小型潮汐汊道系统的沉积动力过程与演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
潮汐汊道是砂质海岸常见的沉积地貌单元,是海岸带与内陆架的重要组成
    部分,其作为港口航道、旅游、海水养殖等方面的资源的重要性早已被认识;
    但是,潮汐汊道的沉积动力行为、浅海物质循环与通量、全球变化的区域响应
    等方面的研究尚未充分开展。月湖是山东半岛东北角的一个小型的泻湖——潮
    汐汊道系统,已有4000年的历史,具有很高的科研、经济、生态、休闲旅游价
    值。历史上的月湖是比较稳定的,1979之后,由于人为活动的影响,月湖的物
    理环境和生态环境质量呈恶化趋势。研究月湖的沉积与水动力现状,分析其变
    化的地貌动力学原因,有助于理解小型潮汐汊道系统的沉积动力行为,重视海
    岸带海湾在全球物质循环中的作用,具有现实和理论的意义。
     1998年冬季和1999年夏季,在月湖进行了为期各一月的野外工作,采集
    了131个表层底质沉积样和9个岩芯,获得了冬夏各29天的潮位记录,观测了
    口门大小潮期间的潮位、潮流,并采集了同步的悬移质水样。在实验室分析测
    定了沉积物的粒度、颗粒态有机碳含量和~(210)Pb放射性活度,进行了粒径趋势分
    析和沉积速率估算。对潮位和潮流进行了调和分析,从湾内潮位记录推算出口
    门的干道垂线平均流速和断面平均流速,并计算了口门的推移质和悬移质的输
    运能力。在此基础上,结合历史资料(地形图、航片、前人的研究成果等),探
    讨了月湖的沉积物平衡、汊道稳定性、潮流不对称性、口门P-A关系等问题。另
    外,对于海岸带的海湾——泻湖系统在全球碳通量与碳循环过程中的作用进行
    了讨论。
     月湖是一个小而浅的潮汐汊道系统,面积4.94km~2,平均水深不足1m,
    无常年性淡水径流汇入。集水盆地属于低山丘陵地貌,面积15.2km~2。月湖表
    层沉积物以细颗粒物质为主,从岸到湖心逐渐变细,泥和砂质泥占湾内面积的
    40%以上;表层沉积物的平均粒径与沉积物类型有比较好的对应关系。~(210)Pb数
    据分析表明,湖心的沉积速率高达18.2mm yr~(-1),而湖区大部沉积速率在2-5mm
    yr~(-1)。从岩芯的垂向粒度变化所反映的信息来看,湖区的沉积速率大约是5-10
    mm yr~(-1)。
    
    
     月湖的沉积物主要来自流域的坡面侵蚀、湖岸侵蚀、风尘沉降、生物物质、
     涨潮流带入的悬移质和推移质;整个湖区的沉积通量为 10000l2000 t yTI.粒
     径趋势分析表明,月湖的湾顶(西部与北部X涨潮三角洲和湖心等地貌单元是
     沉积的优势区域.
     月湖的潮汐属不规则半日潮,潮差小,日不等现象明显,冬夏两季有显著
     差异;平均潮差 0.50 m,平均涨潮历时 5 ’J’时 19分,平均落潮历时 7小时 5
     分,平均纳潮量 2刀X 106 m‘.月湖口门的潮流是不规则半日潮流,涨急、落急
     流速可达 1刀 m s’‘以上;口门想流时刻正对应湾内的高人潮时,是典型的驻波.
     月湖的潮流具有独特的不对称性,口门的干道垂线平均流速的主要模式为
     落潮流速大于涨潮流速、且落潮历时长于涨潮历时,而断面平均流速以涨潮流
     优势型占微弱优势.这种现象出现的原因是月湖的不规则潮汐特征,以及口门
     的形态与潮位的特殊对应关系.其他潮汐汉道可能也存在类似的现象.
     月湖所处海域的波浪作用并不强烈,沿岸输沙强度较小.实测悬浮体浓度
     较低,在10人10‘mgL”‘左右.用口门干道垂线平均流速计算,月湖的悬移质和
     推移质净输运均为向外海输出,悬移质的输运量不到推移质的1/10.但是,从
     沉积物平衡的角度分析,涨潮流带入的悬移质和推移质可能是月湖湾内沉积物
     的重要来源.人类活动对月湖的沉积过程可能有重大影响.
     从平均大潮纳潮量与沿岸毛输沙量的比值来看,月湖应属于稳定性相当好
     的潮汐汉道系统;如果仅考虑口门的形态及主干道的通畅性,这一判断是可以
     接受的.可以认为,月湖当前的物理系统是脆弱而稳定的,但其生态系统的稳
     定性和自适能力已经遭到了严重破坏.
     月湖湖心的颗粒态有机碳通量为 0.34 kg m”‘p”’.推而广之,仅就有机碳通
     量而言,整个黄、渤海沿岸的小型海湾具有和黄、渤海陆架泥区相同的数量级.因
     此,在碳循环研究中应充分注意海岸带海湾的贡献.
     均衡状态下的潮汐汉道系统,它的纳潮量与口门面积之间的确存在某种稳
     定的卜A关系.传统方法得出的P.A关系有其固有的不准确性.应用沉积动力
     学方法,每个潮汐汉道的P-A关系都受涨落潮历时、断面平均流速、口门形态(面
     积和宽深比X纳潮量、淡水径流量、沿岸毛输沙量和沉积物粒度等因素的控制,
     互互
    
     对于上述因素的每一种组合,都有对应的均衡态卜A关
Tidal inlets are a common feature along littoral drift shores all over the world.
     Located in the eastern Shandong Peninsula. China, Yuehu is a small tidal inlet
     system with great values in terms of fish culture, tourism, environment and scientific
     research. Generally, the environment in the Yuehu area was stable before the 1 970s,
     but some inappropriate development activities (e.g. the artificial closure of the
     entrance in 1979, and reclamation of a large part of the intertidal land of 0.59 km2
     within the tidal basin since 1986) have resulted in high deposition rate, degeneration
     of water quality and deterioration of the lagoon ecosystem. This indicates that this
     coastal embayment is fragile and sensitive to external forcing; the environment and
     ecosystem damage caused by human activities is difficult to recover naturally.
    
     Several aspects of the Yuehu Inlet system are of scientific research significance.
     First, as a typical tidal inlet system with special hydrodynamics characteristics, this
     system is an excellent case for sediment dynamics study. Moreover, the latest 20
     years saw fast and disastrous environmental changes happening in Yuehu. Such
     changes deserve extensive research focusing on the interaction between human
     activities and physical environment evolution.
    
     Two phases of hydrodynamic observation and sediment sampling were
     undertaken in winter 1998 (from November 12 to December 11) and summer 1999
     (from August 12 to September 9), respectively. During each period of fieldwork,
     tidal water levels of 29 days were recorded at the lagoon center using an Aanderaa
     Water-Level Recorder (Model 7 for winter and 8 for summer). Spring and neap tidal
     cycle measurements of the current velocity, tidal water level and suspended sediment
     concentrations were carried out within the entrance to the tidal basin. Further, 130
     surficial sediment samples and 9 short cores were collected. During the sampling,
     the position was fixed using a (Magellan 2000XL) portable GPS.
    
     In the laboratory, grain size analysis was undertaken for the sediment samples
     using a CILAS 940L laser grain size analyzer and sieves, and grain size trends over
    
    
    the lagoon were computed using the Gao-Collins model (Gao and Collins, 1991).
    
     Four short cores were selected for analysis of depoaition rate ( 0Pb method) and one
     for organic carbon content (using a Perkin-Elmer 240C Elemental Analyzer). Water
    
     level records were processed with TIRA (a program for harmonic analysis), and tidal
     currents within the inlet entrance were calculated on the basis of the law of
     conservation of mass and a method proposed by Gao and Collins (1994).
     Furthermore, bedload and suspended sediment transport rates at the inlet mouth were
     calculated. Historical data from scientific journals, maps and aerophotos were also
     collated in order to understand the evolution of the Yuehu Inlet.
    
     Yuehu has a small lagoon of 4.94 km2 in area and an average water depth of 1.0
     m. The lagoon was separated from the open sea by a send spit. An entrance channel
     of 132 m (measured at MSL) in width connects the lagoon with the open sea. Five
     small rivers discharge seasonally into the lagoon; the catcbment basin, 15.2 km2 in
     area. is characterized by low hills. Longshore drift along the beach on the open sea
     side is relatively weak.
    
     The lagoon is generally dominated by fine-grained material, and mud and sandy
     mud account for about 40% of the lagoon area. The central part of the tidal basin is
     covered with muddy se
引文
万国江,1997. 现代沉积的 210pb 计年.第四纪研究,3230-239.
    中国科学院海洋研究所, 1960. 山东半岛海岸地质与地貌调查报告(内部资料).
    中国科学院海洋研究所,1999. 山东海阳核电厂工程可行性研究--厂址区域 泥沙运动及岸滩稳定性分析专题报告.218pp.
    中国海湾志编纂委员会(国家海洋局),1991a.《中国海湾志》(第一分册:辽东 半岛东部海湾).北京:海洋出版社,338pp.
    中国海湾志编纂委员会(国家海洋局),1991b.《中国海湾志》(第三分册:山东 半岛北部和东部海湾).北京:海洋出版社,487pp.
    中国海湾志编纂委员会(国家海洋局),1993. 《中国海湾志》(第四分册:山东半 岛南部和江苏省海湾).北京:海洋出版社,338pp.
    中国海湾志编纂委员会(国家海洋局),1997. 《中国海湾志》(第二分册:辽东半 岛西部和辽宁省西部海湾).北京:海洋出版社,425pp.
    王文介,李绍宁,1988. 清澜泻湖-沙坝-潮汐通道体系的沉积环境和沉积作用.热 带海洋,7(3) ,27-35.
    王永红,1999. 山东荣成成山卫泻湖链的形成演化及可持续发展.青岛海洋大 学硕士研究生学位论文.
    王永红,庄振业,李学伦,2000. 山东荣成湾沿岸输沙率及沙嘴的演化动态.海 洋地质与第四纪地质,20(4) :15-21
    王颖等著,1998. 海南潮汐汊道港湾海岸.北京:中国环境科学出版社,282pp.
    任美锷,张忍顺,1984. 潮汐汊道的若干问题.海洋学报,6(3) ,89-96.
    匡国瑞,杨殿荣,喻祖祥等,1987. 海湾水交换的研究--乳山东湾环境容量 初步探讨.海洋环境科学,6(2) ,13-23.
    庄振业,陈卫民,许卫东,1989. 山东半岛若干平直砂岸近期强烈蚀退及其后 果.青岛海洋大学学报,19(1) ,90-98.
    许卫忆,陈耕心,李伯根,1992. 乐清湾的动力沉积过程.海洋与湖沼,23(1) , 20-29.
    吴桑云,1989. 浅析海湾资源开发利用--以荣成市海湾为例.黄渤海海洋,7(2) ,34-40.
    
    
    吴锦秀,刘仲衡,陈洪亮,曲延大,1986. 山东半岛荣成湾海岸泻湖沉积环境 的初步分析.海洋湖沼通报,1986(2) ,19-24.
    张乔民,郑德延,1992. 潮汐汊道沉积动力与现代地貌过程国外研究进展.海 洋通报,11(1) ,83-92.
    张忍顺,1984. 潮汐汊道研究进展.海洋通报,3(2) ,89-96.
    李从先,王平,1993. 我国全新世沙坝-泻湖体系的地层和分布.海洋通报,12(3) , 80-85.
    李从先,陈刚,高曼娜,庄振业,1987. 山东荣成成山角至石岛海岸地貌和沉 积特征.海洋与湖沼, 18(2) :162-172.
    李安春,陈丽蓉,王丕诰,1997. 青岛地区一次浮尘过程的来源及向海输尘强 度.科学通报,42(18) :1990-1992.
    李炎,李京,1999. 基于海面-遥感器光谱反射率斜率传递现象的悬浮泥沙遥感 算法.科学通报,44(17) ,1892-1897.
    杨干然,李春初,罗章仁,应秩甫等著,1995. 海岸动力地貌学研究及其在华 南港口建设中的应用.广州:中山大学出版社,313pp.
    汪亚平,2000. 胶州湾及邻近海区沉积动力学.中国科学院海洋研究所博士研 究生学位论文.
    汪亚平,高抒,贾建军,2000. 胶州湾及邻近海域沉积物分布特征和运移趋势.地 理学报,55(4) ,449-458.
    陈伟,李经武,张起信,1991. 大天鹅的越冬栖息地--荣成天鹅湖调查初报.海 洋湖沼通报,1991(2) ,57-61.
    陈宗镛,1980. 潮汐学.北京:科学出版社,301pp.
    林珲,闾国年,宋志尧等,1997. 地理信息系统支持下中国东部边缘海潮波的 模拟研究.地理学报,52(增刊),161-169.
    金翔龙(主编),1992. 东海海洋地质.北京:海洋出版社,1-136.
    青岛海洋大学地质系,1992. 荣成市月湖地质、水文、泥沙调查报告(内部资料).
    赵一阳,李凤业,Demaster,D.J.,Nittouer,C.A.,Milliman,J.,1991. 南黄海沉积 速率和沉积通量的初步研究.海洋与湖沼,22(1) ,38-43.
    
    
    赵一阳,鄢明才,1994. 中国浅海沉积物地球化学.北京:科学出版社,203pp.
    赵其渊,1988. 海洋地球化学.地质出版社,北京,277pp.
    栾作峰,1985. 南黄海北部沉积物的有机地球化学特征,海洋与湖沼,16(1) , 93-100.
    秦蕴珊,赵一阳,陈丽蓉,赵松龄(主编),1987. 东海地质.北京:科学出版 社,110-112.
    贾玉连,柯贤坤,许叶华,王艳,1999. 渤海湾曹妃甸沙坝-泻湖海岸沉积物搬 运趋势.海洋科学,(3) ,56-60.
    贾建军,高抒,汪亚平,2000. 人工示踪沙实验的原理与进展.海洋通报,19(2) , 80-89.
    钱江初,1987. 210Pb 测定沉积速率的误差及校正.东海海洋,5(3) ,29-34.
    高抒,1988. 东海沿岸潮汐汊道的 P-A 关系.海洋科学,(1) ,15-19.
    高抒,1989. 从地貌学观点看潮汐汊道研究方向.海洋通报,8(3) ,86-90.
    高抒,1997. 海洋沉积动力学研究与应用前景展望.世界科技研究与发展,19(3) , 62-66.
    高抒,1998. 论海岸带受损环境恢复与改善之对策:以山东半岛月湖为例.世 界科技与发展,20(4) ,123-126
    高抒,2000. 示踪沉积物方法的理论框架.科学通报,45(3) ,329-334.
    高抒,张红霞,1994. 海南岛洋浦港潮汐汊道口门的均衡过水面积.海洋与湖 沼,25(5) ,468-476.
    高抒,张红霞,1997. 潮汐汊道 A-P 关系中参数 C 和 n 的控制因素.海洋科学, 21(4) ,23-27
    高抒,谢钦春,1991. 狭长形海湾与外海水体交换的一个物理模型.海洋通报, 10(3) , 1-9.
    康兴伦,1985. 210Pb 测年法的数据处理问题.海洋科学,10(6) ,13-17.
    康兴伦,袁毅等,1985. 210Pb 法在测定沉积速率中的应用.海洋科学,9(1) , 38-42.
    曹琼英,沈德勋,1988. 第四纪年代学及实验技术.南京:南京大学出版 社.228-252.
    
    
    程鹏,2000. 北黄海细颗粒物质的沉积特征与输运过程.中国科学院海洋研究 所博士研究生学位论文.
    程鹏,高抒,2000. 北黄海西部海底沉积物的粒度特征和净输运趋势.海洋与 湖沼,31(6) ,604-615.
    蔡月娥,蔡爱智.1984,山东半岛海岸泻湖的沉积环境.海洋与湖沼,15(5) , 468-478.
    薛允传,2000. 山东半岛月湖潮汐汊道沉积物输运与堆积.中国科学院海洋研 究所硕士研究生学位论文.
    魏合龙,庄振业,1997. 山东荣成湾月湖地区泻湖--潮汐汊道体系的研究.湖 泊科学,9(2) ,135-140.
    Ackers P.,White W.R.,1973. Sediment transport:new approach and analysis.J. Hydraul.Div.,Proc.ASCE,HY 11,2041-2060.
    Alexander C.R.,Demaster D.J.,Nittrouer C.A.,1991. Sediment accumulation in a modem epicontiental-shelf setting:the Yellow Sea.Marine Geology,98,51-72.
    Allen J.R.L.,1977. Changeable rivers:some aspects of their mechanisms and sedimentation.In:Gregory K.J.,Wiley J.(editors),River Channel Changes, Chichester,pp.15-46
    Aubrey D.G.,Speer P.E.,1985. A study of non-linear tidal propagation in shallow inlet/estuarine systems,Part I:Observations.Estuary,Coastal and Shelf Science, 21,185-205.
    Bagnold P.A.,1963. Mechanics of marine sedimentation.In:Hill M.N.(Editor),The Sea,Vol.3,Wiley-Interscience,New York,507-582.
    Bagnold P.A.,1966. An approach to the sediment transport problem from general physics.U.S. Geological Survey Professional Paper 422-1,37pp.
    Battjes J.A.,1967. Quantitative research on littoral drift and tidal inlets.In:Lauff G.H.(editor),Estuaries:Sediment and Sedimentation.American Association of Advancement of Science,Washington D.C.,pp.185-190.
    Blair T.C.,McPherson J.G.,1999. Grain-size and textural classifical of coarse sedimentary particles.Journal of Sedimentary Research,69,6-19.
    Blatt H.,Mjiddleton G.,Murray R.,1980. Origin of Sedimentary Rocks:Englewwod
    
    Cliffs, New Jersey. Prentice-Hall, 782pp.
    Boon J.D, 1988. Temporal variation of shallow-water tides in basin inlet systems. In: Aubrey D.G., Weishar L.(editors), Lecture Notes on Coastal and Estuarine Studies, Vol. 29, Hydrodynamics and Sediment Dynamics of tidal Inlets, Springer-Verlag Inc., New York, 125-136.
    Boon J.D., Byrne R.J., 1981. On basin hypsometry and the morphodynamics response of coastal inlets. Marine Geology, 40,27-48
    Boothroyd J.C., 1985. Tidal inlets and tidal deltas. In: Davis R.A.Jr.(editor), Coastal Sedimentary Environments (2nd edition), Springer-Verlag, New York, 445-532.
    Bruun P., 1978. Stability of tidal inlets-theory and engineering. Elsevier Scientific Publishing Company, 507 pp.
    Bruun P., Gerritsen R, 1960. Stability of Coastal Inlets. North-Holland, Amsterdam, 123pp.
    Byrne R.J., DeAlteris J.T., Bullock P.A., 1974. Channel stability in tidal inlets: a case study. ASCE, Proc. 14th Coastal Eng. Conf, 1585-1604.
    CERC, 1984. Shore Peotection Manual, Vol Ⅰ to Ⅲ. US Army Corps of Engineers, Coastal Engineering Research Centre, US Printing Office.
    Chandramohan P., Nayak B.U., 1994. A study for the improvement of the Chilka Lake tidal inlet, east coast of India. Journal of Coastal Research, 10,909-918.
    Chang H.H., 1997. Modeling fluvial processes in tidal inlet. Journal of Hydraulic Enginnering, ASCE, 123, 1161-1165.
    Cilas Companie Industrielle Des Lasers. 1992. Granylometer 1064 user manual. Davis R.A.Jr.(editor), 1978. Coastal Sedimentary Environments. Springer-Verlag Inc., New York, 287-360.
    Davis R.A.Jr., Fox W.T., 1981. Interaction between wave and tide-generated processes at the mouth of a microtidal estuary: Matanzas River, Florida (USA). Marine Geology, 40,49-68.
    Dronkers J., Miltenburg, A.G., 1996. Fine sediment deposits in shelf seas. Journal of Marine Systems, 7,119-131.
    Dyer K.R., 1980. Velocity profiles over a rippled bed and the threshold of movement
    
    of sand. Estuarary, Coastal and Marine Sciences, 10,181-199.
    Dyer K.R., 1986. Coastal and estuarine sediment dynamics. John Wiley & Sons, Chichester, 342 pp.
    Einstein H.A., 1950. The bedload function for sediment transportation in open channel flows, Soil Conserv. Serv. U.S. Dept. Agric. Tech. Bull, No. 1026, 78 pp.
    Escoffier E.F., 1940. The stability of tidal inlets. Shore and Beach, 8, 114-115.
    FitzGerald D.M., 1988. Shoreline erosional-depositional processes associated with tidal inlets. In: Aubrey D.G., Weisher L.(editors), Hydrodynamics and Sediment Dynamics of Tidal Inlets, 185-225, Springer-Verlag Inc., New York.
    Friedrichs C.T., Lynch D.R., Aubrey D.G., 1992. Velocity asymmetries in frictionally-dominated tidal embayments: longitudinal and lateral variability. In: Prandle D.(editor), Coastal and Estuarine Studies, vol. 40, Dynamics and Exchanges in Estuaries and the Coastal Zone, American Geophysical Union, Washington D.C., pp. 277-312
    Gadd P.E., Lavelle J.W., Swift D.J.P., 1978. Estimate of sand transport on the New York shelf using near-bottom current meter observations. Journal of Sedimentary Petrology, 48, 239-252.
    Gao S., 1993. Sediment dynamics and stability of tidal inlets, Unpublished Ph.D. Thesis, University of Southampton (England).
    Gao S., Collins M., 1991. Net sediment transport patterns inferred from grain-size trends, based upon definition of "transport vectors". Sedimentary Geology, 80, 47-60.
    Gao S., Collins M., 1992a. Modelling exchange of natural trace sediments between an estuary and adjacent continental shelf. Journal of Sedimentary Petrology, 62, 35-40.
    Gao S., Collins M., 1992b. Net sediment transport patterns inferred from grain-size trends, based upon definition of "transport vectors". Sedimentary Geology, 81, 47-60.
    Gao S., Collins m., 1994a. Tidal inlet equibibrium, in relation to cross-sectional area and sediment transport patterns. Estuarine, Coastal and Shelf Science, 38,
    
    157-172.
    Gao S., Collins M., 1994b. Tidal inlet stability in reponse to hydrodynamic and sediment dynamic conditions. Coastal Engineering, 23, 61-80.
    Gao S., Collins M., 1994c. Analysis of grain size trends of defining sediment transport pathways in marine environments, Journal of Coastal Research, 10, 70-78.
    Gao S., Collins, M., 1995. Net transport direction of sands in a tidal inlet, using foraminiferal tests as natural tracers. Estuarine, Coastal and Shelf Science, 40, 681-697.
    Gao S., Zhuang Z.-Y, Wei H.-L., Sun Y.-L., Chen S.-J., 1998. Physical Processes Affecting the Health of Coastal Embayments: an Example from the Yuehu Inlet, Shandong Peninsula, China. In: Hong G.H., Zhang J., Park B.K. (editors), Health of the Yellow Sea, 314-329.
    Glaister R.P., Nelson H.W., 1974. Grain-size distributions, an aid in facies identification. Bull. Canadian Petroleum Geology, 22, 203-240.
    Goldberg E.D., Koide M., 1963. Rates of sediment accumulation in the Indian Ocean. In: Geiss J., Goldberg E.D.(editors), Earth Sciences and Meteoritics, Amsterdam, North-Holland publishing Company, 1963, 90-102.
    Guy H.P., Simons D.B., Richardson E.V., 1966. Summary of alluvial channel data form flume experments 1955-1961. U.S. Geological Survey Professional Paper, 462-1, 92 pp.
    Hallermeier R.J., 1982. Oscillatory bedload transport: data review and simple formulation. Continental Shelf Res., 1, 159-190.
    Haner B.E., 1984. Santa Ana Riveran example of a sandy braided floodplain system showing sediment source area imprintation and selective sediment modification. Sedimentary Geology, 38,247-261.
    Hardisty J, 1983. An assessment and calibration of formulations for Bagnold's bedload equation. Journal of Sedimentary Petrology, 53,1007-1010.
    Hayes M.O., 1975. Morphology of sand accumulation in estuaries, In: Cronin L.E(editor), Estuarine Research, 2, Academic Press Inc., 3-22.
    
    
    Hayes M.O., 1979. Barrier island morphology as a function of tidal and wave regime. In: Leatherman S.P.(editor), Barrier Islands, from the Gulf of St. Lawrence to the Gulf of Mexico, Academic Press Inc, 1-27.
    Hayes M.O., 1980, General morphology and sediment patterns in tidal inlets Sedimentary Geology, 26,139-156.
    Heathershaw A.D., 1981. Comparisons of measured and predicted sediment transport rates in tidal currents. Marine Geology, 42, 75-104.
    Hine A.C., 1975. Bedform distribution on tidal inlets in the Chatham Harbor Estuary., Cape Cod, Massachusetts. In: Cronin L.E. (editor), Estuarine Research, Vol.2, Geology and Engineering, Academic Press, New York, pp.23 5-252
    Hubbard D.K., 1975. Morphology and hydrodynamics of the Merrimack River ebb-tidal delta. In: Cronin L.E.(editor), Estuarine Research, Academic Press Inc, 253-266,.
    Hubbard D.K., Oertel G.F., Nummedal D., 1979. The rule of waves and tidal current in the development of tidal-inlet sedimentary structures and sand body geometry: examples from North Carolina and Georgia, Journal of Sedimentary Petrology, 49, 1073-1092.
    Inman D.L., Dollan R., 1989. The outer bank of North Carolina: budget of sediment and inlet dynamics along a migrating barrier island. Journal of Coastal Research, 5,193-237.
    Jaffe B.E., List J.H., Sallenger A.H.Jr., 1997. Massive sediment bypassing on the lower shoreface offshore of a wide tidal inlet-Cat Island Pass, Louisiana. Marine Geology, 136, 131-149.
    Keulegan, G.H., 1967, Tidal Flow in Entrances,Water-Level Fluctuations of Basins in Communication with the Sea, Tech, Bulletin, No. 14, Committee on Tidal Hydraulics, Corps of Engineers.
    Kieslish J.M., 1981. Tidal inlet response to jetty construction. US Army, CERC, GITIRep. 19.
    Komar P.O., Miller M.C., 1974. Sediment threshold under oscillatory waves. Proc. 14th Coastal Eng. Conf., 756-775.
    
    Krumbein, W.C., 1938, Size frequency distributions of sediments and the normal phi curve, Jour. Sed Petrology, 8: 84-90.
    Lee H.J., Chough S.K., Jeong K.S. and Han S.J., 1987. Geotechnical properties of sediment cores from the southeastern Yellow Sea: effects of depositional processes. Marine Geotechnology, 7, 37-52.
    Lee Y.C., Qin Y.S. and Liu R.Y. (editors), 1998. Yellow Sea Atlas. Ho Yong Publishers Co., Korea, 524pp.
    Li M.Z., Amos C.L. and David E.H., 1997. Boundary layer dynamics and sediment transport under storm and non-storm conditions on the Scotian Shelf. Marine Geology, 141: 157-181.
    Link, A.G., 1966. Textural classification of sediments. Sedimentology, 7,249-254
    Madsen O.S., 1991. Mechanics of cohesionless sediment transport in coastal waters. In: Kraus N.C., Gingerich K.J., Kriebel D.L.(editors), Coastal Sediments '91, ASCE, New York, pp. 15-27
    Madsen O.S., Grant W.D., 1976. Quantitative description of sediment transport by waves. Proceedings of the 15th Coastal Engineering Conference, 1093-1112
    McCave I.N., 1978, Grain size trends and transport along beaches: example from eastern England, Mar.Geol.,.28: 43-51.
    McLaren P., 1981, An interpretation of trends in grain size measures1, Journal of Sedimentary Petrology, 51(2) : 611-624.
    McLaren P., Bowles D., 1985. The effects of sediment transport on grain-size distributions. Journal of Sedimentary Petrology, 55,457-470.
    McManus J., 1988. Grain size determination and interpretation. In: Tucker M. (editor), Techniques in Sedimentology, Backwell, Oxford. 63-85.
    Meyer-Peter E., Muller R., 1948. Formula for bed-load transport. International Association for Hydraulic Structure, Second Meeting, Stockholm, June 1948.
    Middleton G.V., 1976, Hydraulic interpretation of sand distributions, Jour. Geology, 84: 405-426.
    Miller M.C., McCave I.N., Komar, P.D., 1977. Threshold of sediment motion under unidirectional currents. Sedimentology. 24:507-527.
    
    
    Milliman J., Farnsworth K. L., Albertin, C. S., 1999. Flux and fate of fluvial sediments leaving large islands in the East Indies. Journal of Sea Research, 41, 97-107.
    Milliman J., Syvitski, J.P.M., 1992. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. Journal of Geology, 100, 525-544.
    Morton R.A., Gibeaut J.C., Paine J.G., 1995. Meso-scale transfer of sand during and after storms: implications for prediction of shoreline movement. Marien Geology, 126: 161-179.
    Moss A.J., 1962. The physical nature of common sandy pebbly deposits, Part I,Am.Jour.Sci., 260: 337-373.
    O'Brien M.P., 1931, Estuarine tidal prism related to entrance areas. Civil Engineering, 1: 738-739.
    O'Brien M.P., 1966. Equilibrium flow area of tidal inlets on sandy coast, Proc. 10th Coastal Eng. Conf, ASCE, Vol. 1, 676-686
    O'Brien M.P., 1969, Equilibrium flow areas of inlets on sandy coasts. J. Watway. Harbor Div., 95(WW1) , 43-52
    Oertel G.F., 1988. Processes of sediment exchanges between tidal inlets, ebb deltas and barrier islands. In: Aubrey D.G., Weisher L.(editors), Hydrodynamics and Sediment Dynamics of Tidal Inlets, 297-318, Springer-Verlag New York Inc.
    Owen M.W., Thorn M.F.C., 1978. Effect of waves on sand transport by currents. Proc. J6th Coastal Conf, 1675-1687.
    Ozsoy E., 1986. Ebb-tidal jets: a model of suspended sediment and mass transport at tidal inlets. Estuarine, Coastal and Shelf Science, 22,45-62.
    Ozsoy E., Unluata &U., 1982. Ebb-tidal flow characteristics near inlets. Estuarine, Coastal and Shelf Science, 14,251-263.
    Pedreros, R., Howa, H.L., Michel, D., 1996, Application of grain size trend analysis for the determination of sediment transport pathways in intertidal areas, Marine Geology, 135:35-49.
    
    
    Ranasinghe R., Pattiaratchi C., 1999. The seasonal closure of tidal inlets: Wilson Inlet: a case study. Coastal Engineering, 37: 37-56
    Ranasinghe R., Pattiaratchi C., 2000. Tidal inlet velocity asymmetry in diurnal regimes. Continental Shelf Research, 20,2347-2366.
    Ranasinghe R., Pattiaratchi C., Masselink G., 1999. A morphodynamic model to simulate the seasonal closure of tidal inlets. Coastal Engineering, 37:1-36
    Rouse H., 1936. Modern conceptions of the mechanics of turbulence. Transactions of the ASCE,vol.102.
    Schuttelaars H.M., de Swart H.E., 1999. Initial formation of channels and shoals in a short tidal embayment. J. Fluid Meek, 386: 15-42.
    Seeling W.N., Sorensen R.M., 1978. Numerical model investigation of selected tidal inlet-bay system characteristics. ASCE, Proc. 16th Coastal Eng. Conf.
    Selby M.J., 1993. Hillslope Materials and Processes (2nd edition). Oxford University Press, Oxford, 451pp.
    Sha L.P., 1990. Surface sediments and sequence models in the ebb-tidal delta of Texel Inlet, Wadden Sea, The Netherlands. Sedimentary Geology, 68,125-141.
    Shigemura T, 1980. Tidal prism-throat area relationships of the bays of Japan. Shore and Beach, 48, 3, 30-35.
    Smith N.P., 2001. Seasonal-scale transport patterns in a multi-inlet coastal lagoon. Estuarine, Coastal and Shelf Science, 52,15-28
    Soons J.M., Shulmeister J., Holt S., 1997. The Holocene evolution of a well nourished gravelly barrier and lagoon complex, Kaitorete "Spit", Canterburg, New Zealand. Marine Geology, 138, 69-90.
    Speer P.E., Aubrey D.G., 1985. A study of non-linear tidal propagation in shallow inlet/estuarine systems Part Ⅱ: Theory. Estuarine, Coastal and Shelf Science, 21,207-224.
    Spiegel F., Klug H., 1998. Tidal basin morphology in the Schleswig-Holstein Wadden Sea Area related to changing tidal conditions. In: Kelletat D. H.(editor), German Geographical Coastal Research-The Last Decade, 63-93, Institute for Scientific Co-operation, Tilbingen.
    
    
    Stapor F.W., Tanner W.F., 1975. Hydrodynamic implications of beach, beach ridge and dune grain size studies. Jour. Sed. Petrology, 45, 926-931.
    Udden, J.A., 1914, Mechanical composition of clastic sediments: Geological Society of America Bulletin, 25, 655-744.
    US Army, Coastal Engineering Research Center, 1975. Shore Protection Manual, Second Edition, 3, A-18, A-38.
    van de Kreeke J., 1985. Stability of tidal inlets-Pass Cavallo, Texas. Estuarine, Coastal and Shelf Sciences, 21: 33-43
    van de Kreeke J., 1988. Hydrodynamics of tidal inlets. In: Aubrey, D.G., Weishar, L. (Eds.), Hydrodynamics and Sediment Dynamics of Tidal Inlets. 1-23, Springer, Berlin, van de Kreeke J., 1990. Can multiple tidal inlet be stable? Estuarine, Coastal and Shelf Science, 30: 261-273
    Vincent C.E., Young R.A., Swift D.J.P., 1981. Bedload transport under waves and currents. Marine Geology, 39, M71-M80.
    Visher, G.S., 1969, Grain size distributions and depositional processes: Jour. Sed. Petrology, 39, 1074-1106.
    Vogel M.J., Kana T.W., 1984. Sedimentation patterns in a tidal inlet system, Moriches Inlet, New York. Proceedings of 19th Coastal Engineering Conference, ASCE, pp. 3017-3033
    Wang Y.-P., Gao S., 2001. Modification to the Hardisty equation, regarding the relationship between sediment transport rate and grain size. Journal of Sedimentary Research, 71 (1) , 118-121.
    Williams G.P., 1967. Flume experiments on the transport of a coarse sand. U.S. Geological Survey Professional Paper, 562-B, 31pp.
    Yalin M.W., 1963. An expression for bedload transportation. Proc. Am. Soc. Cic. Eng.,J.Hydraul. Dov., HY3,221-250.
    Zhang H.H., 1988. Fluvial Processes in River Engineering. John Wiley & Sons, Inc., 1988.
    Zhang Q.-M., 1987. Analysis of P-A correlationship of tidal inlets along the coasts
    
    of South China. 1987 Proceedings of Coastal and Port Engineering in Developing Countries, Vol. 1,412-422.
    Zhang R.-S., Wang Y.-P., 1996. Relationships between tidal prism and throat area of tidal inlets along Yellow Sea and Bohai Sea coasts. China Ocean Engineering, 10(2) , 229-238.
    Zhao Y.Y., Qin Z.Y., Li F.Y., Chen Y.W., 1990. On the source and genesis of the mud in the central area of the South Yellow Sea. Chinese Journal of Oceanology and Limnology, 8, 66-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700