Bcl-2基因启动子区异常甲基化在慢性阻塞性肺疾病肺血管内皮细胞凋亡中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分COPD患者肺组织中Bcl-2基因启动子区异常甲基化及其与肺血管内皮细胞凋亡的关系
     目的:检测比较非吸烟非COPD患者、吸烟非COPD患者及吸姻并COPD患者肺组织样本间Bcl-2基因甲基化位点、Bcl-2表达、肺血管内皮细胞凋亡的变化,并分析它们之间的关系,探讨Bcl-2基因启动子区异常甲基化在COPD发病机制中的可能作用。
     方法:收集2007年9月至2011年2月在中南大学湘雅二医院胸外科行全麻下肺叶切除术或肺段切除术的周围型肺癌31例,所有患者的病理类型均为非小细胞肺癌。根据COPD诊断标准及吸烟习惯将其分成三组:非吸烟非COPD组10例、吸烟非COPD组10例、吸烟并COPD组(稳定期)11例。TUNEL法检测肺血管内皮细胞凋亡指数,免疫组织化学法检测肺血管内皮细胞Bcl-2蛋白的表达,Western-blot及real-time RT PCR检测肺组织Bcl-2、Bax、cyt C表达,采用亚硫酸氢盐测序法(BSP)进行甲基化水平评估和测序。各组计量资料以(Mean±SD)表示,采用Anova检验比较呈正态分布的多个独立样本均数,LSD-t检验正态分布的样本均数间的多重比较;采用Kruskal-Wallis H检验比较非正态分布的多个独立样本均数,采用Nemenyi检验非正态分布的样本均数间的多重比较;部分实验指标间作单因素直线相关分析及多元线性回归分析,P<0.05为有统计学意义。
     结果:吸烟并COPD(稳定期)组肺血管内皮细胞凋亡指数(22.79±5.30)%较其他两组非COPD患者增高(P<0.01)。该组的肺血管内皮细胞Bcl-2表达率为(5.18±3.76)%,较其他两组非COPD患者明显下降(P<0.01)。COPD组患者肺组织Bcl-2蛋白、mRNA的相对表达量和Bcl-2启动子区甲基化水平分别为0.31±0.11、0.14×10-3.4±0.02×10-3、(12.23±4.39)%,吸烟非COPD组肺组织Bcl-2蛋白、mRNA的相对表达量、启动子区甲基化水平分别为0.634±0.13、1.58×10-3±0.26x10-3、(1.45±1.15)%,非吸烟非COPD组肺组织Bcl-2蛋白、mRNA的相对表达量和Bcl-2启动子区甲基化水平分别为0.62±±0.12、1.70×10-3±0.16×10-3、(1.64±0.16)%;COPD组患者肺组织Bc1-2相对表达量均较非COPD组明显下降,而Bcl-2启动子区甲基化水平均较非COPD组上升(均P<0.01)。Bcl-2启动子区异常甲基化,有50%的异常甲基化发生在位于-127bp的CpG中的C位点COPD组肺组织Bax蛋白和mRNA的相对表达量分别为0.89±0.04和1.38×10-3±0.21×10-3,吸烟非COPD组肺组织Bax蛋白和mRNA的相对表达量分别为0.62±0.13和0.27×10-3±0.03×10-3,非吸烟非COPD组肺组织Bax蛋白、mRNA的相对表达量分别为0.63±0.11和0.26×10-3±0.02×10-3; COPD组患者肺组织Bax相对表达量均较非COPD组明显上升(均P<0.01)。COPD组肺组织胞浆cyt C蛋白表达均较非COPD组明显上升(P<0.01),但整体cyt C mRNA各组间并无明显差异(P>0.05)。相关性分析显示肺组织Bcl-2的蛋白表达与肺血管内皮细胞凋亡呈负相关(r=-0.78,P<0.01),与吸烟指数呈正相关(r=-0.76,P<0.05);Bcl-2基因启动子区的甲基化水平与肺血管内皮细胞中的Bcl-2蛋白表达呈负相关(r=-0.70,P<0.01,图1-27),与吸烟指数呈正相关(r=0.83,P<0.01)
     结论:1.COPD患者肺血管内皮细胞凋亡增加,肺组织的Bax表达上升,肺组织及肺血管内皮细胞的Bcl-2表达下降。2.COPD患者肺内Bcl-2表达下降,可能导致线粒体依赖的凋亡途径激活,出现肺血管内皮细胞凋亡,参与COPD的疾病过程。3.COPD患者肺组织Bcl-2基因启动子区发生异常甲基化,位于-127bp的CpG中的C位点为异常甲基化好发部位。4.吸烟可能通过诱发Bcl-2基因启动区异常甲基化,从而影响Bcl-2蛋白表达,进而参与COPD患者肺血管内皮细胞凋亡。5.人群间对吸烟可能诱导的Bcl-2启动区异常甲基化具有不同的易感性。
     第二部分肺气肿动物模型的肺组织中Bcl-2基因启动子区异常甲基化及其与肺血管内皮细胞凋亡的关系
     目的:检测比较香烟提取物腹腔注射构建肺气肿动物模型、对照动物模型、去甲基化干预动物模型的肺组织样本间Bcl-2基因甲基化位点、Bcl-2表达、肺血管内皮细胞凋亡的变化,并分析它们之间的关系,探讨Bcl-2基因启动子区异常甲基化在COPD发病机制中的可能作用。
     方法:BALB/C小鼠40只分成四组造模,每组10只。PBS组于第1、11、15、17、19、22天经腹腔注射PBS缓冲液(0.01M,PH7.2-7.4)0.3ml; CSE组于第15、17、19天经腹腔注射PBS缓冲液(0.01M,PH7.2-7.4)0.3ml,第1,11,22天经腹腔注射CSE0.3ml; CSE+AZA组于第1、11、22天经腹腔注射CSE0.3ml,第15、17、19天经腹腔注射AZA,每次注射AZA量=2.5mg/kg×小鼠体重;AZA组于第1,11,22天腹腔注射PBS缓冲液0.3ml,第15、17、19天经腹腔注射AZA,每次注射AZA量=2.5mg/kg×小鼠体重;第28天停止实验。TUNEL法检测肺血管内皮细胞的凋亡指数,免疫组织化学法检测肺血管内皮细胞Bcl-2蛋白的表达,Western-blot及real-time RT PCR检测肺组织Bcl-2、Bax、cyt C表达。各组计量资料以(Mean±SD)表示,采用Anova检验比较呈正态分布的多个独立样本均数,LSD-t检验正态分布的样本均数间的多重比较;采用Kruskal-Wallis H检验比较非正态分布的多个独立样本均数,采用Nemenyi检验非正态分布的样本均数间的多重比较;部分实验指标间作单因素直线相关分析及多元线性回归分析,P<0.05为有统计学意义。
     结果:CSE组肺血管内皮细胞凋亡指数(25.88±7.55)%较其他三组明显增高(P<0.01)。该组的肺血管内皮细胞Bcl-2表达率为0.35+0.11,较其他三组动物模型明显下降(P<0.01)。COPD组患者肺组织Bcl-2蛋白、mRNA的相对表达量和Bcl-2启动子区甲基化水平分别为0.49±0.10、2.46×10-3±1.02×10-3、(35.68±5.99)%,较其他三组Bcl-2表达明显下调,启动子区甲基化程度升高明显(P<0.05)。最易发生异常甲基化的CpG位点为5'起始的第二、八个CpG位点(一1884bp.一1740bp);有26.67%的甲基化发生在这两个位点。CSE组肺组织Bax蛋白和mRNA的相对表达量分别为0.49+0.11和1.01×10-3+0.34×10-3,胞浆cyt C蛋白的相对表达量为0.49+0.11,均较正常对照组改变明显(均P<0.01)。但AZA可以逆转CSE导致的Bcl-2启动子区甲基化水平上升、Bcl-2下调、Bax表达增加、凋亡增加等变化,且CSE+AZA组Bcl-2.Bax及胞浆cyt C表达同对照组无明显统计学差异(P>0.05)。相关性分析显示肺组织Bcl-2的蛋白表达与胞浆cyt C表达负相关(r=-0.48,P<0.01),肺组织及非血管内皮细胞Bcl-2的蛋白表达与肺血管内皮细胞凋亡均呈负相关,r(肺组织)=-0.96,r(肺血管内皮细胞)=-0.97,均P<0.01;且与动物肺功能多个指标相关。Bcl-2基因启动子区的甲基化水平与肺组织及肺血管内皮细胞中的Bcl-2蛋白表达呈负相关,r(肺组织)=-0.91,r(肺血管内皮细胞)=-0.96,均P<0.01;与肺血管内皮细胞凋亡呈正相关(r=0.95,P<0.01)
     结论:1.CSE腹腔注射建立的肺气肿模型中肺血管内皮细胞凋亡增加,肺组织的Bax表达上升,肺组织及肺血管内皮细胞的Bcl-2表达下降。2.CSE腹腔注射建立的肺气肿模型中肺内Bcl-2表达下降,可能通过激活线粒体依赖凋亡途径,导致肺血管内皮细胞凋亡,最终参与COPD的疾病过程。3.CSE腹腔注射建立的肺气肿模型中Bcl-2基因启动子区发生异常甲基化,异常甲基化的好发位点为-1784bp、-1705bp的CpG中C位点。4.去甲基化干预,AZA腹腔注射能够逆转CSE导致的Bcl-2启动子区异常甲基化、Bcl-2蛋白表达下调及肺血管内皮细胞凋亡。5.香烟暴露引起Bcl-2启动子区发生异常甲基化,进而Bcl-2蛋白表达下降,并可能导致cyt C释放入胞浆——肺血管内皮细胞的线粒体依赖凋亡通路启动,最终出现COPD。
     第三部分Bcl-2基因启动子区异常甲基化在CSE诱导HUVEC凋亡中的作用
     目的:研究CSE诱导HUVEC凋亡的可能机制,并探索Bcl-2基因启动子区异常甲基化在凋亡过程中扮演的可能角色。
     方法:体外培养HUVEC,给予不同浓度(0%-20%)和不同时间(Oh-12h)的CSE干预,采用Annexin V-FITC/PI双染,流式细胞仪检测凋亡率,免疫细胞化学法、Western-blot及realtime-RT PCR检测Bcl-2表达。进一步将HUVEC分为四组:空白组,CSE(5%)组,AZA+CSE组,AZA组,分别给予不同的干预。检测各组细胞的凋亡率;免疫细胞化学法、Western-blot及realtime-RT PCR检测Bcl-2表达,BSP法检测各组Bcl-2基因启动子区甲基化状态及水平。采用Anova检验比较呈正态分布的多个独立样本均数,LSD-t检验正态分布的样本均数间的多重比较;采用Kruskal-Wallis H检验比较非正态分布的多个独立样本均数,采用Nemenyi检验非正态分布的样本均数间的多重比较;部分实验指标间作单因素直线相关分析及多元线性回归分析,P<0.05为有统计学意义。
     结果:CSE孵育2h后,HUVEC凋亡呈时间依赖模式。5%CSE干预2h后的凋亡率达到(3.13+0.68)%。此后随着CSE浓度继续增加,凋亡率也增加,但细胞坏死也逐渐明显。10%CSE干预12h后HUVEC凋亡达到最高峰(46.13+5.07)%。与凋亡相反,随着CSE干预浓度的增加,Bcl-2蛋白表达逐渐降低。5%CSE干预12h后HUVEC凋亡率为(23.77±3.40)%,较0%及2.5%CSE组明显上升;而Bcl-2的蛋白相对表达量为0.16+0.05,较0%及2.5%CSE组明显下降(P<0.01)。去甲基化试剂AZA干预能够改善受损的Bcl-2表达,并降低细胞凋亡率(P<0.01)。BSP进一步发现CSE组Bcl-2基因启动区发生异常甲基化,甲基化水平为(14.55+3.15)%,而AZA干预能够逆转或预防Bcl-2基因启动子区的异常甲基化(P<0.01)。最易发生异常甲基化的位点为5'起始的第九个CpG (+5bp)的C位点;有33.33%的甲基化发生在该位点。相关性分析则发现Bcl-2蛋白表达同胞浆cyt C蛋白表达呈负相关,与Bcl-2基因启动子区甲基化水平也呈负相关。
     结论:(1)CSE诱导的HUVEC凋亡可能通过线粒体依赖的凋亡途径启动。(2)CSE可能通过诱导Bcl-2甲基化而下调Bcl-2表达,从而下降线粒体膜稳定性,导致cyt C线粒体释放入胞浆,激发凋亡,最终HUVEC凋亡增加。(3)香烟暴露是多种疾病的危险因素,同时内皮细胞凋亡也参与多种疾病的发病机制,脐静脉内皮细胞能够良好模拟人内皮细胞,提示CSE干预诱导的内皮细胞自身Bcl-2基因启动子区甲基化可能参与多种内皮细胞相关疾病,如COPD、冠心病、类风湿性关节炎等。
The First Part The relationship between deregulation of Bcl-2promoter methylation and pulmonary endothelia apoptosis in chronic obstructive pulmonary disease
     Objective:Observe and analyze the Bcl-2methylaiton loci, Bcl-2expression level, and endothelia apoptosis status in COPD patients, asympotomous smokers and non-smokers, to investigate the possible role of deregulated Bcl-2promoter methylation in COPD pathogenesis.
     Method:31cases of peripheral lung cancer patients were enrolled, who were defined pathologic character as NSLC, devied into3groups as follow,11cases of COPD patients,10cases of asympotomous smokers and non-smokers. TUNEL assay was used to assess apoptosis status, immunohistochemistry to detect the Bcl-2expression in pulmonary endothelia, Western-blot and realtime-RT PCR to measure the Bcl-2, expression in lung tissue. BSP was used to assess the methylation satatus and sequence the methylation. Analyze the correlationship with regression test. Data was presented with Mean±SD, Anova and LSD-t analized the normality data, and Kruskal-Wallis H and Nemenyi analized the non-normality data. P<0.05brings the statistics significant.
     Result:Apoptosis index of endothelia in COPD group was(22.79±5.30)%, which was higher than the other two non-COPD groups (P<0.01). The positive rate of Bcl-2expression in endothelia from COPD group was (5.18±3.76)%, obviously lesser than the two non-COPD groups (P<0.01). Bcl-2expression in lung tissure from COPD patients was0.31±0.11(Western-blot),1.40×10-4±0.16×10-4(realtime-RT PCR) P<0.01, which was lower than the two non-COPD groups (P<0.01). Moreover the methylation lever of Bcl-2promoter in COPD group was (12.23±4.39)%, which was higer than other groups. In addition the deregulated methylation of Bcl-2has relationship with endothelia apoptosis, Bcl-2expression and smoker index.
     Conclusions:1. Increased endothelia apoptosis and Bax expression were found in COPD patients, with decreased Bcl-2expression.2. The decreased Bcl-2expression might stimulate the mitochondria depend apoptosis pathway, and lead to endothelia apoptosis and participate the COPD pathogenesis.3. There are abnormal methylation of Bcl-2promoter in COPD, and the-127bp C was the most common methylation loci.4. Smoke might induce bcl-2promoter abnormal methylaiton, and lead to deregulate Bcl-2expression, which might play a role in COPD pathogenesis.5. Different clones of people might show different suscepticity of abnormal methylation in Bcl-3promotor.
     The Second Part The relationship between deregulation of Bcl-2promoter methylation and pulmonary endothelia apoptosis in emphysematous model
     Objective:Observe and analyze the Bcl-2methylaiton loci, Bcl-2expression level, and endothelia apoptosis status in CSE-induced emphysematous models, control models and demethylation models, to investigate the possible role of deregulated Bcl-2promoter methylation in COPD pathogenesis.
     Method:Forty BALB/C mice were devied into4groups as follow, PBS group was intraperitoneally injected with PBS in the1st,11th,15th,17th,19th,22nd days. CSE group was intraperitoneally injected as PBS group, except in the1st,11th,22nd day changed to CSE from PBS. CSE+AZA group was intraperitoneally injected as the CSE group, except changed PBS to AZA in the15th,17th,19th days. AZA group also was injected as the same, just changed the CSE to PBS in the15th,17th,19th days. TUNEL assay was used to assess apoptosis status, immunohistochemistry to detect the Bcl-2expression in pulmonary endothelia, Western-blot and realtime-RT PCR to measure the Bcl-2, expression in lung tissue. BSP was used to assess the methylation satatus and sequence the methylation. Analyze the correlationship with regression test. Data was presented with Mean±SD, Anova and LSD-t analized the normality data, and Kruskal-Wallis H and Nemenyi analized the non-normality data. P<0.05brings the statistics significant.
     Result:Apoptosis index of endothelia in CSE group was(25.88+7.55)%, which was higher than the other three groups (P<0.01). The positive rate of Bcl-2expression in endothelia from CSE group was0.35±0.11)%, obviously lesser than the other three groups (P<0.01). Bcl-2expression in lung tissure from COPD patients was0.49±0.10(Western-blot),2.46x10-3±0.16×10-3(realtime-RT PCR), P<0.01, which was lower than the other three groups (P<0.01). The methylation lever of Bcl-2promoter in CSE group was (35.68±5.99)%, which was higer than other groups. The most common methylated loci were-1884bp and-1740bp, almost26.67%of methylation were occurred in the two loci. The lung tissue from CSE group also present higher level of Bax and plasmic cyt C expression than control group (P<0.01). Moreover, the demethylation reagent, AZA, could improve the lung function and apoptosis with increased Bcl-2and decreased Bax. In addition, the deregulated methylation of Bcl-2has relationship with endothelia apoptosis and Bcl-2expression. On the other hand, Bcl-2protein expression also has a negative relationship with plasmic cyt C, the sign of mitochondrial-depend apoptosis pathway.
     Conclusions:1. Increased endothelia apoptosis and Bax expression with decreased Bcl-2expression were found in CSE-induced emphysema models.2. The decreased Bcl-2expression, induced by CSE injection, might stimulate the mitochondria-depend apoptosis pathway, and lead to endothelia apoptosis and participate the COPD pathogenesis.3. There are abnormal methylation of Bcl-2promoter in CSE-induced emphysematous models, and the-1884bp and-1740bp were the most common methylation loci.4. Demethylation treatment, AZA injection, could prevent the abnormal methylation of Bcl-2promoter, decreased expression of Bcl-2, and increased apoptosis of endothelia.5. Smoke induce bcl-2promoter abnormal methylaiton, and lead to deregulate Bcl-2expression, which might stimulate the cyt C released by mitochondrial, then enter the mitochondrial-depend apoptosis pathway, and play a role in COPD pathogenesis.
     The Third Part The role of deregulated Bcl-2promoter methylation in CSE-induced HUVEC apoptosis
     Objective:To investigate the possible mechanism in CSE-induced HUVEC apoptosis, and discuss the effect of deregulated Bcl-2promoter methylation in this apoptosis programme.
     Method:Treat HUVEC with different concentrates (0-20%) of CSE during different time (0-12h). Detect the apoptosis rate by flow cytometry with double die (Annexin V-FITC/PI). Immunocytochemistry、 Western-blot and realtime-RT PCR were used to assess Bcl-2expression after different concentrate of CSE treatment. Furthermore, divided cells into four groups:control group, CSE(5%)group, CSE+AZA group, AZA group, give each group treatments respectively. Measure methylation of Bcl-2promoter, Bcl-2expression, Bax expression, plasmic cyt C and apoptosis rate with BSP, immunocytochemistry, Western-blot, realtime-RT PCR and flow cytometry respectively. Data was presented with Mean±SD, Anova and LSD-t analized the normality data, and Kruskal-Wallis H and Nemenyi analized the non-normality data. P<0.05brings the statistics significant.
     Result:After the first2h treatment, the CSE-induced HUVEC apoptosis was increased depend time and concentrate. However, if the concentrate was too high, more than10%, the necrosis cells would be the most dead cell, rather than apoptosis. The highest apoptosis rate was46.13±5.07%after10%CSE treat last for12h. After12h of5%CSE treatment, the Bcl-2protein relative expression was0.16±0.05, obviously lower than0.0%and2.5%CSE group (P<0.01). AZA could improve the Bcl-2expression and apoptosis(P<0.01). BSP found that CSE induced abnormal methylation of Bcl-2promoter in HUVEC, though AZA could prevent this deregulation. The most common methylaltion loci was the+5bp C, almost33.33%methylation occurred in this loci. The regression analysis found that Bcl-2expression had positive relationship with plasmic cyt C, which showed a positive relationship with apoptosis, and a negative relationship with methylation level.
     Conclusion:1. CSE-induced HUVEC apoptosis might depend on the mitochondrial apoptosis pathway.2. CSE induce abnormal methylation of Bcl-2promoter, which might decrease the expression of Bcl-2, destruct the mitochondrial membrane, lead cyt C release to cell plasma, stimulate the mitochondrial-depend apoptosis pathway. At last, increase the apoptosis.3. Cigarette exposure was a risk factor for many diseases, and endothelia apoptosis also participates in many pathogenesis of diseases. Because the HUVEC can mimic the human endothelia, it is might be possible and inspiriting that the CSE-induced abnormal methylation of Bcl-2promoter might play a role in many endothelia relative diseases, such as COPD, coronary disease, rheumatic disease.
引文
1. Global Initiative for Chronic Obstructive Lung Disease. Global strategy for diagnosis, management, and prevention of COPD [Internet] [updated 2011]. Available from:http://www.goldcopd.org
    2. WHO. health report:burden of COPD. [Internet] Available from: http://www.who.int/respiratory/copd/burden/en/
    3. Liebow A A, Pulmonary emphysema with special reference to vascular changes. Am Rev Respir Dis 1959,80 (1, Part 2),67-93.
    4. Yamato H, Sun J P, Churg A and Wright J L, Cigarette smoke-induced emphysema in guinea pigs is associated with diffusely decreased capillary density and capillary narrowing. Lab Invest 1996,75 (2),211-9.
    5. Kasahara Y, Tuder R M, Taraseviciene-Stewart L, et al., Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J Clin Invest 2000,106 (11), 1311-9.
    6. Taraseviciene-Stewart L, Scerbavicius R, Choe K H, et al., An animal model of autoimmune emphysema. Am J Respir Crit Care Med 2005,171 (7),734-42.
    7. Nakanishi K, Takeda Y, Tetsumoto S, et al., Involvement of endothelial apoptosis underlying chronic obstructive pulmonary disease-like phenotype in adiponectin-null mice:implications for therapy. Am J Respir Crit Care Med 2011,183 (9),1164-75.
    8. Rangasamy T, Cho C Y, Thimmulappa R K, et al., Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. J Clin Invest 2004,114(9),1248-59.
    9. Sussan T E, Rangasamy T, Blake D J, et al., Targeting Nrf2 with the triterpenoid CDDO-imidazolide attenuates cigarette smoke-induced emphysema and cardiac dysfunction in mice. Proc Natl Acad Sci U S A 2009,106 (1),250-5.
    10. Chen Y, Hanaoka M, Chen P, Droma Y, Voelkel N F and Kubo K, Protective effect of beraprost sodium, a stable prostacyclin analog, in the development of cigarette smoke extract-induced emphysema. Am J Physiol Lung Cell Mol Physiol 2009,296 (4), L648-56.
    11. Cai S, Chen P, Zhang C, Chen J B and Wu J, Oral N-acetylcysteine attenuates pulmonary emphysema and alveolar septal cell apoptosis in smoking-induced COPD in rats. Respirology 2009,14 (3),354-9.
    12. Lindsay J, Esposti M D and Gilmore A P, Bcl-2 proteins and mitochondria--specificity in membrane targeting for death. Biochim Biophys Acta 2011,1813 (4),532-9.
    13.杨敏,陈平,彭红,沈芹,陈燕,细胞色素C氧化酶在慢性阻塞性肺疾病中的表达及其与肺血管内皮细胞凋亡的关系.中华结核和呼吸杂志2010,33(09).
    14. Siganaki M, Koutsopoulos A V, Neofytou E, et al., Deregulation of apoptosis mediators' p53 and bcl2 in lung tissue of COPD patients. Respir Res 2010,11,46.
    15. Zhong C Y, Zhou Y M and Pinkerton K E, NF-kappaB inhibition is involved in tobacco smoke-induced apoptosis in the lungs of rats. Toxicol Appl Pharmacol 2008, 230 (2),150-8.
    16. Kuo W H, Chen J H, Lin H H, Chen B C, Hsu J D and Wang C J, Induction of apoptosis in the lung tissue from rats exposed to cigarette smoke involves p38/JNK MAPK pathway. Chem Biol Interact 2005,155 (1-2),31-42.
    17. Wu C H, Lin H H, Yan F P and Wang C J, Immunohistochemical detection of apoptotic proteins, p53/Bax and JNK/FasL cascade, in the lung of rats exposed to cigarette smoke. Arch Toxicol 2006,80 (6),328-36.
    18. Yang Y M and Liu G T, Damaging effect of cigarette smoke extract on primary cultured human umbilical vein endothelial cells and its mechanism. Biomed Environ Sci 2004,17(2),121-34.
    19. Yang Z, von Ballmoos M W, Faessler D, et al., Paracrine factors secreted by endothelial progenitor cells prevent oxidative stress-induced apoptosis of mature endothelial cells. Atherosclerosis 2010,211 (1),103-109.
    20. Shenker N and Flanagan J M, Intragenic DNA methylation:implications of this epigenetic mechanism for cancer research. Br J Cancer 2012,106 (2),248-53.
    21. Deaton A M and Bird A, CpG islands and the regulation of transcription. Genes Dev 2011,25 (10),1010-22.
    22. Soria J C, Rodriguez M, Liu D D, Lee J J, Hong W K and Mao L, Aberrant promoter methylation of multiple genes in bronchial brush samples from former cigarette smokers. Cancer Res 2002,62 (2),351-5.
    23. Kikuchi S, Yamada D, Fukami T, et al., Hypermethylation of the TSLC1/IGSF4 promoter is associated with tobacco smoking and a poor prognosis in primary nonsmall cell lung carcinoma. Cancer 2006,106 (8),1751-8.
    24. Yang M, Peng H, Chen P. Involvement of DNA methylation in endothelial apoptosis induced by cigarette smoke extract. Eur Respir J,2010,36 (Supplement 54): 20th ERS Annual Congress, Barcelona, Spain,18th-22nd September 2010.
    25. Peng H, Yang M, Chen P. The effect of mtTFA methylation in the pathogenesis of pulmonary vascular endothelial cell apoptosis of chronic obstructive pulmonary disease. Eur Respir J,2010,36(Supplement 54):20th ERS Annual Congress, Barcelona, Spain,18th-22nd September 2010.
    26. Vinci S, Giannarini G, Selli C, et al., Quantitative methylation analysis of BCL2, hTERT, and DAPK promoters in urine sediment for the detection of non-muscle-invasive urothelial carcinoma of the bladder:a prospective, two-center validation study. Urol Oncol 2011,29 (2),150-6.
    1. 中华医学会呼吸病学分会慢性阻塞性肺疾病学组,慢性阻塞性肺疾病诊治指南(2007年修订版).中华结核和呼吸杂志2007,30(01).
    2.曹国强,钱桂生,林莉,崔社怀,慢性阻塞性肺疾病大鼠肺组织细胞凋亡和增殖的变化.中华结核和呼吸杂志2005,28(03).
    3. Schmittgen T D and Livak K J, Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 2008,3 (6),1101-8.
    4. WHO health report:burden of COPD..
    5. Liebow A A, Pulmonary emphysema with special reference to vascular changes. Am Rev Respir Dis 1959,80 (1, Part 2),67-93.
    6. Yamato H, Sun J P, Churg A and Wright J L, Cigarette smoke-induced emphysema in guinea pigs is associated with diffusely decreased capillary density and capillary narrowing. Lab Invest 1996,75 (2),211-9.
    7. Kasahara Y, Tuder R M, Cool C D, Lynch D A, Flores S C and Voelkel N F, Endothelial cell death and decreased expression of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 in emphysema. Am J Respir Crit Care Med 2001,163 (3 Pt 1),737-44.
    8. Taraseviciene-Stewart L, Scerbavicius R, Choe K H, et al., An animal model of autoimmune emphysema. Am J Respir Crit Care Med 2005,171 (7),734-42.
    9. Nakanishi K, Takeda Y, Tetsumoto S, et al., Involvement of endothelial apoptosis underlying chronic obstructive pulmonary disease-like phenotype in adiponectin-null mice:implications for therapy. Am J Respir Crit Care Med 2011,183 (9),1164-75.
    10. Rangasamy T, Cho C Y, Thimmulappa R K, et al., Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. J Clin Invest 2004,114(9),1248-59.
    11. Sussan T E, Rangasamy T, Blake D J, et al., Targeting Nrf2 with the triterpenoid CDDO-imidazolide attenuates cigarette smoke-induced emphysema and cardiac dysfunction in mice. Proc Natl Acad Sci U S A 2009,106 (1),250-5.
    12. Chen Y, Hanaoka M, Chen P, Droma Y, Voelkel N F and Kubo K, Protective effect of beraprost sodium, a stable prostacyclin analog, in the development of cigarette smoke extract-induced emphysema. Am J Physiol Lung Cell Mol Physiol 2009,296 (4), L648-56.
    13. Cai S, Chen P, Zhang C, Chen J B and Wu J, Oral N-acetylcysteine attenuates pulmonary emphysema and alveolar septal cell apoptosis in smoking-induced COPD in rats. Respirology 2009,14 (3),354-9.
    14.冉丕鑫,慢性阻塞性肺疾病的患病危险因素及其预防.中华结核和呼吸杂志2007,30(02).
    15.钟南山,慢性阻塞性肺疾病在中国.中国实用内科杂志2011,31(05).
    16. Lindberg A, Jonsson A C, Ronmark E, Lundgren R, Larsson L G and Lundback B, Ten-year cumulative incidence of COPD and risk factors for incident disease in a symptomatic cohort. Chest 2005,127 (5),1544-52.
    17. Agusti A G, Systemic effects of chronic obstructive pulmonary disease. Proc Am Thorac Soc 2005,2 (4),367-70; discussion 371-2.
    18. Rutgers S R, Postma D S, ten Hacken N H, et al., Ongoing airway inflammation in patients with COPD who do not currently smoke. Thorax 2000,55 (1),12-8.
    19. Lindsay J, Esposti M D and Gilmore A P, Bcl-2 proteins and mitochondria--specificity in membrane targeting for death. Biochim Biophys Acta 2011,1813 (4),532-9.
    20.杨敏,陈平,彭红,沈芹,陈燕,细胞色素C氧化酶在慢性阻塞性肺疾病中的表达及其与肺血管内皮细胞凋亡的关系.中华结核和呼吸杂志2010,33(09).
    21. Siganaki M, Koutsopoulos A V, Neofytou E, et al., Deregulation of apoptosis mediators' p53 and bcl2 in lung tissue of COPD patients. Respir Res 2010,11,46.
    22. Zhong C Y, Zhou Y M and Pinkerton K E, NF-kappaB inhibition is involved in tobacco smoke-induced apoptosis in the lungs of rats. Toxicol Appl Pharmacol 2008, 230(2),150-8.
    23. Kuo W H, Chen J H, Lin H H, Chen B C, Hsu J D and Wang C J, Induction of apoptosis in the lung tissue from rats exposed to cigarette smoke involves p38/JNK MAPK pathway. Chem Biol Interact 2005,155 (1-2),31-42.
    24. Wu C H, Lin H H, Yan F P and Wang C J, Immunohistochemical detection of apoptotic proteins, p53/Bax and JNK/FasL cascade, in the lung of rats exposed to cigarette smoke. Arch Toxicol 2006,80 (6),328-36.
    25. Shenker N and Flanagan J M, Intragenic DNA methylation:implications of this epigenetic mechanism for cancer research. Br J Cancer 2012,106 (2),248-53.
    26. Deaton A M and Bird A, CpG islands and the regulation of transcription. Genes Dev 2011,25 (10),1010-22.
    27. Yang M, Peng H, Chen P. Involvement of DNA methylation in endothelial apoptosis induced by cigarette smoke extract. Eur Respir J,2010,36 (Supplement 54): 20th ERS Annual Congress, Barcelona, Spain,18th-22nd September 2010.
    28. Peng H, Yang M, Chen P. The effect of mtTFA methylation in the pathogenesis of pulmonary vascular endothelial cell apoptosis of chronic obstructive pulmonary disease. Eur Respir J,2010,36(Supplement 54):20th ERS Annual Congress, Barcelona, Spain,18th-22nd September 2010.
    29. Vinci S, Giannarini G, Selli C, et al., Quantitative methylation analysis of BCL2, hTERT, and DAPK promoters in urine sediment for the detection of non-muscle-invasive urothelial carcinoma of the bladder:a prospective, two-center validation study. Urol Oncol 2011,29 (2),150-6.
    30. Seto M, Jaeger U, Hockett R D, et al., Alternative promoters and exons, somatic mutation and deregulation of the Bcl-2-Ig fusion gene in lymphoma. EMBO J 1988,7 (1),123-31.
    31.季红斌,翟琦巍,刘新垣,郑仲承,bcl-2基因的转录调控.生物化学与生物物理学报2000,(02),95-99.
    1.张宏亮,彭红,张艳,陈平,去甲基化修饰调控COX Ⅱ信号通路在COPD发病机制中的作用.第五届全国慢性阻塞性肺疾病学术会议论文汇编.杭州,中国,2011,4(119)
    2.段敏超,钟小宁,何志义,唐海娟,黄颖,CD4+白细胞介素-17+辅助性T细胞对香烟暴露小鼠肺部炎症及肺气肿的作用.中华结核和呼吸杂志2011,34(04).
    3. Damera G, Jester W F, Jiang M, et al., Inhibition of myristoylated alanine-rich C kinase substrate (MARCKS) protein inhibits ozone-induced airway neutrophilia and inflammation. Experimental Lung Research 2010,36 (2),75-84.
    4. Williams A S, Eynott P R, Leung S-Y, et al., Role of cathepsin S in ozone-induced airway hyperresponsiveness and inflammation. Pulmonary Pharmacology & Therapeutics 2009,22 (1),27-32.
    5. Chen Y, Hanaoka M, Chen P, Droma Y, Voelkel N F and Kubo K, Protective effect of beraprost sodium, a stable prostacyclin analog, in the development of cigarette smoke extract-induced emphysema. Am J Physiol Lung Cell Mol Physiol 2009,296 (4), L648-56.
    6. Taraseviciene-Stewart L, Scerbavicius R, Choe K H, et al., An animal model of autoimmune emphysema. Am J Respir Crit Care Med 2005,171 (7),734-42.
    7.张艳,陈燕,陈平,经腹腔注射香烟提取物建立小鼠肺气肿模型.第五届全国慢性阻塞性肺疾病学术会议论文汇编.杭州,中国,2011,4(141)
    8. Mikhailov V, Mikhailova M, Degenhardt K, Venkatachalam M A, White E and Saikumar P, Association of Bax and Bak homo-oligomers in mitochondria. Bax requirement for Bak reorganization and cytochrome c release. J Biol Chem 2003,278 (7),5367-76.
    1. Schiaffino S, Severin E and Hanzlikova V, Intermembrane inclusions induced by anoxia in heart and skeletal muscle mitochondria. Virchows Arch B Cell Pathol Incl Mol Pathol 1979,31 (2),169-79.
    2. Moroni F, Poly(ADP-ribose)polymerase 1 (PARP-1) and postischemic brain damage. Curr Opin Pharmacol 2008,8 (1),96-103.
    3. Cuccurullo L, Accardo M, Agozzino L, Blasi F, Esposito S and Vosa C, Ultrastructural pathology of pediatric myocardium in acute ischemia:bioptic study before and after treatment with cardioplegic solution. Ultrastruct Pathol 2006,30 (6), 453-60.
    4. Lockhart P B, Bolger A F, Papapanou P N, et al., Periodontal Disease and Atherosclerotic Vascular Disease:Does the Evidence Support an Independent Association?:A Scientific Statement From the American Heart Association. Circulation 2012.
    5. Chen Y, Dawes P T and Mattey D L, Polymorphism in the vascular endothelial growth factor A (VEGFA) gene is associated with serum VEGF-A level and disease activity in rheumatoid arthritis:Differential effect of cigarette smoking. Cytokine 2012.
    6. Wang C, Cao J, Qu J, et al., Recombinant vascular basement membrane derived multifunctional peptide blocks endothelial cell angiogenesis and neovascularization. J Cell Biochem 2010,111 (2),453-60.
    7. Fu X H, Wang L, Zhao H, Xiang H L and Cao J G, Synthesis of genistein derivatives and determination of their protective effects against vascular endothelial cell damages caused by hydrogen peroxide. Bioorg Med Chem Lett 2008,18 (2), 513-7.
    8. Peng H, Yang M, Chen P. The effect of mtTFA methylation in the pathogenesis of pulmonary vascular endothelial cell apoptosis of chronic obstructive pulmonary disease. Eur Respir J,2010,36(Supplement 54):20th ERS Annual Congress, Barcelona, Spain,18th-22nd September 2010.
    9. Hellebrekers D M, Jair K W, Vire E, et al., Angiostatic activity of DNA methyltransferase inhibitors. Mol Cancer Ther 2006,5 (2),467-75.
    10. Miller-Kasprzak E and Jagodzinski P P,5-Aza-2'-deoxycytidine increases the expression of anti-angiogenic vascular endothelial growth factor 189b variant in human lung microvascular endothelial cells. Biomed Pharmacother 2008,62 (3), 158-63.
    11.杨敏,陈平,彭红,沈芹,陈燕,细胞色素C氧化酶在慢性阻塞性肺疾病中的表达及其与肺血管内皮细胞凋亡的关系.中华结核和呼吸杂志2010,33(09).
    12. Youle R J and Strasser A, The BCL-2 protein family:opposing activities that mediate cell death. Nat Rev Mol Cell Biol 2008,9(1),47-59.
    13. Shen C J, Cheng W T, Wu S C, et al., Differential differences in methylation status of putative imprinted genes among cloned swine genomes. PLoS One 2012,7 (2),e32812.
    14. Ikehata M, Ueda K and Iwakawa S, Different involvement of DNA methylation and histone deacetylation in the expression of solute-carrier transporters in 4 colon cancer cell lines. Biol Pharm Bull 2012,35 (3),301-7.
    15. Bredow S, Juri D E, Cardon K and Tesfaigzi Y, Identification of a novel Bcl-2 promoter region that counteracts in a p53-dependent manner the inhibitory P2 region. Gene 2007,404 (1-2),110-6.
    16.季红斌,翟琦巍,刘新垣,郑仲承,bcl-2基因的转录调控.生物化学与生物物理学报2000,(02),95-99.
    17. Pangare M and Makino A, Mitochondrial function in vascular endothelial cell in diabetes. J Smooth Muscle Res 2012,48 (1),1-26.
    18. Luo Y H, Chuang W J, Wu J J, et al., Molecular mimicry between streptococcal pyrogenic exotoxin B and endothelial cells. Lab Invest 2010,90 (10),1492-506.
    1. Disease G I f C O L, Global strategy for diagnosis, management and prevention of COPD. Updated 2010.. http://www.goldcopd.com/.
    2. MacNee W and Tuder R M, New paradigms in the pathogenesis of chronic obstructive pulmonary disease I. Proc Am Thorac Soc 2009,6 (6),527-31.
    3. Min T, Bodas M, Mazur S and Vij N, Critical role of proteostasis-imbalance in pathogenesis of COPD and severe emphysema. J Mol Med (Berl) 2011,89 (6), 577-93.
    4. Barbera J A and Peinado V I, Disruption of the lung structure maintenance programme:a comprehensive view of emphysema development. Eur Respir J 2011, 37 (4),752-4.
    5. Aoshiba K, [Role of alveolar cell apoptosis in COPD]. Nihon Rinsho 2007,65 (4), 629-32.
    6. Demedts I K, Demoor T, Bracke K R, Joos G F and Brusselle G G, Role of apoptosis in the pathogenesis of COPD and pulmonary emphysema. Respir Res 2006, 7,53.
    7. Taylor R C, Cullen S P and Martin S J, Apoptosis:controlled demolition at the cellular level. Nat Rev Mol Cell Biol 2008,9 (3),231-41.
    8. Youle R J and Strasser A, The BCL-2 protein family:opposing activities that mediate cell death. Nat Rev Mol Cell Biol 2008,9 (1),47-59.
    9. Tabas I and Ron D, Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 2011,13 (3),184-90.
    10. Tourneur L and Chiocchia G, FADD:a regulator of life and death. Trends in Immunology 2010,31 (7),260-269.
    11. Timmer J C and Salvesen G S, Caspase substrates. Cell Death Differ 2007,14 (1), 66-72.
    12. Landes T and Martinou J C, Mitochondrial outer membrane permeabilization during apoptosis:the role of mitochondrial fission. Biochim Biophys Acta 2011,1813 (4),540-5.
    13. Wang C and Youle R J, The role of mitochondria in apoptosis*. Annu Rev Genet 2009,43,95-118.
    14. Jeong S Y and Seol D W, The role of mitochondria in apoptosis. BMB Rep 2008, 41 (1),11-22.
    15. Shamas-Din A, Brahmbhatt H, Leber B and Andrews D W, BH3-only proteins: Orchestrators of apoptosis. Biochim Biophys Acta 2011,1813 (4),508-20.
    16. Lindsay J, Esposti M D and Gilmore A P, Bcl-2 proteins and mitochondria--specificity in membrane targeting for death. Biochim Biophys Acta 2011,1813 (4),532-9.
    17. Letai A, Bassik M C, Walensky L D, Sorcinelli M D, Weiler S and Korsmeyer S J, Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2002,2 (3),183-92.
    18. Llambi F and Green D R, Apoptosis and oncogenesis:give and take in the BCL-2 family. Curr Opin Genet Dev 2011,21 (1),12-20.
    19. Kim H, Tu H C, Ren D, Takeuchi O, Jeffers J R, Zambetti G P, Hsieh J J and Cheng E H, Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis. Mol Cell 2009,36 (3),487-99.
    20. Westphal D, Dewson G, Czabotar P E and Kluck R M, Molecular biology of Bax and Bak activation and action. Biochim Biophys Acta 2011,1813 (4),521-31.
    21. Chipuk J E and Green D R, How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol 2008,18 (4),157-64.
    22. Dewson G and Kluck R M, Mechanisms by which Bak and Bax permeabilise mitochondria during apoptosis. J Cell Sci 2009,122 (Pt 16),2801-8.
    23. Chen L, Willis S N, Wei A, Smith B J, Fletcher J I, Hinds M G, Colman P M, Day C L, Adams J M and Huang D C, Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 2005, 17(3),393-403.
    24. Leber B, Lin J and Andrews D W, Still embedded together binding to membranes regulates Bcl-2 protein interactions. Oncogene 2010,29 (38),5221-5230.
    25. Happo L, Cragg M S, Phipson B, Haga J M, Jansen E S, Herold M J, Dewson G, Michalak E M, Vandenberg C J, Smyth G K, Strasser A, Cory S and Scott C L, Maximal killing of lymphoma cells by DNA damage-inducing therapy requires not only the p53 targets Puma and Noxa, but also Bim. Blood 2010,116 (24),5256-67.
    26. Liebow A A, Pulmonary emphysema with special reference to vascular changes. Am Rev Respir Dis 1959,80 (1, Part 2),67-93.
    27. Yamato H, Sun J P, Churg A and Wright J L, Cigarette smoke-induced emphysema in guinea pigs is associated with diffusely decreased capillary density and capillary narrowing. Lab Invest 1996,75 (2),211-9.
    28. Kasahara Y, Tuder R M, Taraseviciene-Stewart L, Le Cras T D, Abman S, Hirth P K, Waltenberger J and Voelkel N F, Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J Clin Invest 2000,106 (11),1311-9.
    29. Segura-Valdez L, Pardo A, Gaxiola M, Uhal B D, Becerril C and Selman M, Upregulation of gelatinases A and B, collagenases 1 and 2, and increased parenchymal cell death in COPD. Chest 2000,117(3),684-94.
    30. Yokohori N, Aoshiba K and Nagai A, Increased levels of cell death and proliferation in alveolar wall cells in patients with pulmonary emphysema. Chest 2004, 125 (2),626-32.
    31. Imai K, Mercer B A, Schulman L L, Sonett J R and D'Armiento J M, Correlation of lung surface area to apoptosis and proliferation in human emphysema. Eur Respir J 2005,25 (2),250-8.
    32. Chen Z H, Kim H P, Sciurba F C, Lee S J, Feghali-Bostwick C, Stolz D B, Dhir R, Landreneau R J, Schuchert M J, Yousem S A, Nakahira K, Pilewski J M, Lee J S, Zhang Y, Ryter S W and Choi A M, Egr-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease. PLoS One 2008,3 (10), e3316.
    33. Malhotra D, Thimmulappa R, Vij N, Navas-Acien A, Sussan T, Merali S, Zhang L, Kelsen S G, Myers A, Wise R, Tuder R and Biswal S, Heightened endoplasmic reticulum stress in the lungs of patients with chronic obstructive pulmonary disease: the role of Nrf2-regulated proteasomal activity. Am JRespir Crit Care Med 2009,180 (12),1196-207.
    34. Liu H, Ma L, Wu J, Wang K and Chen X, Apoptosis of alveolar wall cells in chronic obstructive pulmonary disease patients with pulmonary emphysema is involved in emphysematous changes. J Huazhong Univ Sci Technolog Med Sci 2009, 29 (4),466-9.
    35. Hodge S, Hodge G, Holmes M and Reynolds P N, Increased airway epithelial and T-cell apoptosis in COPD remains despite smoking cessation. Eur Respir J 2005,25 (3),447-54.
    36. Makris D, Vrekoussis T, Izoldi M, Alexandra K, Katerina D, Dimitris T, Michalis A, Tzortzaki E, Siafakas N M and Tzanakis N, Increased apoptosis of neutrophils in induced sputum of COPD patients. Respir Med 2009,103 (8),1130-5.
    37. Tomita K, Caramori G, Lim S, Ito K, Hanazawa T, Oates T, Chiselita I, Jazrawi E, Chung K F, Barnes P J and Adcock I M, Increased p21(CIP1/WAF1) and B cell lymphoma leukemia-x(L) expression and reduced apoptosis in alveolar macrophages from smokers. Am JRespir Crit Care Med 2002,166 (5),724-31.
    38. Taylor A E, Finney-Hayward T K, Quint J K, Thomas C M R, Tudhope S J, Wedzicha J A, Barnes P J and Donnelly L E, Defective macrophage phagocytosis of bacteria in COPD. European Respiratory Journal 2010,35 (5),1039-1047.
    39. Hodge S, Hodge G, Jersmann H, Matthews G, Ahern J, Holmes M and Reynolds P N, Azithromycin improves macrophage phagocytic function and expression of mannose receptor in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2008,178(2),139-48.
    40. Wouters E F, Local and systemic inflammation in chronic obstructive pulmonary disease. Proc Am Thorac Soc 2005,2(1),26-33.
    41. Agusti A G, Systemic effects of chronic obstructive pulmonary disease. Proc Am Thorac Soc 2005,2 (4),367-70; discussion 371-2.
    42. Gosker H R, Kubat B, Schaart G, van der Vusse G J, Wouters E F M and Schols A M W J, Myopathological features in skeletal muscle of patients with chronic obstructive pulmonary disease. European Respiratory Journal 2003,22 (2),280-285.
    43. Agusti A G, Sauleda J, Miralles C, Gomez C, Togores B, Sala E, Batle S and Busquets X, Skeletal muscle apoptosis and weight loss in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2002,166 (4),485-9.
    44. Barreiro E, Ferrer D, Sanchez F, Minguella J, Marin-Corral J, Martinez-Llorens J, Lloreta J and Gea J, Inflammatory cells and apoptosis in respiratory and limb muscles of patients with COPD. Journal of Applied Physiology 2011,111 (3),808-817.
    45. Hodge S J, Hodge G L, Reynolds P N, Scicchitano R and Holmes M, Increased production of TGF-β and apoptosis of T lymphocytes isolated from peripheral blood in COPD. American Journal of Physiology-Lung Cellular and Molecular Physiology 2003,285 (2), L492-L499.
    46. Profita M, Riccobono L, Montalbano A M, Bonanno A, Ferraro M, Albano G D, Gerbino S, Casarosa P, Pieper M P and Gjomarkaj M, In vitro anticholinergic drugs affect CD8+peripheral blood T-cells apoptosis in COPD. Immunobiology 2011.
    47. Noguera A, Sala E, Pons A R, Iglesias J, MacNee W and Agusti A G N, Expression of Adhesion Molecules During Apoptosis of Circulating Neutrophils in COPD*. Chest 2004,125 (5),1837-1842.
    48. Pletz M W R, Ioanas M, de Roux A, Burkhardt O and Lode H, Reduced spontaneous apoptosis in peripheral blood neutrophils during exacerbation of COPD. European Respiratory Journal 2004,23 (4),532-537.
    49. Siganaki M, Koutsopoulos A V, Neofytou E, Vlachaki E, Psarrou M, Soulitzis N, Pentilas N, Schiza S, Siafakas N M and Tzortzaki E G, Deregulation of apoptosis mediators'p53 and bc12 in lung tissue of COPD patients. Respir Res 2010,11,46.
    50. Kuo W H, Chen J H, Lin H H, Chen B C, Hsu J D and Wang C J, Induction of apoptosis in the lung tissue from rats exposed to cigarette smoke involves p38/JNK MAPK pathway. Chem Biol Interact 2005,155 (1-2),31-42.
    51. Wu C H, Lin H H, Yan F P and Wang C J, Immunohistochemical detection of apoptotic proteins, p53/Bax and JNK/FasL cascade, in the lung of rats exposed to cigarette smoke. Arch Toxicol 2006,80 (6),328-36.
    52. Cai S, Chen P, Zhang C, Chen J B and Wu J, Oral N-acetylcysteine attenuates pulmonary emphysema and alveolar septal cell apoptosis in smoking-induced COPD in rats. Respirology 2009,14 (3),354-9.
    53. Han W, Dong Z, Dimitropoulou C and Su Y, Hydrogen sulfide ameliorates tobacco smoke-induced oxidative stress and emphysema in mice. Antioxid Redox Signal 2011,15 (8),2121-34.
    54. Zhen G, Xue Z, Zhao J, Gu N, Tang Z, Xu Y and Zhang Z, Mesenchymal stem cell transplantation increases expression of vascular endothelial growth factor in papain-induced emphysematous lungs and inhibits apoptosis of lung cells. Cytotherapy 2010,12 (5),605-14.
    55. Hanaoka M, Droma Y, Chen Y, Agatsuma T, Kitaguchi Y, Voelkel N F and Kubo K, Carbocisteine protects against emphysema induced by cigarette smoke extract in rats. Chest 2011,139 (5),1101-8.
    56. Triantaphyllopoulos K, Hussain F, Pinart M, Zhang M, Li F, Adcock I, Kirkham P, Zhu J and Chung K F, A model of chronic inflammation and pulmonary emphysema after multiple ozone exposures in mice. Am J Physiol Lung Cell Mol Physiol 2011, 300 (5), L691-700.
    57. Mizuno S, Yasuo M, Bogaard H J, Kraskauskas D, Natarajan R and Voelkel N F, Inhibition of histone deacetylase causes emphysema. Am J Physiol Lung Cell Mol Physiol 2011,300 (3), L402-13.
    58. Petrache I, Natarajan V, Zhen L, Medler T R, Richter A T, Cho C, Hubbard W C, Berdyshev E V and Tuder R M, Ceramide upregulation causes pulmonary cell apoptosis and emphysema-like disease in mice. Nat Med 2005,11 (5),491-8.
    59. Aoshiba K, Yokohori N and Nagai A, Alveolar wall apoptosis causes lung destruction and emphysematous changes. Am J Respir Cell Mol Biol 2003,28 (5), 555-62.
    60. Petrache I, Fijalkowska I, Medler T R, Skirball J, Cruz P, Zhen L, Petrache H I, Flotte T R and Tuder R M, alpha-1 antitrypsin inhibits caspase-3 activity, preventing lung endothelial cell apoptosis. Am JPathol 2006,169 (4),1155-66.
    61. Tang K, Rossiter H B, Wagner P D and Breen E C, Lung-targeted VEGF inactivation leads to an emphysema phenotype in mice. J Appl Physiol 2004,97 (4), 1559-66; discussion 1549.
    62. Tsao P N, Su Y N, Li H, Huang P H, Chien C T, Lai Y L, Lee C N, Chen C A, Cheng W F, Wei S C, Yu C J, Hsieh F J and Hsu S M, Overexpression of placenta growth factor contributes to the pathogenesis of pulmonary emphysema. Am J Respir Crit Care Med 2004,169 (4),505-11.
    63. Jin N, Cho S N, Raso M G, Wistuba I, Smith Y, Yang Y, Kurie J M, Yen R, Evans C M, Ludwig T, Jeong J W and DeMayo F J, Mig-6 is required for appropriate lung development and to ensure normal adult lung homeostasis. Development 2009,136 (19),3347-56.
    64. Clauss M, Voswinckel R, Rajashekhar G, Sigua N L, Fehrenbach H, Rush N I, Schweitzer K S, Yildirim A O, Kamocki K, Fisher A J, Gu Y, Safadi B, Nikam S, Hubbard W C, Tuder R M, Twigg H L,3rd, Presson R G, Sethi S and Petrache I, Lung endothelial monocyte-activating protein 2 is a mediator of cigarette smoke-induced emphysema in mice. JClin Invest 2011,121 (6),2470-9.
    65. Le A, Zielinski R, He C, Crow M T, Biswal S, Tuder R M and Becker P M, Pulmonary epithelial neuropilin-1 deletion enhances development of cigarette smoke-induced emphysema. Am J Respir Crit Care Med 2009,180 (5),396-406.
    66. Nana-Sinkam S P, Lee J D, Sotto-Santiago S, Stearman R S, Keith R L, Choudhury Q, Cool C, Parr J, Moore M D, Bull T M, Voelkel N F and Geraci M W, Prostacyclin prevents pulmonary endothelial cell apoptosis induced by cigarette smoke. Am J Respir Crit Care Med'2007,175 (7),676-85.
    67. Nakanishi K, Takeda Y, Tetsumoto S, Iwasaki T, Tsujino K, Kuhara H, Jin Y, Nagatomo I, Kida H, Goya S, Kijima T, Maeda N, Funahashi T, Shimomura I, Tachibana I and Kawase I, Involvement of endothelial apoptosis underlying chronic obstructive pulmonary disease-like phenotype in adiponectin-null mice:implications for therapy. Am J Respir Crit Care Med 2011,183 (9),1164-75.
    68. Rangasamy T, Cho C Y, Thimmulappa R K, Zhen L, Srisuma S S, Kensler T W, Yamamoto M, Petrache I, Tuder R M and Biswal S, Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. J Clin Invest 2004,114 (9),1248-59.
    69. Sussan T E, Rangasamy T, Blake D J, Malhotra D, El-Haddad H, Bedja D, Yates M S, Kombairaju P, Yamamoto M, Liby K T, Sporn M B, Gabrielson K L, Champion H C, Tuder R M, Kensler T W and Biswal S, Targeting Nrf2 with the triterpenoid CDDO-imidazolide attenuates cigarette smoke-induced emphysema and cardiac dysfunction in mice. Proc Natl Acad Sci USA 2009,106 (1),250-5.
    70. Zheng T, Kang M J, Crothers K, Zhu Z, Liu W, Lee C G, Rabach L A, Chapman H A, Homer R J, Aldous D, De Sanctis G T, Underwood S, Graupe M, Flavell R A, Schmidt J A and Elias J A, Role of cathepsin S-dependent epithelial cell apoptosis in IFN-gamma-induced alveolar remodeling and pulmonary emphysema. J Immunol 2005,174 (12),8106-15.
    71. Farkas L, Farkas D, Warburton D, Gauldie J, Shi W, Stampfli M R, Voelkel N F and Kolb M R, Cigarette smoke exposure aggravates airspace enlargement and alveolar cell apoptosis in Smad3 knockout mice. Am J Physiol Lung Cell Mol Physiol 2011.
    72. Matsuura H, Hartl D, Kang M J, Dela Cruz C S, Koller B, Chupp G L, Homer R J, Zhou Y, Cho W K, Elias J A and Lee C G, Role of breast regression protein-39 in the pathogenesis of cigarette smoke-induced inflammation and emphysema. Am J Respir Cell Mol Biol 2011,44 (6),777-86.
    73. Taraseviciene-Stewart L, Scerbavicius R, Choe K H, Moore M, Sullivan A, Nicolls M R, Fontenot A P, Tuder R M and Voelkel N F, An animal model of autoimmune emphysema. Am J Respir Crit Care Med 2005,171 (7),734-42.
    74. Motz G T, Eppert B L, Wesselkamper S C, Flury J L and Borchers M T, Chronic cigarette smoke exposure generates pathogenic T cells capable of driving COPD-like disease in Rag2-/-mice. Am J Respir Crit Care Med 2010,181 (11),1223-33.
    75. Sirianni F E, Chu F S and Walker D C, Human alveolar wall fibroblasts directly link epithelial type 2 cells to capillary endothelium. Am J Respir Crit Care Med 2003, 168 (12),1532-7.
    76. Raveendran M, Wang J, Senthil D, Utama B, Shen Y, Dudley D, Zhang Y and Wang X L, Endogenous nitric oxide activation protects against cigarette smoking induced apoptosis in endothelial cells. FEBS Lett 2005,579 (3),733-40.
    77. Wang J, Wilcken D E and Wang X L, Cigarette smoke activates caspase-3 to induce apoptosis of human umbilical venous endothelial cells. Mol Genet Metab 2001, 72 (1),82-8.
    78. Carnevali S, Petruzzelli S, Longoni B, Vanacore R, Barale R, Cipollini M, Scatena F, Paggiaro P, Celi A and Giuntini C, Cigarette smoke extract induces oxidative stress and apoptosis in human lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2003,284 (6), L955-63.
    79. Kim Y J, Kim J Y, Yoon J Y, Kyung S Y, Lee S P, Jeong S H, Moon C and Park J W, Protective effect of aminophylline against cigarette smoke extract-induced apoptosis in human lung fibroblasts (MRC-5 cells). Basic Clin Pharmacol Toxicol 2011,109(1),17-22.
    80. Gal K, Cseh A, Szalay B, Rusai K, Vannay A, Lukacsovits J, Heemann U, Szabo A J, Losonczy G, Tamasi L and Muller V, Effect of cigarette smoke and dexamethasone on Hsp72 system of alveolar epithelial cells. Cell Stress Chaperones 2011, 16 (4),369-78.
    81. Gallelli L, Pelaia G, Fratto D, Muto V, Falcone D, Vatrella A, Curto L S, Renda T, Busceti M T, Liberto M C, Savino R, Cazzola M, Marsico S A and Maselli R, Effects of budesonide on P38 MAPK activation, apoptosis and IL-8 secretion, induced by TNF-alpha and Haemophilus influenzae in human bronchial epithelial cells. Int J Immunopathol Pharmacol 2010,23 (2),471-9.
    82. Yoshida M, Nakayama K, Yasuda H, Kubo H, Kuwano K, Arai H and Yamaya M, Carbocisteine inhibits oxidant-induced apoptosis in cultured human airway epithelial cells. Respirology 2009,14 (7),1027-34.
    83. Chen Z H, Lam H C, Jin Y, Kim H P, Cao J, Lee S J, Ifedigbo E, Parameswaran H, Ryter S W and Choi A M, Autophagy protein microtubule-associated protein 1 light chain-3B (LC3B) activates extrinsic apoptosis during cigarette smoke-induced emphysema. Proc Natl Acad Sci USA 2010,107 (44),18880-5.
    84. Kim H P, Wang X, Chen Z H, Lee S J, Huang M H, Wang Y, Ryter S W and Choi A M, Autophagic proteins regulate cigarette smoke-induced apoptosis:protective role of heme oxygenase-1. Autophagy 2008,4 (7),887-95.
    85. Hsu C L, Wu Y L, Tang G J, Lee T S and Kou Y R, Ginkgo biloba extract confers protection from cigarette smoke extract-induced apoptosis in human lung endothelial cells:Role of heme oxygenase-1. Pulm Pharmacol Ther 2009,22 (4),286-96.
    86. Hu W, Xie J, Zhao J, Xu Y, Yang S and Ni W, Involvement of Bcl-2 family in apoptosis and signal pathways induced by cigarette smoke extract in the human airway smooth muscle cells. DNA Cell Biol 2009,28 (1),13-22.
    87. Zhong C Y, Zhou Y M and Pinkerton K E, NF-kappaB inhibition is involved in tobacco smoke-induced apoptosis in the lungs of rats. Toxicol Appl Pharmacol 2008, 230(2),150-8.
    88. Yang C H, Lin C Y, Yang J H, Liou S Y, Li P C and Chien C T, Supplementary catechins attenuate cooking-oil-fumes-induced oxidative stress in rat lung. Chin J Physiol 2009,52 (3),151-9.
    89. Das A, Chakrabarty S, Choudhury D and Chakrabarti G,1,4-Benzoquinone (PBQ) induced toxicity in lung epithelial cells is mediated by the disruption of the microtubule network and activation of caspase-3. Chem Res Toxicol 2010,23 (6), 1054-66.
    90. Banerjee S, Chattopadhyay R, Ghosh A, Koley H, Panda K, Roy S, Chattopadhyay D and Chatterjee I B, Cellular and molecular mechanisms of cigarette smoke-induced lung damage and prevention by vitamin C. J Inflamm (Lond) 2008,5, 21.
    91. Chen J H, Chou F P, Lin H H and Wang C J, Gaseous nitrogen oxide repressed benzo[a]pyrene-induced human lung fibroblast cell apoptosis via inhibiting JNK1 signals. Arch Toxicol 2005,79 (12),694-704.
    92. Sata M, Takabatake N, Inoue S, Shibata Y, Abe S, Machiya J, Wada T, Ji G, Kido T, Matsuura T, Muramatsu M A and Kubota I, Intronic single-nucleotide polymorphisms in Bcl-2 are associated with chronic obstructive pulmonary disease severity. Respirology 2007,12 (1),34-41.
    93. Ohar J A, Hamilton R F, Jr., Zheng S, Sadeghnejad A, Sterling D A, Xu J, Meyers D A, Bleecker E R and Holian A, COPD is associated with a macrophage scavenger receptor-1 gene sequence variation. Chest 2010,137 (5),1098-107.
    94. Sakao S and Tatsumi K, The importance of epigenetics in the development of chronic obstructive pulmonary disease. Respirology 2011,16 (7),1056-1063.
    95. Sakao S and Tatsumi K, The effects of antiangiogenic compound SU5416 in a rat model of pulmonary arterial hypertension. Respiration 2011,81 (3),253-61.
    96. Nishioka C, Ikezoe T, Yang J, Udaka K and Yokoyama A, Simultaneous inhibition of DNA methyltransferase and histone deacetylase induces p53-independent apoptosis via down-regulation of Mcl-1 in acute myelogenous leukemia cells. Leuk Res 2011,35 (7),932-9.
    97. Gao A, Zuo X, Song S, Guo W and Tian L, Epigenetic modification involved in benzene-induced apoptosis through regulating apoptosis-related genes expression. Cell Biol Int 2011,35 (4),391-6.
    98. Taylor S T, Hickman J A and Dive C, Epigenetic determinants of resistance to etoposide regulation of Bcl-X(L) and Bax by tumor microenvironmental factors. J Natl Cancer Inst 2000,92(1),18-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700