深海环境下电液比例变量泵流量特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着陆地资源的匮乏和海洋探测技术的发展,目前,人类已经发现的海洋资源足够人类使用很长一段时间,但目前深海机械的发展还相对落后,主要原因在于深海环境要求深海机械具备抗高压、低故障率、耐低温和耐腐蚀的特性。液压源作为深海机械中重要的动力源设备,其性能的好坏将决定机械的工作性能,而流量作为液压源的重要输出量之一,将直接决定工作装置(如液压缸、液压马达)的运动速度等特性,因此,需要研究变量泵元件参数、系统其它参数和深海环境对液压系统的流量输出特性的影响。本论文的研究分以下几部分:
     (1)介绍液压油的密度、粘度等属性,并结合以往学界的研究成果,得出本论文适用的密度、粘度、有效体积弹性模量等计算公式;
     (2)结合物理定律(牛顿第二定律、动量守恒等),建立深海动力源仿真模型,并通过修改(电液比例阀阀芯质量、控制柱塞质量、PID控制器中Kp等)参数,分析研究阶跃输入信号下系统流量特性,以作为未来开发更为先进的深海液压源系统的参考;
     (3)深海环境下,系统的观察并不直观,因此,本文开发了一款能适用于深海环境的监测系统,该系统以Labview为软体,应用PCI8622采集卡为采集前端,采用基于高级语言的模块化设计简化了程序。此监测与分析程序既可以用于信号的监测与采集,同时,也可完成流量-压力曲线分析和幅频、相频特性分析;
     (4)在863项目的经费支持下,设计了深海液压动力源系统,并采用陆地模拟试验方式测试该系统。本文将阐述试验的试验方法、试验条件、试验设备和试验结论,通过高压模拟试验,研究分析了深海环境和流量输入电压对系统输出流量特性的影响,为深海控制器及变量泵开发提供了参考。
With the deficilent of land resources and marine exploration technology development, at present, mankind has found that resources in dee-sea that can use for a long time, but the development of deep-sea machinery is relatively backward.because the deep sea environment requires the mechanical machine has the resistance with low failure rate, temperature and corrosion resistant properties. Hydraulic source as an important deep-sea mechanical power source equipment, the performance of it will determine the mechanical performance, and flow as an important source of output power, which will directly determine the working device (such as hydraulic cylinders, hydraulic motors) and velocity characteristics, therefore, we must study how the system parameters and the deep sea environment effect system performance of the flow.
     This rearch points the following sections:
     (1) Introduce hydraulic oil density,viscosity and other properties.obtain the formula of the density,viscosity,effective volume modulus of elasticity in this paper,combined with previous academic research results;
     (2) Establish the deep-sea simulation model of the power source with the laws of physics(conservation of momentum,Newton's second law,etc).ansys the output signal of flow by modifying the parameters(electro-hydraulic proportional valve spool quality,the quality of control plunger,Kp of the PID controller,etc),as the future development of more advanced system of deep-sea power sourc reference;
     (3) In the deep-sea environment,the system is not directly observed,therefore,in this paper develop a deep-sea environment monitoring system,which use Labview as the software and use the card PCI8622 as the acquisition front-equipment capture.this monitoring system use the software modules based on high-level language design.the monitoring and analysis program can use for signal monitoring and collection,also can ansys the flow-pressure curve and amplitude frequency,phase-frequency characteristics;
     (4) Design the deep-sea hydraulic power source system in the funding of 863 projects,and use land-based simulation approach to test the power source system.this article will introduce the experimental methods,experimental conditions,experimental equipments and experimental results.through high-pressure simulation experiment,ansys the output signal of flow characteristics with the deep-sea environments and input voltage of the system,as referenc of developing deep-sea controller and variable pump.
引文
[1]吴文海.电液比例变量柱塞泵的动态仿真[D].西南交通大学硕士论文,2006:17-40.
    [2]于红娟.深海液压变量泵用放大器关键技术的研究[D].西南交通大学硕士论文,2009.
    [3]曹学鹏,邓斌,于兰英等.基于混合润滑的深海溢流阀动特性研究[J].机械科学技术,2009.
    [4]吴根茂,邱秀敏,王庆丰等.新编实用电液比例技术[M].杭州:机械工业出版社,1988:20-250.
    [5]赵新泽,曹正,劳海军.基于Simulink的新型电液比例排量柱塞泵仿真分析[J].机床与液压,2010.
    [6]邱中梁,汤国伟.7000米深海液压系统设计研究[J].液压与气动,2006.
    [7]龚相超,卢堃,郜立焕.一种新型径向柱塞泵的比例排量控制[J].甘肃科学学报,2005.
    [8]杨叔子,杨克冲等.机械工程控制基础[M].武汉:华中科技大学出版社,2005:204-208.
    [9]常巍,谢光军,黄朝峰MATLAB R2007基础与提高[M].北京:电子工业出版社,2007:239-285.
    [10]张弓,于兰英,吴文海等.电液比例阀的研究综述及发展趋势[J].FLUID MACHNERY,2008.
    [11]Avramovic D.Storverhalter eins druckbegrenzung-sventile m it nachlaufsteuerung[M]. Aachen:S-AFK, Band 1,1982.
    [12]Wu P.The mathematical analysis and experiments of dynamitic characteristics a poppet valve with series restriction chockes[J], JSME,1987.
    [13]Wu P.Proposition of new type logic valve[J].JSME,1988,154(498):404-410.
    [14]Y.Oda Betriebsverhalter von 2-wege-strom regeven-tile under schiedlicher baup rinzip ion[J].Internation-al Journal of Fluid Power,1985.
    [15]林济猷.液压油概论[M].北京:煤炭工业出版社,1986:10-35.
    [16]孙正培,徐克林,钟经孝.液压技术基础[M].重庆:重庆大学出版社,1991.
    [17]黄鸣辉.轴向变量柱塞泵闭环控制特性研究[D].西南交通大学硕士论文,2007:15-49.
    [18]刘萍,曹慧,邱鹏.虚拟仪器的发展过程及应用[J].山东科学,2009.
    [19]沈兴全.液压传动与控制[M].北京:国防工业出版社,2009.3:35-40.
    [20]丛庄远,刘震北.液压技术基本理论[M].哈尔滨:哈尔滨工业大学出版社,1989.
    [21]刘君华,贾惠芹,丁晖等.虚拟仪器图形化编程语言Labview教程[M].西安:西安电子科技大学出版社.2003.
    [22]雷振山Labview7 Express实用技术教程[M].北京:中国铁道出版社.2004.
    [23]曹学鹏.深海液压源的电液比例特性及关键技术研究[D].西南交通大学博士研究生论文,2010.
    [24]曹学鹏,邓斌,张树忠等.基于线性变参数模型的深海液压源开环压力控制特性研究[.J].机械科学与技术,2010.
    [25]Melvin W.Brown.Sealsnad Sealing Handbook[M].Oxofrd:ELSEVIER Seienee Publishers Limited,1990.
    [26]曹学鹏,邓斌,皱波等.深海开环式液压源的试验研究[J].海洋技术,2009.
    [27]Chung Kyun Kim,Woo Jeon Shim. Analysis of contact force and thermal behaviour of lip seals [J].Tribology Interntional.1996,30(2).
    [28]王国志,吴文海,柯坚等.电液比例闭环变量柱塞泵的实验研究[J].机械科学与技术.2009.
    [29]Gouttefarde M.Analvsis of the wrench-closure workspace of plannar parallel cable-driven mechanism[J].IEEE Tran sactions on Robotics,2006.
    [30]Brahney J H.Hydraulic pumps:the key to power generation[J].Aerospace Engineering, 1991(12).
    [31]H. DeGarcia, N. J. Pierce etc.Advanced Field System Simulation[J].AFWAL-TR-80-2039,April 1980.
    [32]深海采矿技术发展战略概述[J].国际海底开发动态,2004.
    [33]E.O.Doebelin,Measurement Systems:Application and Design.3rd ed[M].New York: Mcgraw Hill Book Co,1976.
    [34]Schmidt N. Senseren fur druck and temperatur[J].International Journal of Fluid Power, 1989.
    [35]J.W.DOBCHUK,P.N.NIKIFORUK.Effect of internal pump dynamics on control piston pressure ripple[J]. Hydraulic&Peaumatics.1990.
    [36]黄勇.新型电液比例阀的设计及其控制方法的研究[D].长沙:湖南大学,2007.
    [37]Case R L.Digital controls of aerospace pumps and motors[J]. Hydraulic& Peaumatics. 1992.
    [38]Manfred Achenbach.Service Life of Seals-numerical Simulation in Sealing Technology Enhances Prognoses[J].Computational Materials Science,2000.
    [39]Ray, levek, Jeff, Monroe, Aircraft Hydraulic System Dynamic Analysis Computer Program Technical Manual[J], AFAPL-TR-76-43,Vol,7,Feb 1977.
    [40]路甬详.电液比例控制技术[M].机械工业出版社,1988.
    [41]Thompson G.Basalt-Seawater Interaction In Hydrothermal Processes at Seafloor Spreading Center[M].New York:Plenum,1983.
    [42]吴时国.海洋亟待保护的宝库[N].人民日报,2010.
    [43]Rafael C.Gonzalez,Richard E.Woods,Steven L.Eddins.Digital Image Processing Using MATLAB[R].Prentice Hall,2003.
    [44]赵宝娟.深海资源开发与海洋环境保护[J].武汉大学环境法研究所,2003.
    [45]刘君华,贾惠芹,丁晖等.A Course of Virtual Instruments Graphics Language Lab VIEW虚拟仪器图形化编程语言LabVIEW教程[M].西安:西安电子科技大学出版社,2003.5:21-49.
    [46]雷振山Lav VIEW 7 Express适用技术教程[M].北京:中国铁道出版社,2004:90-123.
    [47]曹慧芬.国际深海矿产资源开发技术装备发展综述[N].2007.
    [48]董长虹,余啸海MATLAB接口技术与应用[M].北京:国防工业出版社,2004.
    [49]Ross C.K.Heat transfer and hydrothermal fluid flow at flanges on large seafloor sulphide structures[J].Earth and Planetary Science Letters.1997.
    [50]Matthew J.P.Susan L.H.Johnson H.P.Turbulent heat flux in the deep ocean above diffuse hydrothermal vents[J].Preprint submitted to Elsevier Science.
    [51]Naochika Nanba,etc.Development of deep submergence research vehicle"SHINK AI 6500".Mitsubishi Heavy Industries Ltd[J].Technical Review.1990.
    [52]R.B Walters.Hydraulic and Electric-Hydraulic Control System[J]. Marine Chemistry. 2000.
    [53]OKAMURA K,KMOTOH,SAEKIK,etc.Development of a deep-sea in situ Mn analyser and its application for hydrc malphme observation[J]. Marine Chemistry.2001.
    [54]王爱武.深海集矿机的模糊控制系统[J].采矿技术,2009.
    [55]谢侠飞.双向电液比例控制器的设计与实验研究[D].西南交通大学硕士学位论文,2002.
    [56]谢强,邓斌,曹学鹏.深海环境下电液比例阀的动态特性仿真研究[J].机床与液压,2010.
    [57]中科院海洋研究所研究员.深海大洋宝藏多[N].人民日报.2010.
    [58]上海海事大学.世界深海采矿技术的发展[N].海事首页.2010.
    [59]北京阿尔泰科技发展有限公司产品研发部.PCI8622数据采集卡使用说明[N].北京阿尔泰科技发展有限公司.2008.
    [60]路到庆.深海环境模拟器结构设计与研究[D].西南交通大学硕士研究生论文,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700