万米深井钻机刹车盘表面激光熔覆组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深井钻机盘式刹车处于强摩擦、高热负荷及较大制动力等极端工况下,导致刹车盘表面存在三种形式的失效形式:一是由于紧急制动造成刹车盘表面瞬间高温产生的高温氧化;二是由于重载制动造成刹车盘表面的磨损损坏;三是由于高频、重载的周期性制动产生的热应力造成的热疲劳裂纹。目前通常采用等离子喷涂技术和堆焊技术强化和修复刹车盘表面,但都存在着较大的局限性。
     本文采用5kW横流CO_2激光器,在基体35CrMo钢表面分别制备了铁基合金涂层以及含有不同比例Cr_3C_2的铁基合金复合涂层。利用OM、SEM、XRD等手段分析了激光熔覆层的微观组织结构、相组成,观察了高温氧化及摩擦磨损试验后试样表面的形貌;采用EDS分析技术,系统分析了结合区和熔覆层各区域合金元素的含量,以及高温氧化试样表面氧化膜的元素组成;对熔覆层的硬度、摩擦磨损性能、热疲劳性能以及抗高温氧化性能进行了测试,并对高温性能强化机理及摩擦磨损机理进行了探讨。
     试验结果表明,在预制粉末厚度为1mm,激光功率为3.5kW,扫描速度在150~300mm/min范围内,激光熔覆层组织均匀致密,实现了与基体良好的冶金结合,无裂纹、气孔等缺陷。铁基合金熔覆层的主要组成相为γ(面心立方)过饱和固溶体以及M7C3型碳化物、(Fe, Cr)有序相;显微组织包括平面晶和大体上垂直于界面生长的粗大的柱状树枝晶,向熔池中部过渡为多方向生长的细小树枝晶,近表面为平行于激光扫描速度方向生长的细小枝晶区。添加Cr_3C_2后的熔覆层组织主要由初生的M7C3碳化物、细小的树枝晶及枝晶间的薄片状共晶组织(γ+Cr_7C_3)组成,与铁基合金涂层相比,添加Cr3C2的熔覆层物相种类不变,但碳化物的数量显著增加。与基体35CrMo钢相比,激光熔覆层均具有很高的硬度,约为基体的1.5倍,且随Cr_3C_2加入量的增加表面硬度逐渐提高。
     激光熔覆层的摩擦磨损性能是摩擦副系统的综合特性,具有极强的系统依赖性和复杂的时空特性。在相同的试验条件下,当对磨材料为45#钢淬火件时,铁基合金涂层的耐磨性比基体稍有提高,而添加10%Cr_3C_2和20%Cr_3C_2的熔覆层的耐磨性则分别为基体耐磨性的3倍和10倍;激光熔覆层的摩擦系数随着硬度的提高呈下降的趋势。当基体与添加20%Cr3C2的激光熔覆层在更为苛刻的试验条件下,对磨材料为石墨基粉末冶金摩擦片时,熔覆层的耐磨性约为基体的2倍;与45#钢淬火件/涂层摩擦副对比,添加20%Cr3C2的熔覆层与基体均具有更小的磨损失重和更低的摩擦系数。
     在600℃高温条件下,铁基合金涂层和添加Cr_3C_2的铁基合金涂层的抗高温氧化性能均明显优于基体,其累计氧化增重及增重速率远远小于基体的增重及增重速率。铁基合金熔覆层具有较好的抗高温氧化性能,在于其表面氧化形成了FeCr2O4尖晶石氧化物,这一尖晶石氧化物结构致密、缺陷少,导电性能差,具有较好的抗氧化能力。添加Cr_3C_2的熔覆层由于Cr_3C_2发生高温分解而使熔池中Cr元素含量大大提高,导致在试样氧化表面可形成连续完整的Cr2O3氧化膜。因此其抗高温氧化性能与铁基合金熔覆层相比有所提高。
     经过50次从600℃到室温的冷热循环,基体及铁基合金熔覆层表面均未观察到裂纹,这表明其抗热疲劳性能优异;而添加Cr_3C_2后的熔覆层在涂层内部产生裂纹,且随着Cr_3C_2含量的增加,裂纹萌生循环次数减小,裂纹变宽变深,热疲劳性能恶化。这主要是硬质相与基体粘结相的热膨胀系数差异造成的。
     综合分析,在预制粉末厚度1mm,激光功率为3.5kW,扫描速度为150~300mm/min范围内,激光熔覆技术制备的铁基合金熔覆层成型良好,表面硬度高,具有优良的抗高温氧化性、热疲劳性能、耐磨性以及较高的摩擦系数,建议应用于刹车盘表面改性。
Owing to suffering from drastic friction, high thermal load and large brake force, brake disc in drilling rig has three failure forms as following: high temperature oxidation, wear failure due to over-load brake and thermal fatigue crack. Thermal spraying and surfacing are often applied to strengthen or repair the surface of brake disc, which has great limitation.
     5kW laser with CO2 flow transverse was used for cladding Fe-based alloy and Fe/Cr3C2 powder on 35CrMo steel surface. The microstructures and phase compositions as well as the surface morphologies of sample after high temperature oxidation test, friction and wear test were analyzed by means of optical microscopy, scanning electron microscopy and X-ray diffraction. The content of alloying elements in the bonding zone and cladding zone with the surface oxide were studied by energy spectrum technology. The claddings’hardness together with resistance to high temperature oxidation, thermal fatigue, friction and wear were tested, and whose mechanism were also investigated.
     The results show that the microstructures of the laser cladding layers were fine and defect-free and good metallurgical bonding between the coating and the substrate was obtained. The main phase of Fe-based cladding is composed ofγ-Fe supersaturated solid solution, M7C3 carbide and (Fe, Cr) ordered phase. The microstructure at the cladding layer bottom was the typical extension growth on plane crystal, the morphology of grains changed from planar and cell to dendrite which was coarser. The microstructure at the top and middle was the regular pine-tree crystal and the microstructure at the top was the small pine-tree crystal, respectively. After adding Cr3C2 into the powder, the claddings contain nascent M7C3 carbide, fine dendrite and lamelliform eutectic structure. Its phase species maintains unchanged, while its quantity increases. The hardness of Fe-based cladding is 1.5 times of that of substrate.
     The friction and wear properties of the coatings are the synthetical characteristics of the friction pairs. It depends on system strongly and have complicated space-time characteristic. The wear mass loss and the friction coefficient of the coating/45# steel friction pair is more than that of coating/graphite-based powder metallurgy friction disk friction pair at the same condition. And iron-based coating registers better wear resistance in sliding against both 45# steel and graphite-based powder metallurgy friction disk at the same condition than substrate. For 45# steel/coating friction pair, the wear resistance of the coating with 10% and 20% chromium carbide is 3 and 10 times as much as that of the matrix. Friction coefficients of the coatings decreased with the increase of hardness. For coating/graphite-based powder metallurgy friction disk friction, the wear resistance of the coating is twice as much as that of the matrix.
     High-temperature oxidation tests were researched at 600℃. Oxidation test results at high temperature shows that the high-temperature oxidation resistances of the Fe-based alloy layers and the Fe-based alloy with Cr3C2 layers were better than the matrix. Iron-based alloy cladding possesses good high temperature oxidation, which lies in the formation of FeCr2O4 on the surface of the sample. This spinel oxide is of compact structure, less defect and poor conductivity. The increase of chromium element after adding Cr3C2 to powder makes the formation of continuous and complete chromium oxide, so whose high temperature oxidation resistance is better than that of Fe-based alloy cladding.
     After 50 times thermal-cooling cycling from 600℃to room temperature, substrate and iron-based alloy cladding possess excellent thermal fatigue resistance with the absence of crack, while crack is present in the coatings with Cr3C2. As the increase of Cr3C2, thermal-fatigue property worsen owing to the decrease of the cycle times of crack initiation, which is caused by the difference of thermal expansion coefficient of hard phase and the matrix.
     The high temperature oxidation performance, thermal fatigue performance and wear resistance of iron-based alloy claddings with good formability and high hardness are excellent when laser power is 3.5kW and scanning speed fluctuates from 150mm/min to 300mm/min, which can be considered as the surface modification of brake disc.
引文
[1]陈立人.钻机刹车毂失效与CrMo钢热疲劳性能研究[J].石油机械,2004,32(增刊):18~21
    [2] Strafford K N, Subramanian C. Surface engineering:an enabling technology for manufacturing industry [J]. Journal of Materials Processing Technology, 1995, 53: 393~403
    [3]王振廷,陈华辉,王永东.感应熔覆原位合成TiC增强金属基复合涂层组织与抗磨性能的研究[J].摩擦学学报,2006,26(4):310~3
    [4]王新华,张嗣伟.石油钻机盘式刹车块材料的磨损机制研究[J].润滑与密封,2008,33(2):5~8
    [5]马红玉,王镇全等.无压浸渍锰白铜合金-W2C复合涂层的磨损特性研究[J].摩擦学报,2007,27(4):387~391
    [6]易茂中,韩志海等.等离子喷涂铁-镍-钴-碳化钨涂层制动摩擦特性的研究[J].摩擦学学报,1996,16(2):150~155
    [7]宋志坤,何庆复,谢基龙.镍基热喷涂层对列车车轮铸钢抗制动热疲劳损伤作用机制探讨[J].北京交通大学学报,2006,30(4):86~88
    [8]宋志坤.车轮铸钢铁基合金涂层改善热疲劳损伤的强化机制[J].金属热处理理,2007,32(1):46~48
    [9]陈爱智,张永振,肖宏滨,等.镍基WC陶瓷涂层的干滑动摩擦磨损性能[J].兵器材料科学与工程,2002,25(5):52~57
    [10] J. Mateos. Tribological properties of plasma sprayed and laser remelted 75/25 Cr3C2/NiCr coatings[J]. Tribology International, 2001, 34: 345~351
    [11]易茂中.制动盘温度的有限元计算与实验研究[J].石油机械,1998,26(9):15~19
    [12]马青方.钻机绞车水冷式刹车盘温度场数值模拟[J].石油机械,2007,35(10):22~25
    [13]郭慧娟.超深井钻机刹车盘热疲劳寿命预测[J].石油机械,2008,36(4):22~25
    [14]王新华,张嗣伟.石油钻机盘式刹车副材料的摩擦磨损性能[J].润滑与密封,2007,32(12):5~8
    [15]万惠君.石油钻机用绞车刹车毅的堆焊[J].焊接,2005 (5):45~46
    [16]马红玉.无压浸渍锰白铜合金-W2C复合涂层的磨损特性研究[J].摩擦学报,2007,27(4):387~391
    [17]易茂中.等离子喷涂铁-镍-钴-碳化钨涂层制动摩擦特性的研究[J].摩擦学学报,1996,16 (2):150~155
    [18] M. Watremez. Friction, Temperature and Wear Analysis for Ceramic Coated Brake Disks[J]. Journal of Tribology, 1996, 118(3): 339~348
    [19] J. Mateos. Tribological properties of plasma sprayed and laser remelted 75/25 Cr3C2/NiCr coatings[J]. Tribology International, 2001, 34: 345~351
    [20] H. Bartys. A COMPARATIVE STUDY OF PLASMA SPRAYED COATINGS ON RAILWAY BRAKE DISCS[J]. Surface Engineering, 2001, 17(2): 127~130
    [21] J. D. Guerin. High thermal diffusivity materials for railway brake discs[J]. Tribology Letters, 1997: 257~267
    [22] Bu-Byoung Kang. Tests show ceramic coated disc brakes have potential-Brakes[J]. International Railway Journal, 2002
    [23] Peter J. Blau.Tribological investigation of titanium-based materials for brakes[J]. Wear, 2007, xxx:xxx~xxx
    [24] Cerr W. Laser deposition of carbide-reinforced coatings[J]. Surface and Coatings, Tech.1991, (49): 41~45
    [25]斯松华,陈娟,丁晓丽.激光熔覆Cr3C2/Fe复合涂层的组织与磨损性能[J].安徽工业大学学报,2008,25(4):367~370
    [26]吴伟新,曾晓雁,朱蓓蒂.激光熔覆金属陶瓷技术概况[J].金属热处理,1996,4:40~44
    [27]裴宇韬,欧阳家虎,雷廷权.激光熔覆金属陶瓷复合涂层中陶瓷相的行为[J].材料导报,1995,4:60~66
    [28]魏仑,陈庆华,龙晋明,等.激光熔覆原位自生复相陶瓷颗粒增强涂层[J].激光技术,2002,4(26):246~249
    [29]鲍瑞良.激光熔覆钴基合金及其复合涂层[D].山东:山东大学.2007
    [30]刘江龙等编著.高能束热处理[M].北京机械工业出版社,1997,6,257
    [31]倪火炬.铁基合金的激光熔覆[D].武汉:武汉理工大学.2001
    [32]陈传忠.激光重熔对等离子喷涂WC及从伪层组织和耐磨性能的影响[D].哈尔滨:哈尔滨工业大学.2001
    [33]熊云.激光熔覆钴基金属陶瓷复合涂层组织与性能的研究[D].山东:中国石油大学.2008
    [34] C. Tassin, F. Laroudie, M. Pons, L. Lelait. Carbide-reinforced coatings on AISI 316L stainless steel by laser surface alloying[J]. Surf. Coat. Technol, 1995, 450~455
    [35]谢长生,王爱华,黄开全等.铸铁表面激光熔覆裂纹的形成原因[J].钢铁,1994, 29(8):48~53
    [36]宋武林,朱蓓蒂,曾晓雁等.Ni含量对Fe-Cr-Ni合金激光熔覆层性能及开裂敏感性的影响[J].金属热处学报,1996,17(1):62~46
    [37]钟敏霖,刘文今,任家烈.NiCrSiB合金高功率激光送粉熔覆裂纹形成的敏感因素[J].应用激光,2000,20(5):193~197,224
    [38] J. A. Folkes. Developments in laser surface modification and coating[J]. Surface and coating technology, 1994: 63~65
    [39]李成功.新材料研究发展与产业化趋势[J].中国机械工程,2000,11(1):154~156
    [40]李成功.面向二十一世纪的高技术新材料展望[J].材料导报,1992(1):1~5
    [41]安永畅男著.最新的表面改性技术[J].国外金属加工,1991,1(1):2~8
    [42]赵海鸥.激光熔覆工艺特性及裂纹敏感性研究[J].金属热处理,2001,1(1):18~21
    [43]钟敏霖,刘文今.Stellite和NiCrSiB合金激光送粉熔覆裂纹倾向的比较研究[J].中国激光,2002,29(11):1031~1036
    [44]刘江龙.激光表面合金化技术发展中的若干问题[J].金属热处理,1992(3):3~6
    [45]曾大文,王毛球,谢长生.CoX合金激光熔敷层的局部组织特征[J].稀有金属材料与工程,1998,27(2):87~91
    [46]黄卫东,毛志英,周尧和.改变热流方向对定向凝固条件下晶体生长方向的影响[J].金属学报,1986,5(22B):240~241
    [47]周尧和,胡壮麒,乔万奇.凝固技术[M].北京:机械工业出版社,1998
    [48]陈浩,刘传云,潘春旭,等.激光熔覆钴基合金的凝固组织特征及性能研[J].金属热处理,2001,26(12):10~13
    [49]李明喜,何宜柱,孙国雄.Ni基高温合金表面激光熔覆Co基合金的组织[J].焊接学报,2002,23(6):17~21
    [50]周伟,胡文彬,张荻.三维连续网络结构增强金属基复合材料及其制备[J].科学通报,1999,(6):608~612.
    [51] Zhang Siwei, Wang Xinhua, Fan Qiyun, et al. Investigationof the tribological performance of friction pair for disc brake ofdrilling rig[J]. Science in China (Series A), 2001, 44(Supplement): 253~258
    [52]樊启蕴,张嗣伟,李维明.盘式刹车设计中的一个新概念—热设计[J].石油矿场机械,1995,24(3):22~25
    [53]王义厢,李宝增,宫耀华,等.45钢表面激光熔覆铁基合金涂层显微组织与性能[J].热加工工艺,2008,37(7):131~133
    [54]许大庆.铸铁件表面铸渗碳化物颗粒的耐磨机理[J].特种铸造及有色合金,1999(4):54~58
    [55]曾力波.流化床锅炉水冷壁粉芯丝材电弧喷涂涂层性能[D].山东:中国石油大学(华东).2007
    [56]刘秀晨,安成强.金属腐蚀学[M].北京:国防工业出版社,2002
    [57]徐维普,徐滨士,张伟等.高速电弧喷涂FeAlCr/Ni包Cr3C2涂层高温性能[J].金属热处理,2004,29(7):47~48
    [58]翟金坤.高温腐蚀[M].北京航空大学出版社,1994
    [59] Hancock P, Hurst R C. Advances in Corrosion Science and Technology. NewYork: Plenum Press, 1974(4): 1
    [60]李铁藩.金属高温氧化和热腐蚀[M].北京:化学工业出版社,2003
    [61]李美栓.金属的高温腐蚀[M].北京:冶金工业出版社,2001
    [62]曹向飙.激光熔覆抗氧化涂层及其性能的研究[D].北京:北京工业大学,2001
    [63]张松,张春华,文劾忠,等.2Crl3钢表面激光熔覆Co基合金组织及其性能[J].稀有金属材料与工程,2001,30(3):220~223
    [64]贾德昌等.SiC_W/Al-12Ti复合材料裂纹扩展的SEM原位观察[J].材料研究学报,1998,(4):217~220
    [65]明文龙等.Ti(C,N)基金属陶瓷抗热冲击特性研究[J].机械工程材料,1996,(8):33~35,46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700