深水ROV动力传输及供配电系统研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着海洋工程、深海采矿等技术的发展,人类对海洋的探索已逐渐由浅海转向深海。在大深度和危险区域,有缆遥控水下运载器(ROV)发挥了更大的优势。深水动力传输及供配电系统是有缆遥控水下运载器的重要组成部分,为水下机器的正常作业提供稳定、强大的动力保障。动力传输及供配电系统作为ROV系统研究领域的关键技术之一,直接影响着水下机器人的工作性能,近年来一直受到广泛的关注与研究。
     本文结合课题背景,对一种4500米有缆遥控水下运载器的动力传输系统进行了设计和研究,并在此基础上研究和开发了有缆遥控水下运载器的供配电系统。研究结果表明该系统满足此类型ROV的工况和性能要求。
     本文共分五章:
     第一章概述了国内外动力和供配电系统的发展和研究状况,介绍了常用的几种ROV动力传输和供配电方法,分析了它们的特点,最后提出了本论文的研究目的、意义和主要内容。
     第二章结合动力传输系统的设计原则,借鉴国外的成功经验,完成了对4500米级ROV的动力传输系统的设计,通过详细的原理研究,提出采用一种水下电机直接起动,独立变压器供电,驱动恒压变量泵为液压系统提供动力的设计方案,并对关键部件进行研究,最后对起动过程进行仿真试验,完成可行性分析。
     第三章主要针对深水供配电系统的电力控制系统,展开了硬件系统的设计和研究。然后,开发了上位机对控制柜的操作界面,实现控制台对供配电系统的集成。在研发出的软硬件环境下,进行试验、分析和研究,试验结果表明电力控制系统可以很好的实现对4500米级ROV系统的控制。
     第四章根据4500米深水环境下的ROV的作业工况和性能要求,对电力系统进行了保护和监控功能的相关研究,分析了水下供电常见故障现象并提出保护设计方案。最后,为各功能模块设计试验方案,通过研究验证了各功能模块可以有效地对深水电力系统进行保护和预警。
     第五章总结了本文的研究工作,并对下一步工作提出了展望和设想。
As the development of ocean engineering and deep-sea mining, the exploration of ocean has turned from the shallow sea to the deep sea. In the deep and dangerous regions of the deep-sea, Remote Operated Vehicle (ROV) have been playing a crucial role. Deep-sea power and electricity supply and distribution system are significant part of ROV that provides stable power to ROV. As one of the key technologies of ROV system, power and electricity supply and distribution system have aroused wide concern and been widely studied due to its direct effect on the performance of ROV in recent years.
     Concerned with the background of the project, the power driving and transmission system for the 4500-meter cable under-water vehicles was designed and studied in this paper. Moreover, based on these studies, the electricity supply and distribution system for ROV was also investigated and developed. The results showed that the power and electricity supply and distribution system designed in this paper satisfied the operation conditions and performance requirement of ROV.
     This paper was divided into five chapters:
     Chapter 1 presented a survey on the development state and trend of the power and electricity supply and distribution system, and introduced the usual methods of power driving and supply. With analyzing the characteristics of these power systems, we proposed the research purpose, significance and content of this paper.
     In Chapter 2, basing on the design principle of the power driving and transmission systems and taking advantages of successful experience of overseas, we designed the power transmission system for ROV. Moreover, the hydraulic-actuated and line-start scheme were proposed, and the key components were investigated. At the end of this chapter, the feasibility analysis of the whole power transmission system was given by simulation test.
     Chapter 3 aimed to develop the specific hardware part of the power control system. In this chapter, an operation interface of the upper computer over the electric power cabinet is programmed by using LAB VIEW, and an integration of the console over the power supply and distribution system is developed. The results of the experiments showed that under the recent software and hardware conditions, the mother ship can take a good power control of ROV.
     In Chapter 4, according to the operation condition and the performance requirement of ROV, the protection and monitoring modules were developed. Also, kinds of error phenomena were analyzed and optimized. In addition, the simulation experiments of different modules were given. The result of simulation showed that theses modules can protect ROV efficiently.
     A summarization of the total research works in the paper was given in Chapter 5. Moreover, an expectation of the future research work was brought forward.
引文
[1]蒋新松,封锡盛,王棣棠编.水下机器人.沈阳:辽宁科学技术出版社,2000
    [2]任福君,张岚,王殿君,孟庆鑫.水下机器人的发展现状.佳木斯大学学报(自然科学版),2000,18(4):317~320
    [3]李一平.水下机器人——过去、现在和未来.自动化博览,2002(3):153~155
    [4]晏勇,马培荪,王道炎,等.深海ROV及其作业系统综述.机器人,2005,27(1):82~89
    [5]徐德胜,钟金施.潜水器机电设备及系统.上海:交通大学出版社,1991
    [6]曹学鹏,王晓娟,邓斌,等.深海液压动力源发展现状及关键技术.海洋通报,2010,29(4):466~471
    [7]杨华勇,周华,路甬祥.水液压技术的研究现状与发展趋势.中国机械工程,2000,11(12):1430~1433
    [8]孟庆鑫,王茁,魏洪兴,等.深水液压动力源压力补偿器研究.船舶工程,2000(2)60-61
    [9]余雄,唐晓东.国内外几种水下机器人的性能对比与分析.机器人集锦1995-2000,18~21
    [10]唐晓东.英国新型水下机器人HYBALL.机器人技术与应用,1996(2):26~27
    [11]Mellinger E C. Power System for New MBAR1 ROV. Proceedings IEEE Oceans '93, Victoria BC,1993 (2):152-157
    [12]Newman J, Robison B. Development of a dedicated ROV for ocean science. MTS Journal. 1992,26 (4):46-53
    [13]SAAB. Seaeye ROVs. http://www.seaeye.com/rovs.html
    [14]陈建平.我国潜水器发展状况及存在的问题.机器人技术与应用.1999(2):7~9
    [15]许广清.8A4水下机器人控制系统.船舶工程,1997(3):42~45
    [16]中广网.“海龙号"3500米水下机器人成功用于深海探测.http://www.cnr.cn/newscenter/gnxw/200912/t20091209_505735099.html.2009-12-9
    [17]陈宗恒,盛堰,陶军.遥控水下机器人(ROV)结构综述——以hysub130—4000ROV系统为例.海洋地质,2009(3):64~71
    [18]蔡春源编.机电液设计手册.北京:机械工业出版社,1997
    [19]蒋卓,刘银水,吴德发,等.深潜型海水液压动力系统的研究.机床与液压,2010,38(13):4~6
    [20]刘志浩,高世伦.水下作业工具液压动力源的研制.海洋技术,2002,21(2):21~23
    [21]杨曙东,李壮云.介绍几种中高压海水液压泵.液压与气动,2000(4):40~42
    [22]关醒凡.现代泵技术手册.北京:宇航出版社,1995
    [23]陈世坤.电机设计.北京:机械工业出版社,1982
    [24]白旭华等,潜水电机的结构与设计特点,沈阳工业大学学报,2005,27(3):270~273
    [25]杨旭.潜海水电机选型与使用维护.电机与控制应用,2011,38(8):42~44
    [26]Bonnett A H, Soukup G C. Anslysis of failures in squirrel-cage induction motors. IEEE Trans. on Industry Applocation,1998,24 (6):1124-1130
    [27]Cheang T S, Zhang L Z. A new prototype of diagnosis system of inner-faults for three-phase induction motors developed by expert system. ICEMS' 2001,2001:312-316
    [28]罗恩华,罗金梅.三相异步电动机起动方法的比较与选择.广东水利电力职业技术学院学报,2010,8(2):32~34
    [29]许实章编.电机学.北京:机械工业出版社,1996
    [30]甘世红,楮建新,顾伟,等.高压异步电动机软起动方法综述.电气传动,2005,35(10):3-6
    [31]Nevelsteen J, Aragon H. Starting of Large Motors-methods and Economics. IEEE Transactions on Industry Applications,1989,25 (6):1012-1018
    [32]唐介编.电机与拖动.北京:高等教育出版社,2003
    [33]姚志松编.中小型变压器实用全书.2版.北京:机械工业出版社,2008
    [34]Forrester N. Power transformer design for tethered underwater vehicles. Proceedings IEEE Oceans '92, Newport, RI,1992:877-882
    [35]张苏青,朱雄心.从电机系统节能看独立变压器供电的能量损失.电气传动,2007,37(7):32~35
    [36]汤继东,吴英煜.不同结线组别配电变压器的应用.变压器,1987,24(6):19~22
    [37]杨耀政.变压器Dy和Yy结线对抑制三次谐波的比较.山西建筑,2005,31(5):114~115
    [38]欧阳明.Dyn11配电变压器的经济性能分析.变压器,2002,39(6):39~40
    [39]Mellinger E C. High voltage testing of an ROV electro-optical tether cable. Proceedings IEEE Oceans '02, Honolulu, HI,2001 (2):1145-1150
    [40]许正明.遥控潜器脐带电缆的设计与选用.海洋工程,1991,9(2):91~100
    [41]贺益康.交流电机的计算机仿真.北京:科学出版社,1990
    [42]薛定宇,陈阳泉.基于MATLAB/SIMULINK的系统仿真技术与应用.北京:清华大学出版社,2002
    [43]潘晓晟,郝世勇编MATLAB电机仿真精华50例.北京:电子工业出版社,2007
    [44]刘志刚编.电力电子学.北京:清华大学出版社,2004
    [45]杨耀灿编.配电线路及动力与照明.北京:中国铁道出版社,2004
    [46]张明勋编.电力电子设备设计和应用手册.北京:机械工业出版社,1990
    [47]蔡志平,曹国荣,蒋耀生.大功率整流装置主电路设计的基本原则及要素.大功率变流技术,2009(3):27~29
    [48]史程伟,吴以新.电气传动控制柜设计分析.一重技术,2002(1):24-25
    [49]王宏,张铁.10千伏高压开关柜常见故障分析和对策措施.中国电力教育,2008
    [50]Slade P G, Li W, Mayo S, etc. Vacuum interrupter, high reliability component of distribution switches, circuit breakers and contactors. Journal of Zhejiang University SCIENCE A,2007 (3):335-342
    [51]河南电力技师学院编.配电线路工.北京:中国电力出版社,2008
    [52]高静.低压大容量电动机控制回路中低压断路器的选用.兰州石化职业技术学院学报,2001,1(1):16~17
    [53]吴惠珠.塑料外壳式断路器的原理及在配电设计中的应用.西部探矿工程,2006(1)183~184
    [54]Yoerger D, Newman J, Slotine J J. Supervisory control system for the JASON ROV. IEEE Journal of Oceanic Engineering,1986,11 (3):392-400
    [55]祝立新,李国庆,陶立刚,等.电流和电压互感器的常用接线方式及使用注意事项.林业机械与木工设备,2003,31(6):32~34
    [56]李茜昕.电压互感器的一、二次断压的判断.科技资讯,2008(31):113~114
    [57]徐翊保,吕秋芬,郭淑珍.三相异步电机的电源断相、过压、欠压保护电路.实验室科学,2006(2):107~108
    [58]吕惠芳.三相异步电动机的缺相保护.机械工程与自动化,2008(2):158~160
    [59]林海雪.三相电压不平衡标准.大众用电,2006(6):39~42
    [60]周志敏.漏电保护装置安装和动作原因分析.电气开关,2003(5):1~4
    [61]莫妃炳.6.3kV系统接地保护的动作行为分析.继电器,2002,30(6):58~59

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700