及其发展趋势[J].生态环境学报,2009,18(5):2001-2005.
    [24]杨洪晓,吴波,张金屯,林德荣,常顺利.森林生态系统的固碳功能和碳储量研究进展[J].北京师范大学学报:自然科学版, 2005, 41(2): 172-177.
    [25] FANG J Y, GUO Z D, PIAO S L, CHEN A P. Terrestrial vegetation carbon sinks in China, 1981-2000[J]. Science in China Series D: Earth Science, 2007, 50(7): 1341-1250.
    [26]方精云.北半球中高纬度的森林碳库可能远小于目前的估算[J].植物生态学报,2000,24(5): 635-638.
    [27] FANG J Y, CHEN A P, PENG C H, ZHAO S Q CI L J. Changes in forest biomass carbon storage in China between 1949 and 1998[J]. Science, 2001, 292: 2320-2322.
    [28]赵敏,周广胜.基于森林资源清查资料的生物量估算模式[J].应用生态学报,2004,15(8): 1468-1472.
    [29]王秀云,孙玉军.森林生态系统碳储量估测方法及其研究进展[J].世界林业研究,2008,21(5): 26-29.
    [30]国家林业局应对气候变化和节能减排工作领导小组办公室.造林项目碳汇计量与监测指南[M].北京:中国林业出版社, 2008.
    [31] ZHU Z L, SUN X M, WEN X F. Study on the progressing method of nighttime CO2 eddy covariance flux data in Chinaflux[J]. Science in China series D: Earth Science, 2006, 49(S2): 36-46.
    [32]郭海强,顾永剑,李博,陈家宽.全球碳通量塔东滩野外观测站的建立[J].湿地科学与管理, 2007, 3(1): 30-33.
    [33]赵敏,周广胜.基于森林资源清查资料的生物量估算模式[J].应用生态学报, 2004, 15 (8) : 1468 - 1472.
    [34]于贵瑞,孙晓敏.陆地生态系统通量观测的原理与方法[M].北京:高等教育出版社,2006:240-241.
    [35]于贵瑞,孙晓敏.中国陆地生态系统碳通量观测技术及时空变化特征[M].北京:科学出版社, 2008: 4-5.
    [36]王妍,张旭东,彭镇华,周金星.森林生态系统碳通量研究进展[J].世界林业研究,2006,19(3): 12-17.
    [37]赵林,殷鸣放,陈晓非,王大奇.森林碳汇研究的计量方法及研究现状综述[J].西北林学院学报, 2008, 23(1): 59-63.
    [38]马明东,江洪,罗承德,刘跃建.四川西北部亚高山云杉天然林生态系统碳密度、生产量和碳贮量的初步研究[J].植物生态学报.2007,32(2)305~312.
    [39] SCHIMEL,DAVID S,BRASWELL B H,et al.Climate and nitrogen controls on the geography and time scales of terrestrial biogeochemical cycling[M].New York:Academe Press,1996,1-37.
    [40] MOORE B,Global carbon cycle[A].In:Encyclopedia of Environmental Biology[C]..San Diego:Academic Press,1995, Vol.2:215-223.
    [41] BATTLE M,BENDER M L.TANS P P,et al.Global carbon sinks and their variability inferred from atmospheric O2 andδ3 C[J].Science.2000,287-2470.
    [42] CANNADELL J G,MOONEY H A.Carbon Metabolism of the Terrestrial Biosphere:A Multitechnique Approach for Improved Understanding[J].Ecosystem,2000,3:115-130.
    [43] FOLEY J A,PRENTICE I C,RAMANKUTTY N,et al.An integrated biosphere model of land surface process,terrestrial carbon balance,and vegetation dynamics[J].Global Biogeochemical Cycles.1996,10(4):603-628.
    [44] MCGUIRE A D,JOYCE L A,KICKLIGHTER D W,et al.Equilibrium responses of soil carbon toclimate change:empirical and process-based estimates[J].J.Biogeography.1995,22:23-53.
    [45] PARTON W J.Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide[J].Global Biogeochem.Cycles.1993,7(4):785-809.
    [46] KICKLIGHTER D W,BRUNO M,DONGERS S,ESSER G,HEIMANN M,HELFRICH J H,IFT F, JOOS F,KADUK J,KOHLMAIER G H,MCGUIRE A D,MELILLO J M,MEYER R,MOOREIII,B,NADLER A,PRENTICE I C,SAUF W,SCHLOSS A,SITCH S,WITTENBERG U,WURTH G.A first-order analysis of the potential role of CO2 fertilization to affect the global carbon budget: a comparison of four terrestrial biosphere models[J].Tellus,1999,51B:343-366.
    [47]吴仲民.尖峰岭热带森林土壤C储量和CO2排放量的初步研究[J].植物生态学报, 1997,21 (5) : 416~423 .
    [48]李意德,吴仲民,曾庆波,周光益,陈步峰,方精云.尖峰岭热带山地雨林生态系统碳平衡的初步研究[J].生态学报, 1998, 18 (4) : 371~378 .
    [49]李意德,吴仲民,曾庆波,周光益,陈步峰,方精云.尖峰岭热带山地雨林群落生产和二氧化碳同化净增量的初步研究[J].植物生态学报, 1998, 22 (2) : 127~134 .
    [50]阮宏华,姜志林,高苏铭.苏南丘陵主要森林类型碳循环研究[J].生态学杂志, 1997, 16 (6) : 17~21 .
    [51]董文福,管东生.森林生态系统在碳循环中的作用[J].重庆环境科学,2002,24(3),25-31.
    [52]杨礼旦,陈应平.初论森林可持续经营的概念、内涵和特征[J].林业科学,1999,35(2):118-123.
    [53]许景伟,李传荣,程鸿雁,王卫东,乔勇进,王月海,高麦玲.山东省沿海防护林可持续经营的途径和对策[J].山东林业科技,2006,(3):85-87.
    [54]黄选瑞,张玉珍,高敬武.对森林可持续经营目标的认识[J].林业资源管理,2000,(4):30-32,.
    [55]朱春全,张守攻.森林可持续经营国际进程及生态区域评价[C]//第十一届世界林业大会文献选编.北京,中国环境科学出版社,1998.
    [56] MITCHELL R J,HUNTER M L,PALIK B J.Natural disturbance as a guide to silviculture[J].Forest Ecology and Management,2002,155:315-317.
    [57]樊正球,陈鹭真,李振基.人为干扰对生物多样性的影响[J].中国农业生态学报,2001,9(2):31-34.
    [58] FANG J Y,WANG G G,LIU G H.Forest biomass of China:an estimation based on the biomass-volume relationship[J].Ecological Applications,1998,8,1084-1019.
    [59]田大伦,赵坤.杉木人工林生态系统凋落物的研究:I、凋落物的数量、组成及动态变化[J].中南林学院学报.1989,(A09):38-43.
    [60] LEI P F(雷丕锋),XIANG W H(项文化),TIAN D L(田大伦).Carbon storage and distribution in Cinnamomum cmphora Plantation[J].Chinese Journal of Ecology(生态学杂志), 2004,23(4),25-30.(in Chinese with English abstract)
    [61] ZHOU GM(周国模),JIANG PK(姜培坤).Density storage and spatial distribution of carbon in phylostachys pubescens forest[J].Scientia Sinicae(林业科学),2004,40(6),20—24.(in Chinese with English abstract).
    [62]PENG C H,JIANG H, APPS M J, ZHANG Y.Effects of harvesting regimes on carbon and nitrogen dynamics of boreal forests in central Canada:a process model simulation[J].Ecological Modelling ,2002, 155:177-189.
    [63] JIANG H,APPS M J,PENG C H, ZHANG Y L,LIU J X. Modelling the influence of harvesting on Chinese boreal forest carbon dynamics[J].Forest Ecology and Management,2002,169:65-82.
    [64] ALEXEYEV V ,BIRDSEY R ,STAKANOV V. Carbon in vegetation of Russian forests : methodsto estimate storage and geographical distri2bution[J]. Water , Ai r and Soil Poll,1995 ,82 :271~282
    [65] APPS M J AND KURZ W A. The role of canadian forests in the glob2al carbon budget . In : Kanninen M ed. Carbon Balance of world’sforested ecosystems : Towards a Global Assessment[J] . Finland : SILMU. 1994, 12~20
    [66] TURNER D P ,KOEPPER G J ,HARMON M E ,LEE J J . A carbon budget forforests of the conterminous United States[J]. Ecological applications , 1995.,5 :421-436.
    [67] KIMMINS J.P. FOREST ECOLOGY[M]. 3rd Edition. Person Education, Inc. Prentice Hall, 2004,pp635.
    [68] X.WEI,LIU,J.Waterhouse,M.Armleder.Simulations on impacts of different management strategies on long-term site productivity in lodgepole pine forests of the central interior of British Columbia[J].Forest Ecology and Management.2000,(133):217-229.
    [69] WEI X H., KIMMINS J P, ZHOU G.2003.Disturbances and the sustainability of long-term site productivity in lodgepole pine forests in the central interior of British Columbia-an ecosystem modeling approach[J].Ecological Modelling 164:239-256.
    [70] B.SEELY,C.WELHAM,KIMMINS J P. Carbon sequestration in a boreal forest ecosystem:results from the ecosystem simulation model,FORECAST[J]. Forest Ecology and Management .2002,(169):123-135.
    [71] BLANCO J A,SEELY B, WELHAM C,KIMMINS JP,SEEBACHER T M..Testing the performance of a forest ecosystem model(FORECAST)against 29 years of field data in a Pseudotsuga menziesii plantation[J].Can.J.For.Res,2007,37:1808-1820.
    [72] ZHANG G L,JIANG H ,NIU G D, LIU X W,PENG S L. Simulating the dynamics of carbon and nitrogen in litter-removed pine forest.Ecological Modelling ,2006,I95:363-376.
    [73] Yang X,Wang M X.Reviews of several aspects of terrestrial carbon cycling* [J] . Advance in Earth Sciences, 2001,16(3):427~435
    [74]唐旭利.鼎湖山南亚热带季风常绿阔叶林C贮量分布[J].生态学报,2003,23 (1) :90~97.
    [75]方,晰,田大伦,项文化,阎文德,康文星.第二代杉木中幼林生态系统碳动态与碳平衡[J].中南林学院学报,2002 ,21 (1) :1~6.
    [76]俞新妥.杉木栽培学[M].福州:福建科学技术出版社,1997.50~164.
    [77]廖利平,邓仕坚,于小军,韩士杰.不同连栽代数杉木人工林细根生长、分布与营养物质分泌特征.生态学报,2001,21(4):569~873.
    [78]罗建云,张小全.杉木(Cunninghamia lanceolata)连栽地力退化和杉阔混交林的土壤改良作用[J].生态学报,2007,27(2):716~724.
    [79]盛炜彤.我国人工林地力衰退及防治对策[C]//中国林学会森林生态分会1人工林地力衰退研究.北京:中国科学技术出版社, 1992.15~19.
    [80]陈龙池,汪思龙.杉木根系分泌物化感作用研究[J].生态学报,2003,23(2):393~398.
    [81]王清奎,汪思龙,冯宗炜.杉木人工林土壤可溶性有机质及其与土壤养分的关系[J].生态学报,2005,25(6):1299~1305.
    [82]刘庆.亚高山针叶林生态学研究[M].成都:四川大学出版社,2002.
    [83]《青海森林》编辑委员会.青海森林[M].北京:中国林业出版社,1993.
    [84]罗建勋,孙鹏,李晓清.国外云杉遗传改良现状和粗枝云杉育种策略[J].四川林业科学,2001,22 (4):31-39
    [85] KIMMINS J P, DANIEL M, BRAD S. Modelling forest ecosystem net primary production:thehybrid simulation approach used in FORECAST[J]. Ecol Model, 1999, 122: 195-224.
    [86]盛炜彤,范少辉等.杉木人工林长期生产力保持机制研究[M].北京,科学出版社,2005:pp3.
    [87]田大伦,赵坤.杉木人工林生态系统凋落物的研究:I、凋落物的数量、组成及动态变化[J].中南林学院学报,1989,(A09):38~43.
    [88]廖利平,杨跃军,汪思龙,高洪.杉木(Cunninghamia lanceolata)、火力楠(Michelia macclure)纯林及其混交林细根分布、分解与养分归还[J].生态学报,1999,19(3): 246~250.
    [89]廖利平,马越强,汪思龙,高洪,于小军.杉木与主要阔叶造林树种叶凋落物的混合分解[J].植物生态学报,2000,24(01):27~33.
    [90]黄志群,廖利平,汪思龙,刘应迪.杉木根桩和周围土壤酚含量的变化及其化感效应[J].应用生态学报,2000,11(02):190~192.
    [91]丁应祥,田野.应用FOORTOON模型进行杉木林长期生产力模拟预测[J].中国林学(英文版),1999,1(02):34~38.
    [92]杨玉盛,陈光水,黄宝龙.杉木多世代连载的土壤水分和养分变化[J].南京林业大学学报,2000,24(2):25~28.
    [93]杨玉盛,邱仁辉,何宗明,俞新妥,黄宝龙.不同栽杉代数29年生杉木林净生产力及营养元素生物循环的研究[J].林业科学,1998,34(6):3~11.
    [94]肖文发,聂道平,张家诚.我国杉木林生物量与能量利用率的研究[J].林业科学研究,1999,12(3):237~243.
    [95]林开敏,俞新妥,何智英,邱尔发,林思祖.不同密度杉木林分生物量结构与土壤肥力差异研究[J].林业科学,1996,32(5):385~392.
    [96]刘茜.杉木种子营养化学成分的研究[J].林业科学,1998,34(2):37~42.
    [97]周后盛.杉木多代连载地营造混交林生产力的初步研究[J].福建林学院学报,1999,2(02): 165~169.
    [98]范少辉,马庆祥,傅瑞树,刘爱琴.不同栽植代数山姆林林下植被发育的比较研究[J].林业科学研究,2001,14(01):11~19.
    [99]林开敏,俞新妥,洪伟,黄宝龙.杉木人工林林下植被对土壤肥力的影响[J].林业科学,2001,37(S1): 94~98.
    [100]项文化,田大伦,阎文德,康文星,方晰.杉木林采伐迹地撂荒后植被恢复早期的生物量与养分积累[J].生态学报,2003,23(04):695~702.
    [101]阎文德,田大伦,焦秀梅.会同第二代杉木人工林林下植被生物量分布及其动态.林业科学研究[J],2003,16(03):82~86.
    [102]罗建云,张小全.多代连载人工林碳贮量的变化[J].林业科学研究,2006,19(6): 791~798.
    [103] ZHANG X Q,KIRSCHBAUM M F,HOU Z H,GUO Z H.Carbon stock changes in successive rotations of Chines fir(Cunninghamia lanceolata(lamb)hook)plantations[J].Forest Ecology and Management,2004:131~147
    [104]揭建林,詹有生,吴克选.江西省杉木人工林合理轮伐期的研究[J].江西林业科技,2000,(6):4~8.
    [105]施新程,王洪友,黄旺志,鄢洪星.豫南杉木人工林主伐年龄研究[J].福建林业科技,2009,36(3): 49~53.
    [106]马祥庆,叶世坚,陈绍栓.轮伐期对杉木人工林地力维护的影响[J].林业科学,2000,36(6):47~52.
    [107]马明东,罗承德,张健,胡庭兴,刘跃建.云杉天然林分生境条件数量分类研究[J].中国生态农业学报,2006,14(2):159-163.
    [108]江洪.云杉天然林分生产力与生态条件的初步研究[J].植物生态学报.1986,28(5):538-548.
    [109]江洪.紫果云杉天然中龄林分生物量和生产力的研究[J].植物生态学与地植物学学报.1986, 10(2): 146-152.
    [110]鄢武先,宿以明,刘兴良,梁罕超.云杉人工林生物量和生产力的研究[J].四川林业科技.1991, 12(4):17-21.
    [111]刘兴良,宿以明,向成华,邹伯才.川西云杉人工林养分含量、贮量及分配的研究[J].林业科学,2001, 37(4):10-18.
    [112]刘兴良,宿以明,刘世荣,马钦彦.四川西部川西云杉人工林非同化器官营养元素含量与分布[J].生态学报,2003,23(12):
    [113]马志贵,王金锡.大熊猫栖息环境的森林凋落物动态研究[M].植物生态学与地植物学学报, 1993,17(2):155-163.
    [114]张万儒.中国森林土壤[M].北京:科学出版社,1986.
    [115]李博.生态学[M].北京:高等教育出版社,2005.
    [116] Juan A.Blanco,Jose R.Olarieta,J.P.Kimmins.Assessment of long-term sustainability of forest management in scots pine forests in the Pyrenees:an ecosystem-level simulation approach[J].ICSMM, 2006:1-16.
    [117]俞新妥.论杉木人工林的回归——从杉木林地力衰退的因果谈杉木林的可持续经营[J].世界林业研究,1999,12(5):15-19.
    [118]马祥庆.杉木人工林长期生产力维持研究[D].南京:南京林业大学,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700