深海电液比例液压源关键技术及工作特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着海洋开发活动的日益深入,人类涉海行为已从浅海逐渐走向深海。因深海具有高压、低温、腐蚀等极端环境条件,使得深海作业装备面临极大的挑战。液压源作为相关装备的动力源和“心脏”,对系统整体性能和可靠性有着巨大的影响。目前,与国外先进水平相比,我国深海液压源发展水平较低,多采用定量控制,系统效率低,参数难实现连续远距离控制,产品互换性低,装置环境适应性差,既缺乏深海通用技术,又无专用的标准化和系列化液压源产品。
     本文以深海电液比例液压源为研究对象,通过总体方案的设计、关键技术的解决、深海控制特性的研究及深海模拟舱下的性能测试,研制出一套适用于深海3000m范围内的比例液压源样机,主要研究内容如下:
     1.针对深海环境的影响,制定出液压源的总体研究方案和实施流程,并完成了整体布局的设计。通过对系统进行分解,提出了论文的主要研究内容,为研究工作的顺利展开,进行了相关理论知识和实验装置的探讨。
     2.采用液压部件内浸油箱的方式适应海水环境,使用皮囊式补偿器补偿储油箱内的体积变化,实现箱内外压力自平衡。分析了储油器系统的静、动态补偿特点,重点对结构参数变化时的动态补偿特性进行了研究,提出了储油器系统不失稳的压力动态补偿设计准则,并通过试验验证了该准则的有效性;通过对环境压力下液压泵压力检测特点的分析,提出了基于双压力传感器的压力自适应检测技术,以消除叠加海水压力的不利影响。通过水下压力自适应检测原理、设计方法和实现过程的研究,完成了相应工程样机的开发及实验测试,结果表明样机的环境压力适应性好,可满足液压泵的压力控制要求。通过应用有限元工具优化设计容腔的结构参数,分析电气耐压容腔的抗压性能,开发出满足深海3000m下强度要求的轻质耐压壳体。
     3.通过分析深海环境下油液介质特性的变化,引入液压油有效体积弹性模量(压缩性)和粘度变化的动态表达式,建立了比例压力阀的传递函数及静态特性方程,对深海环境因素、润滑状态、阀结构参数对其控制特性的影响进行了研究。基于深海工况的变环境特征,考虑油液特性的变化,应用线性变参数原理,建立了比例变量泵系统的线性变参数模型,通过仿真分析得到了液压泵系统在变参数有界闭集内的控制特性及变化趋势。分析结果表明,随着环境压力的增大,工作温度的减小,泵的动态响应性能变慢,而输出稳态值基本不变,与实验结果相吻合,同时说明采用高品质低粘度工作介质、低粘性阻尼系统和变增益调节等方法有利于深海下液压源工作性能的稳定。
     4.通过对压力平衡储油器、自适应压力检测装置、耐压容腔的耐高压性能测试,验证了相关部件的压力适应性。通过比例压力阀在模拟舱下的试验,分析了其抗压性能、控制特性及动态响应性能。通过电液比例变量泵模拟舱下的耐压耐久性试验、稳态控制特性试验、动态性能测试及频率响应试验,得到了其在不同环境压力下性能特性及变化趋势。对电液比例液压源进行的系统集成和调试,表明整体工作平稳、系统输出的响应快、跟随性好。各部件和系统的实验结果验证了理论分析结论的合理性,研制的比例液压源可较好地适用于深海3000m环境。
     论文所提出的储油器系统压力动态补偿设计准则、压力自适应检测技术、深海比例变量泵的研究方法及系统集成和实验方案为深海液压源系统的开发奠定了良好的理论和技术基础基础,为深海探测装备液压系统的整体设计提供了一定的应用研究依据。
Human developments of ocean activity are more frequently under sea from shallow sea to deep sea.Working devices of deep sea are facing great challenges of high pressure, low temperature and corrosion. Hydraulic power source influences the device system performance and reliability as the heart of power source.The development of deep-sea hydraulic power source is still at initial stage in China. The existent problems are invariable control, low system efficiency, difficulty to control remotely, low interchangeabilities, low adaptability, lacking of general deep-sea technologies, special standards and serial products.
     The deep-sea electro-hydraulic proportional source is studied, and a sample is made which can be used at 3000 meter deep-sea.lt focuses on the design of the overall program, solutions of key technologies, research on control characteristic and tests in deep-sea simulation hull. The main contents are as follows.
     1. Against the affects of deep-sea environments, it drafts the overall study program of hydraulic source and implementation plans, and complets the design of the entire layout. By the decomposition of the system, the main contents of the dissertation are proposed. A discussion of correlated theoretical knowledge and experimental equipmen is sure of the study work executed smoothly,
     2. The hydraulic components are immersed in an oil reservoir in order to adapt the sea-water pressure. The internal and external pressures of the reservoir are balanced by the volume change of a theca pressure compensator connected with the reservoir. The analysis of static and dynamic property of the reservoir system is done. A design guideline is proposed for the oil reservoir system stability to analyze performance of dynamic compensating characteristic with variable structure parameters, and the rule is validated it by experiment tests. Considering detection features of hydraulic pump pressure in sub-sea, a self-adaptive detection technology based on dual pressure sensors is also proposed to elimnate the affect of sea-water pressure. By research on undersea pressure self-adaptive detection, design and application, the engineering prototype is developed, and then related experiment is studied.The results show:the prototype has a good environmental adaptability and satisfies the requirements for pressure control of the hydraulic pump. A light pressure-proof shell is designed, the analysis of the shell for electronic components is carried out by finite element analysis software, and tests displays it can work well in 3000 meter deep-sea,
     3. By analyzing the properties changing of oil media under deep-sea environment, and leading into dynamic expression equation of the changing of effective bulk modulus (compression) and viscosity of hydraulic oil, a transfer function and the static characteristic equation of proportional valve are established. The influences of environmental factors, lubrication condition and structural parameters to the valve control characteristics are stuted. Based on the varying environment feature of deep-sea work conditions, considered oil property varying, applied the theory of linear varying parameter (LPV), the LPV model of proportional variable pump system is created. By simulation analyses, it obtains the control characteristics and the changing trends of the hydraulic pump system in bounded closed set of varying parameters. The results show that the pump dynamic responses become slower and the steady-state output value keeps invariable, with the environment pressure increasing and work temperature decreasing, which coincide with the experimental results. At the same time, it displays the methods of high quality and low viscosity oil media, low viscous damp system and variable gain adjustment benefit to the working performance to be steady for hydraulic sources in deep sea.
     4. It verifys the pressure adaptability of components for hydraulic power source, by pressure-proof tests of pressure-balanced oil reservoir, self-adaptive pressure detection equipment and pressure-proof shells, and analyzes pressure-proof property, control characteristic and dynamic responses of the proportional pressure valve by tests in deep-sea simulation hull. The characteristics of the close-loop controlled variable pump are acquired at different pressure, by pressure-proof test, steady-state control test, dynamic property test and frequency response test in the deep-sea simulation hull. The result of system integration and debugging of electro-hydraulic proportional hydraulic power source shows:the entire system works steadily, and the system output responds quickly with good following performance. The experimental results of each parts and systems verify that theoretical analysis conclusions are reasonable and the developed proportional hydraulic power source can be well suitable for deep-sea 3000 meter environment.
     The thesis lays a great theoretical and technological basis for deep-sea hydraulic power source system, and provides application research foundation for the overall design of hydraulic systems in deep-sea detection equipment.
引文
[1]刘淮.国外深海技术发展研究[J].船艇,2006(258):6-18.
    [2]William Kohnen. Human exploration of the deep seas:Fifty years and the inspiration continues [J]. Marine Technology Society Journal,2009,43(5):42-62.
    [3]蒋新松,封锡盛,王棣棠.水下机器人[M].沈阳:辽宁科学技术出版社,2000.
    [4]冯士筰,李凤岐,李少菁.海洋科学导论[M].北京:高等教育出版社,2000.
    [5]倪国江.美国海洋科技发展的推进因素及对我国的启示[J].海洋开发与管理,2009,26(6):29-34.
    [6]赵松年,刘峰.德国深海采矿技术的研究[J].金属矿山,1995.228(6):14-17.
    [7]曹惠芬.世界深海油气钻采装备发展趋势[J].船舶物资与市场,2005(1):17-20.
    [8]哲伦.国际深海矿产资源开发技术装备发展一览[J],资源与人居环境,2008(15):38-40.
    [9]卢布,吴凯,杨瑞珍等.我国”十一五”海洋资源科技发展的战略选择[J].中国软科学,2006(7):42-47.
    [10]曹惠芬.我国深海探测技术装备发展现状[J].船舶物资与市场,2005(2):19-22
    [11]吴时国,罗永康.关于我国发展载人深潜器的建议[J].海洋科学,2001,25(11):23-24.
    [12]徐元昌,液压传动与控制[M].上海:同济大学出版社,1998.
    [13]李壮云,葛宜远,陈尧明.液压元件与系统[M].北京:机械工业出版社,1999.
    [14]路甬祥,胡大纮,电液比例控制技术[M].北京:机械工业出版社,1988.
    [15]吴根茂,邱秀敏,王庆丰等,新编实用电液比例技术[M].杭州:浙江大学出版社,2006.
    [16]聂松林,刘银水,余祖耀等.海水液压作业工具系统的研制[J].海洋工程,2004,22(3):9-11
    [17]刘长年,袁子荣.液压控制系统导论[M].北京:科学技术出版社,1987.
    [18]吴世海,邱中梁.深海载人潜水器液压系统研究[J].液压与气动,2004(6):54-56
    [19]Russ. Henke. P.E. Fluid power for 90s:state of the art, trends and developments[C]. Hangzhou, China:2nd ICFP,1989:235-240.
    [20]雷天觉.液压工程手册[M].北京:机械工业出版社,1990.
    [21]赵芳灿.空间和水下武器系统用电子线缆[J].光纤与电缆及其应用技术,1997(2):14-19.
    [22]Hackman D J等,吴晶译.水下工具[M].北京:海洋出版社,1986.
    [23]刘桓龙.水压柱塞泵的润滑基础研究[D].西南交通大学学位论文,2007.11.
    [24]陈建平.水下机器人液压泵站设计研究[J].液压与气动,1997(2):10-11.
    [25]浙江大学.液容型深海水下液压系统不间断液压源[P].中国专利:1133016C,2003.12-31.
    [26]中国海洋大学.深海水压型液压驱动系统[P].中国专利.100439720 C,2008.12.3
    [27]四川海洋特种技术研究所.一种深海水压动力装置[P].中国专利:1162300 C,2004.8.18.
    [28]刘敬喜.一种深海水压动力装置[P].中国专利:1987125 A,,2007.6.27
    [29]R Graham, GGHastings. Development of a Seawater Hydraulic Tool System[R]. The Naval Civil Engineering Laboratory,1982.5.
    [30]S.A.Black. Seawater Hydraulics:Development and Evaluation of an Experimental Diver Tool System[R], The Naval Civil Engineering Laboratory,1984.2.
    [31]D.C.Hicks,C.M.Pleass. Development and Testing of A Composite/Plastic High Pressure Seawater Pump[A]. Proceeding of NCFP,1986:69-78.
    [33]Brookes C A, Fagan M J, James R D. The Selection and Performance of Ceramic Components in Sea water Pump[C]. The 3rd JHPS int. Symp. on Fluid Power.1996.
    [34]Olli Pohls, Olli Rantanen, Timo Kuilko. CBA Water Hydraulic Axial Piston Machine [C]. The 6th Scandinavian Int. conf. on Fluid Power,1999.
    [36]J.A.Currie. The Development of Raw Water Hydraulics[C]. Proc. of 1st Bath Int. Fluid Power Workshop,1988(9):126-130.
    [37]Ulrich Samland. The Use of New Materials in Water Hydraulics[C]. Proc. of 4th Scandinavian Int. Conf. on Fluid Power,1995:181-186.
    [38]J.Terava. Development of Sea Water Hydraulic Power Pack[C]. Proc. of 4th Scandinavian Int. Conf. on Fluid Power,1995:166-170.
    [39]周华.海水液压泵及其基础理论的研究[D].华中科技大学,1997.
    [40]张涛华.海水泵缸孔柱塞副污染磨损机理研究[D].华中科技大学,2007.
    [41]柯坚.现代水压驱动技术[M].成都:西南交通大学,,2002.
    [42]焦素娟.纯水液压柱塞泵及溢流阀关键技术的研究[D].2004.
    [43]唐向阳.纯水液压试验系统的设计及动态特性研究[D].昆明理工大学,2002.
    [44]三浦敏.深潜器用液压装置[J].油压技术,1974,13(2):25-32.
    [45]Perry Corp. PERRY SLINGSBY SYSTEMS[EB].http://www.perryslingsbysystems.com.
    [46]Perry Corp. Power Pack [EB]. http://www.perryslingsbysystems.com/datasheets.html.
    [47]陈建平AMETEK2006水下机器人液压系统分析[J].液压气动与密封,1997(2).
    [48]Ifremer Corp. The Nautile Submersible [EB]. http://www.ifremer.fr/fleet/systemes_sm /engins/nautile/nautile.htm
    [49]P.P.Shirshov Institute of Oceanology. MIR Ⅰ/MIR Ⅱ [EB]. http://www.ocean.ru/eng/
    [50]深海巡航探查機[EB]. http://www.mhi.co.jp/products/ship_list.html.
    [51]Perry Corp. Vehicles_TritonXLR[EB]. http://www.perryslingsbysystems.com /datasheets.html.
    [52]张立勋,王茁,王立权等.自动补偿式深水液压动力源及水下作业工具[J].机床与液压,1999(2):38-40.
    [53]王启明,张君,谭定忠等.水下作业工具深水液压动力源[J],应用科技,2005(1):21-23
    [54]四川海洋特种技术研究所.6000米深海液压工作站[EB]. http://www.schaiyang.com /news/gb.
    [55]崔维成,徐芑南,刘涛.”和谐”号载人深潜器的研制[J].舰船科学技术,2008(1):17-25
    [56]西南交通大学.深海节能型集成液压动力源[P].中国专利:201027715Y,2008.2.17
    [57]维基百科.深海[EB]. http://ja.wikipedia.org/wiki/%E6%B7%B1%E6%B5%B7#.E6. B0.B4.E5.9C.A7.
    [58]陈浩.深海压力自适应充油电机的研究[D].浙江大学学位论文,2007.5.
    [59]吕中枢,王益全,袁宏等.海洋机器人机械手驱动电机的研制[J].沈阳工业大学学报,2002(3):44-47.
    [60]安跃军,孙昌志.深海机器人无刷推进电机混沌现象的数字仿真[J].沈阳工业大学学报,2005(1):16-18.
    [61]Ali Y., Mehrdad N. G N. Design, analysis, manufacture, and test of APC-2/AS4 thermoplastic composite pressure vessels for deep water marine applications[J]. Journal of Composite Materials,2004,38(19):1701-1732
    [62]Liu, Y. H., Zhang B. S., Xue M. D., et al. Limit pressure and design criterion of cylindrical pressure vessel with nozzles[J]. International Journal of Pressure Vessels and Piping,2004,81:619-624
    [63]李传唐,沈丰受.均匀外压环肋圆柱壳的优化设计及应用[J].舰船科学技术, 1992(5):45-52.
    [64]瀧澤美奈子著.深海 の不思议[M].日本实业出版社,2008.3.
    [65]李延明.潜器外置设备液压系统的压力补偿研究[D].浙江大学,,2005.10.
    [66]张嗣伟.基础摩擦学[M].东营:石油大学出版社.2000
    [67]温诗铸.摩擦学原理[M].北京:清华大学出版社,1990.
    [68]KARNOPP D. Computer simulation of stick slip friction in mechanical dynamic systems[J]. Measurement and Control,1985.107(5):100-103.
    [69]IMAGINE S.A. AMEHelp—Utility name:karnstrib1[DB]. AMESim.2007.3.
    [70]Okan Bilkay, Omer Anlagan,Computer simulation of stick-slip motion in machine tool slideways [J]. Tribology International,2004.37:347-351.
    [71]JamesA Turso, Jonathan S L. Intelligent robust control of deteriorated turbofan engines via linear parameter varying quadratic lyapunov function design [R]. NASA/ TM-2004-213375.
    [72]Giarre L, Bauso D, Falugi P, etal. LPV model identification for gain scheduling control: an application to rotating stall and surge control problem [J]. Control Engineering Practice,2006,14(4):1-11.
    [73]FenWu, Stephen Prajna. New solution app roach to polynomial LPV system analysis and synthesis[C]. In Proc.2004 American Control Conference 2004:1362-1367.
    [74]李华聪,王鑫,韩小宝等.航空发动机线性变参数建模方法研究[J].推进技术.2007,28(4):418-421.
    [75]LEECH, CHUNG M J. Gain scheduled state feedback control design technique for flight vehicles [J]. IEEE Trans on Aerospace and Electronic Systems,2001,37 (1): 173-180.
    [76]袁士春,郭晨,史成军.基于线性变参数的船舶运动H∞控制及仿真[J].大连海事大学学报,2007,33(2).
    [77]Doyle J C.Glover K,Khargonekar P P,etal. State space solutions to H2 and H∞ control problems[J]. IEEE Transactions on Automatic Control,1989,34(8):831-846.
    [78]王俊玲.时滞线性参数变化系统的稳定性分析与增益调度控制[M].北京:科学出版社,2008.
    [79]TAL KINGTON H R. Undersea work systems [M]. US:Naval Ocean Systems Center, 1984.
    [80]哈克曼DJ,考戴DW.水下工具[M].北京:海洋出版社,1986.
    [81]陈建平,薛建平.深潜器设计中的压力补偿研究[J].液压与气动,1995(1):16-18.
    [82]孟庆鑫,王茁,魏洪兴等.深水液压动力源液压补偿器研究[J].船舶工程,2000.125(2):60-64.
    [83]房延,郭远明,深海液压油箱的设计[J].液压与气动,2005,11:13-14.
    [84]章艳,罗高生,王峰等.深海压力适应型水下机器人压力补偿技术[J].机电工程,2007.4(4):10-12
    [85]王心明.工程压力容器设计与计算[M].北京:国防工业出版社11986.
    [86]李建国.压力容器设计的力学基础及其标准应用[M].北京:机械工业出版社.2004.
    [87]Knut Asskildt, Peder Hansson. A new measuring sensor for pump control in subsea separators[J]. World pumps,2000(1):30-33.
    [88]陈慧明.深海传感器信号处理与集成系统研制[D].浙江大学,2004.2.
    [89]GEMS Sensors & Controls.830 Series-Wet/Wet Differential Pressure Transducer[DB]. http://www.gemssensors.com/uploadedFiles/Literature/Spec_Sheets/830.pdf
    [90]北京赛亿凌科技有限公司.STP-T61压力变送器[EB].http://www.bj sailing.com.en/ product/images/yali4.pdf
    [91]深圳实利科技有限公司.Model 230-湿/湿差压传感器[EB]. http://www.seelike.com
    [92]GEMS Sensors & Controls. GMES3200 Instruction Bulletin[R]. Gems 3200_HiPressTrans_Web.pdf.
    [93]严楣辉,杨光璧.集成运算放大器分析与应用[M].成都:电子科技大学出版社,1992.
    [94]刘涛.大深度潜水器耐压壳体弹塑性稳定性简易计算方法[J].中国造船,2001.42(3):8-14
    [95]陈盛秒.外压容器设计的公式法及其应用[J].压力容器.,2008.25(11):30-33.
    [96]杨新岐,霍立兴,张玉凤.压力容器接管区应力集中弹塑性有限元分析[J].压力容器,1997,14(3):213-217
    [97]蔡洪能,张国栋,王雅生.厚壁压力容器接管应力分布的三维有限元分析[J].中国机械工程.,2000(7):795-797
    [98]王华侨,赵华萍.基于AWE协同环境下的环形气瓶结构有限元优化分析[J].航天制造技术,2005(2):10.15
    [99]T. Aseer Brabin, T. Christopher, B. Nageswara Rao. Finite element analysis of cylindrical pressure vessels having a misalignment in a circumferential joint [J]. Pressure Vessels and Piping,2010.87(4):197-201
    [100]J. Z. Li, Y. H. Liu, Z. Z. Cen, B. Y. Xu. Finite element analysis for buckling of pressure vessels with ellipsoidal head[J]. Pressure Vessels and Piping,1998.75(2):115-120
    [101]D. S. Kirby, P. M. Wild. Deep drawing of pressure vessel end closures:finite element simulation and validation[J]. Journal of Materials Processing Technology,2000.103(6): 247-260
    [102]Tulay Aksu Ozkul, Nail Kara, Nahit Kumbasar. The transition from moderately thick shells to thick shells of general shape by using finite element analysis[J] Finite Elements in Analysis and Design,2007,43(2):247-260.
    [103]李兵,何正嘉,陈雪峰ANSYS Workbench设计、仿真与优化[M].北京:清华大学出版社.2008.8.
    [104]倪栋,段进,徐久成等,通用有限元分析ANSYS 7.0实例精解[M],北京:电子工业出版社.2003.10.
    [105]ANSYS Inc. ANSYS Workbench User's Manual for Rev.9.0 [M].ANSYS Inc.,2005
    [106]黄嘉琥.压力容器材料实用手册——特种材料[M].北京:化学工业出版社,1994.
    [107]张小波.浅水轻型AUV原理样机初步设计与实验[D].中国海洋大学硕士学位论文.2007
    [108]木原四三.高压下に ぁけゐ油压油 の褚物性[J].油压技術.1974(2):34-42.
    [109]深海.维基百科[EB]..hrtp://ja.wikipedia.org/wiki/%E6%B7%B1%E6%B5%B7#.E6. B0.B4.E5.9C.A7.
    [110]李成功,和彦淼.液压系统建模与仿真分析[M].航空工业出版社,2008.9.
    [111]朱汉华,刘正林,严新平等.滑油运动粘度对尾轴轴颈振动的影响研究[J].武汉理工大学学报(交通科学与工程版).2007.31(6):966-968.
    [112]王国志.电液比例轴向变量柱塞泵的特性研究[D].西南交通大学,,2009.6.
    [113]陈海泉,谷学华,孙玉清.液压介质的仿真[J].大连海事大学学报,2002.28(2):91.93.
    [114]Roelands, C.Correlational aspects of the viscosity-temperature-pressure relationship of lubrication Oils[D]. University Microfilms,1966.
    [115]Scott Bair.The variation of viscosity with temperature and pressure for various real lubricants [J]. Journal of Tribology,2001.123:433-436
    [116]Schmidt A. Viscosity-Pressure-Temperature Behaviour of Mineral and Syntetic Oils[C].12th International Colloquium Tribology,2000.
    [117]金寿松,施高义,全永听.一个三参数粘压关系[J].广西工学院学报,1994,5(2):66-70.
    [118]Shell Oil Company. Shell Tellus Oils DO—Premium quality zinc free detergent hydraulic oils[Z].05/08/2006.
    [119]Knezevic D., Uticaj geometrije zazora u hidraulicnim komponentama automatskog upravljanja naefikasnost rada hidraulicnih sistema [D]. Novi Sad,2006.
    [120]许益民.电液比例控制系统分析与设计[M].北京:机械工业出版社.,2005
    [121]高翔宇,苏东海.比例变量泵控马达系统的PID控制与仿真[J].装备制造技术,2009(2):1-3.
    [122]刘金锟.先进PID控制MATLAB仿真(第2版)[M].北京:电子工业出版社,2004.9
    [123]黎启柏.电液比例控制与数字控制系统[M].机械工业出版社,1997.
    [124]MacDermid Company. Oceanic HW540 E—Environmental Water based Subsea Production Control Fluid[Z].2007.9.10.
    [125]Castrol Offshore Company. Castrol Transaqua HT_technical data[Z].2007.8.29.
    [126]马俊功,王世富,王占林.电液伺服速度系统的模糊增益调度控制[J].北京航空航天大学学报,2007.33(3).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700