Li~+示踪模拟研究回灌渗滤液溶质运移规律
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
垃圾卫生填埋因具有技术可靠、工艺简单、管理方便、适用范围广和处理最彻底等一系列优点而得到较为广泛的应用。但垃圾卫生填埋仍存在诸多不足,尤其是其渗滤液处理难、费用高,若不加处理则会对周围环境水体产生二次污染,危害极大。目前,国内外学者对垃圾填埋场水质变化及水分运移规律已做了大量的研究,但有关渗滤液溶质在垃圾填埋场内的运移规律的研究却较少,因此,笔者进行了垃圾渗滤液溶质运移室内模拟试验,通过试验分析垃圾体填埋密度、渗滤液回灌量等因素对渗滤液溶质运移的影响,以深化对垃圾填埋场污染物去除机理的认识和理解,并借鉴溶液中溶质对流.弥散方程,建立渗滤液溶质运移的水动力弥散模型并对其求解、验证。研究结果表明:
     (1)首回合回灌结束后,渗滤液中Li+浓度随时间的变化趋势与渗滤液流出速率大体一致,即均呈现出先急剧增大,达到最大值后又缓慢减小的趋势,各自的最大浓度、平均浓度和淋出量均随填埋密度的增大依次减小,而垃圾柱对Li+截留量则随填埋密度的增大而增大。对比不同回灌量首回合回灌数据可知,随着回灌量的增大,Li+平均浓度相应增大,Li+截留量则相应减小。
     (2)本研究从第二回合开始用不含Li+的清水对垃圾柱进行淋洗,在用清水淋洗的过程中,各回合Li+的平均浓度呈现出随填埋密度的增大而减小的规律;从实验结果可以看出示踪物质的淋出是一个较为缓慢的过程,且垃圾装填密度越大,示踪物质越难以淋出,对于实施回灌的生物反应器填埋场,增大垃圾填埋密度可以在一定程度上增加水分和污染物质在垃圾体内的停留时间,有利于污染物的降解和稳定,也有助于加快生物反应器填埋场稳定化进程。
     (3)用描述淋洗过程常用的动力学模型对本实验数据进行模拟,由模拟结果可知,双常数模型模拟效果明显不及二级动力学方程模拟和Elovich模型模拟,而二级动力学方程模拟则略优于Elovich模型模拟。
     (4)用本研究建立的溶质运移模型对4#垃圾箱实验数据进行模拟,由拟合结果可知,本研究建立的溶质运移方程具有一定可靠性,用其预测含有溶质的渗滤液回灌后溶质运移规律有一定的参考价值。
Since the waste sanitary landfill had advantages of reliable in technology, simple process, convenient management, widely applicability and most thorough treatment, it has widely used. But waste sanitary landfill still has many deficiencies, especially the leachate treatment is difficult and cost is high, if it was untreated, it will produce secondary pollution on the surrounding environment water, this will cause great disadvantage. At present, domestic and foreign scholars have done a lot of research on landfill water quality changes and moisture migration discipline, but the leachate solute migration discipline in the landfill had less research, therefore, the author did experiment indoor which can simulate leachte solute migration, through analysis the factors which can affect leachte solute migration-waste density and recirculation amounts, to strengthen the understanding of the landfill pollutant removal mechanism, and referenced the solute adverction-dispersition equations in solution, established leachte solute migration hydrodynamic dispersion model, at last, the author sloved the model and verified it.The results show that:
     (1) After the first recirculation cycle, the changing trends with time of leachate Li+concentration and leachate flow rate had the similar law, that both showed a sharp increase, reaching the maximum value and then slowly decreased, the greater density of waste, the maximum concentration、average concentration and Li+leaching amount are smaller, but the intercept amount of Li+in the waste had the opposite trend. Contrast the first recirculation cycle value of different recirculation amounts, with the increase of recirculation amounts, Li+concentration increases, the intercept amount of Li+reduces.
     (2) In this study, use water without Li+to leach waste from second cycle, during this proess, when the waste density increases, Li+concentration decreases; The experiment results shows that the tracer substances leaching is a relatively slow process, the greater density of waste, the tracer residue in the waste is more difficult to leach, for the bioreactor landfill which adopted leachate recirculation, to a certain extent, to increase the density of landfill can increase the time of water and pollutants exist in waste, it is conducive to degradation and stability of pollutants, it also can help to accelerate the process of bioreactor landfill stabilization.
     (3) Use the common kinetic models which describing the leaching process to simulate the experimental data, by the simulation result, the simulation results of the second-order kinetics equation and Elovich model are better than the first-order kinetics equation,the second-order kinetics equation is better than Elovich model.
     (4) Use the solute migration models which established in this study to simulate the experimental data of4#dustbin, by the simulation result, the model has a certain reliability, it also has a certain reference value when use it to forecast solute migration discipline after leachate recirculation.
引文
[1]李颖.城市生活垃圾填埋场设计指南[M].北京:中国环境科学出版社,2005.
    [2]李静,孙冬旭.回灌法处理垃圾渗滤液的研究[J].西安文理学院学报(自然科学版),2009,12(1):55~58.
    [3]杨辉,郭旭晶,陈刚.垃圾渗滤液溶质运移的机理及数学模型[J].工业安全与环保,2009,35(1):33~35.
    [4]沈耀良,王宝贞.垃圾填埋场渗滤液的水质特征及其变化规律分析[J].污染防治技术,1999,12(1):10~13.
    [5]Ebru Demirekler Yildiz, Kahraman Unlu, R.Rowe Kerry. Modelling leachate quality and quantity in municipal solid waste landfills[J]. Waste Management and Research,2004,22(2):78-92.
    [6]王洪涛,殷勇.渗滤液回灌条件下生化反应器填埋场水分运移数值模拟[J].环境科学,2003,24(2):66~72.
    [7]何丹.垃圾填埋场水分迁移规律研究[D].武汉:华中科技大学,2008.
    [8]Pohland E G. Sanitary landfill stabilization with leachate recycle and residual treatment [R]. Cincinnati, Ohio. U. S. EPA, EPA-600/2-75-043,1975.
    [9]Lay J J. Dynamics of methanogenic activities in a landfill bioreactor treating the organic fraction of municipal solid wastes[J]. Water Science & Technology,1998,38(2):177~180.
    [10]Philip T Mccreanor, Debra R Reinhart. Mathematical Modeling of Leachate Routing in a Leachate Recirculating Landfill[J]. Wat. Sci. Tech,2000,34(4):1285~1295
    [11]徐迪民,李国建,于晓华,等.垃圾填埋场渗滤水回灌技术的研究I垃圾渗滤水填埋场回灌的影响因素[J].同济大学学报,1995,23(4):371~375.
    [12]曹丽云.城市生活垃圾填埋场渗滤液回灌处理研究[D].北京:清华大学,1999.
    [13]霍守亮,樊石磊,席北斗,等.生物反应器填埋场有机物预测模型及其参数不确定性分析[J].北京工业大学学报,2008,34(10):1098~1103.
    [14]陈亚新,史海滨.含两种土壤容量因子等温吸附模型~中国河套灌区土壤水环境溶质运移动态模拟公报[J].内蒙古农牧学院学报,1995,16(4):1-8.
    [15]唐莲,白丹,蒋任飞,等.土壤溶质运移关键参数的确定方法评述[J].宁夏农学院学报,2004,25(3):45~48.
    [16]Bear J多孔介质流体动力学[M].北京:中国建筑工业出版社,1983.
    [17]侯春霞,胡海英,魏朝富,等.土壤溶质运移研究动态及展望[J].土壤通报,2003,34(1):70~73.
    [18]许秀元,陈同斌.土壤中溶质运移模拟的理论与应用[J].地理研究,1998,17(1):99~106.
    [19]徐冰,郭克贞,王耀强,等.土壤中溶质运移的研究现状及问题[J].内蒙古水利,2003,(3): 20~21.
    [20]刘霄,熊耀湘.土壤溶质运移研究现状[J].水利科技与经济,2006,12(6):355~358.
    [21]李韵珠,李保国.土壤溶质运移[M].北京:科学出版社,1998.
    [22]李嵘.蓄水单坑水肥灌溉条件下水氮运移分布规律试验研究及数值模拟[D].太原:太原理工大学,2010.
    [23]魏新平.溶质运移理论的研究现状和发展趋势[J].灌溉排水,1998,17(4):58~63.
    [24]王全九.土壤溶质迁移理论研究进展[J].灌溉排水学报,2005,24(3):77~80.
    [25]张德生,沈冰.土壤中反应溶质运移的对流~弥散模型及其解析解[J].西安理工大学学报,2001,17(1):122~126.
    [26]李勇,王超,汤红亮.土壤中不动水体对溶质运移影响模拟研究[J].农业环境科学学报,2005,24(1):104~108.
    [27]邓韬.石油类污染物在包气带中迁移转化研究—以曹妃甸地区为例[D].西安:长安大学,2010.
    [28]Jury, W.A.Sposito and R.E.White. A Transfer Function Model of Solute Transport Through Soil 1. Fundamental Concepts[J]. Water Resour. Res.1986,22(2):243~247.
    [29]王全九.土壤溶质迁移特性的研究[J].水土保持学报,1993,7(2):10~15.
    [30]叶自桐.利用盐分迁移函数模型研究入渗条件下土层的水盐动态[J].水利学报,1990,(2):1-8.
    [31]杨金忠,蔡树英.地下水动态预报的多层递阶组合模型[J].水科学进展,1995,6(2):101-106.
    [32]吴吉春,薛禹群,谢春红.越流含水层系统中的溶质运移方程[J].水文地质工程地质,1998,(1):30~31.
    [33]吴耀国,吴运伟.饱和与非饱和流溶质运移的实验研究与数学模拟[J].勘察科学技术,1998,(5):37~39,45.
    [34]吴楠楠,郭楚文,夏爽.垃圾填埋场渗滤液运移规律分析与模拟[J].环境工程学报,2009,3(9):1602~1606.
    [35]查坤,刘丹,李启彬.青藏高原地区准好氧填埋单元试验研究[J].环境工程学报,2007,1(8):120~125.
    [36]OtatundeO.Olaosun. Modeling leaehate Produetion in heterogeneous municipal solid waste landfill[D]. A thesis of graduate studies, University of Calgary, April 2001.
    [37]R.einhart D R, Townsend T G. Landfill bioreactor design and operation[M]. Florida:CRC Press, 1998.
    [38]曹江英.降解条件下垃圾填埋场渗滤液运移规律研究[D].成都:西南交通大学,2007.
    [39]雷志栋,杨诗秀,谢森传.土壤水动力学M.北京:清华大学出版社,1988.
    [40]乔云峰,沈冰.土壤溶质运移的微观机理模型研究[J].西北水资源与水工程,2001,12(1):5-7.
    [41]刘晓艳,史鹏飞,孙德智,等.大庆土壤中石油类污染物迁移模拟[J].中国石油大学学报:自然科学版,2006,30(2):120~123.
    [42]Dagan G. Flow and Transport in Porous Formations[M]. Berlin:Springer-Verlag,1989.
    [43]Lindstrom F T, Boersma L. A Theory on the mass transport of previously distributed chemicals in a water saturated sorbing porous medium[J]. Soil Science,1971,111:192~199.
    [44]Bear J, Verruijt A. Modeling Groundwater Flow and Pollution[M]. Boston:Reidel Publishing Company,1987.
    [45]仵彦卿.多孔介质污染物迁移动力学[M].上海:上海交通大学出版社,2007.
    [46]Aguirre C G, Haghighi K. Stochastic modeling of transient contaminant transport[J]. Journal of Hydrology,2003,276:224~239.
    [47]Harter T, Yeh T C J. Flow in unsaturated random porous media, nonlinear numerical analysis and comparison to analytical stochastic models[J]. Advances in Water Resources,1998,22(3):185~195.
    [48]Gaudet J P, Jegat H, Vachaud G, et al. Solute transfer with exchange between mobile and stagnant water through unsaturated sand[J]. Soil Science Society of America Journal,1977,41(4):665~671.
    [49]杨金忠,蔡树英,黄冠华,等.多孔介质中水分及溶质运移的随机理论[M].北京:科学出版社,2000.
    [50]Padilla I Y, Yeh T C J, Conklin M H. The effect of water content on solute transport in unsaturated porous media[J]. Water Resources Research,1999,35(11):3303~3313.
    [51]Benson D A. The fractional advection-dispersion equation:Development and application[D]. Reno: University of Nevada,1998.
    [52]Benson D A, Wheatcraft S W, Meerschaert M M. Application of a fractional advection-dispersion equation[J]. Water Resource Research,2000,36(6):1403~1423.
    [53]Meerschaert M M, Tadjeran C. Finite difference approximations for fractional advection-dispersion flow equations[J]. Journal of Computational and Applied Mathematics,2004,172:65~77.
    [54]黄冠华,黄权中,詹红兵,等.均质介质中污染物迁移的分数微分对流-弥散模拟[J].中国科学D辑:地球科学,2005,35(增刊I):249~254.
    [55]常福宣,吴吉春,薛禹群,等.多孔介质溶质运移问题中的分数弥散[J].水动力学研究与进展A辑,2005,20(1):50~55.
    [56]陈静,黄冠华,黄权中.一维均质与非均质土柱中溶质迁移的分数微分对流-弥散模拟[J].水科学进展,2006,17(5):299-304.
    [57]廖华丰.重金属污染土壤修复淋洗剂遴选研究[D].武汉:华中科技大学,2009.
    [58]孙素霞.农药敌草隆在土壤及炭质吸附剂上的吸附机理研究[D].北京:北京交通大学,2009
    [59]王洪涛.多孔介质污染物迁移动力学[M].北京:高等教育出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700