配筋砌块砌体剪力墙结构弹塑性地震反应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
配筋砌块砌体剪力墙结构是在国内是一种比较年轻的结构体系,其应用和研究有待于也必将进一步发展。本文对配筋砌块砌体剪力墙结构进行弹塑性地震反应分析,具体工作包括以下几个方面:
     (1)根据数值模拟分析结果,总结出配筋砌块砌体剪力墙构件更为精细化的恢复力模型,适用于不同截面、不同材料强度的各种墙片,给出了特征点参数。通过园南小区及简单结构的计算表明,程序正确实现了精细化的悬臂梁模型和四连杆模型滞回规则。
     (2)采用MSSP程序及修改后悬臂梁模型、四连杆模型对同一结构进行分析。同一墙片分析结果表明:耗能能力MSSP程序最强,悬臂梁模型最差,构件的延性悬臂梁模型最好,MSSP程序最差,四连杆模型均介于二者之间。
     (3)对不同烈度下190mm厚的对称配筋砌块砌体剪力墙结构抗震设防区最大适用高度给出如下建议:7度设防区,建议高度限制为56m;8度设防区,设计基本地震加速度为0.20g时,建议高度限制为56m,设计基本地震加速度为0.30g时,建议高度限制为50m;9度设防区,建议高度限制为43m。
     (4)建议8层及以上的偏心结构,设计时对底部三层进行加强,小于8层的结构,对底部两层进行加强。
     (5)对不同烈度下190mm厚的均匀偏心配筋砌块砌体剪力墙结构抗震设防区最大适用高度给出如下建议:7度设防区,设计基本地震加速度为0.10g时,建议高度限制为56m;设计基本地震加速度为0.15g时,建议高度限制为54m;8度设防区,设计基本地震加速度为0.20g时,建议高度限制为51m,设计基本地震加速度为0.30g时,建议高度限制为39m;9度设防区,建议高度限制为21m。
     (6)偏心结构边缘构件通常成为薄弱构件,建议按需要对边缘构件加强设计。截面宽大的边缘构件通常先破坏。因此建议主要的抗侧力构件尽量避免置于结构边缘位置,保证这些构件破坏晚于次要构件,能够大大提高结构的抗震能力。
Reinforced concrete masonry shear wall structure is a young structural system in the country,its application and research need to be further developed. The analysis of elasto-plastic seismic response of reinforced masonry shear wall structure has been carried out in this paper, the main work includes the following aspects:
     (1) A refined hysteretic rule for reinforced concrete masonry shear wall element was summarized in accordance with the result of numerical simulation analysis. For wall pieces with different sections and material strength, the regression equation and the hysteresis rules of feature point parameters were given out, and the refined restoring force model was summed up. The analysis results of Yuan Nan Community and symmetrical structures indicate that the program realize the hysteresis rules of cantilever model and four-link model correctly.
     (2) Analysis the same structure with MSSP program, refined cantilever model and four-link model, the analysis result of the same wall piece indicate that energy dissipation capacity of MSSP program restoring force model is the best, and the capacity of cantilever model is the worst. But for the ductility of the component, the cantilever model is the best, the MSSP program is the worst, and the four-link model is between them.
     (3) By elasto-plastic earthquake response analysis of symmetrical structures, the following suggestion about maximum height of reinforced concrete masonry shear wall structure in earthquake zone whose thickness is 190mm was given out: For 7 degree fortification areas, the recommended height limit is 56m. For 8 degree fortification areas, in which the basic design earthquake acceleration is 0.20g, the recommended height limit is 56m, in which the basic design earthquake acceleration is 0.30g, the recommended height limit is 50m. For 9 degree fortification areas, the recommended height limit is 43m.
     (4) It was recommanded in this paper that for the eccentric structure with 8 layers and above, the bottom three layer can be strengthened in design, for the eccentric structure with less than 8 layers, the bottom two layer can be strengthened.
     (5) The following suggestion about maximum height of eccentric reinforced concrete masonry shear wall structure in earthquake zone whose thickness is 190mm was given out: For 7 degree fortification areas, in which thebasic design earthquake acceleration is0.10g,the recommended height limit is 56m, in which the basic design earthquake acceleration is0.15g, the recommended height limit is 54m. For 8 degree fortification areas, in which thebasic design earthquake acceleration is 0.20g, the recommended height limit is 51m, in which thebasic design earthquake acceleration is 0.30g, the recommended height limit is 39m. For 9 degree fortification areas, the recommended height limit is 21m.
     (6) Because of reverse reaction, the edge component is usually a weak component, representing the first damage. Proposed design as needed to strengthen position on the edge of the design. Large cross-section of the edge component, usually were the first destroyed. Therefore recommended that the main pit side of the force components placed in the structure to avoid the edge, and ensure that these components are destroyed later in the other minor components, can greatly enhance the seismic capacity.
引文
[1]冯远,周劲炜等.汶川地震建筑物震害.四川建筑结构研究. 2009.
    [2]蔡贤辉,李刚,程耿东.重视砌体结构的抗震构造和加固技术的研究和推广.汶川地震建筑灾害调查与灾后重建分析报高[C]. 2008.
    [3]张君.小高层配筋砌块住宅楼初探.点击新型墙材. 2003, (9): 17-18.
    [4]张旭伟,付忠林,王凤来.配筋砌块短肢砌体剪力墙在灾后重建中的优势分析[J].施工技术. 2009, 38(5): 29-31.
    [5]王凤来,陈再现.配筋砌块砌体结构承重强体系反战概况及应用效率分析[J].新型墙材. 2009,(3): 43-46.
    [6]王凤来,翟长海,支旭东,全晓霞,梅久斌,谭强. 5.12汶川地震中民用房屋的震害分析与维修建议.汶川地震建筑灾害调查与灾后重建分析报告[R]. 2008.
    [7]王凤来,陈再现.配筋砌块砌体结构承重强体系反战概况及应用效率分析[J].新型墙材. 2009, (3): 43-46.
    [8]高连玉.中国工程建设标准化协会第五届砌体结构技术委员会工作会议报(R) 2004.11
    [9]张松,吕西林,章红梅.钢筋混凝土剪力墙构件恢复力模型.沈阳建筑大学学报(自然科学版). 2009, 25( 4) : 645-649.
    [10]现代配筋砌体结构. Narendra Taly,周克荣译.上海:同济大学出版社. 2004.
    [11]方建邦.砌体建筑结构设计和施工技术的研究.工业建筑. 2004. 34(12): 70-72
    [12]夏济洪.简述砌块砌体的发展和应用.建筑与工程. 2009, 610.
    [13]李平.配筋砌块砌体剪力墙结构非线性有限元分析[D].长沙:湖南大学学位论文.2005.
    [14]杨伟军,施楚贤.国外砌体规范关于配筋砌体剪力墙承载力计算的分析研究与借鉴.工程力学(增刊). 1999, 245-249
    [15]王凤来,张厚.黑龙江省发展墙用承重混凝土砌块的新进展.建筑砌块与砌块建筑. 2011, 8-10.
    [16]吕荣伟.砌体基本力学性能及高层配筋砌块砌体剪力墙抗震性能研究[D].长沙:湖南大学学位论文.2007.
    [17] Werner Seim, Uwe Pfeiffer. Local post-strengthening of masonry structures with fiber-reinforced polymers (FRPs). Construction and Building Materials. 25 (2011)3393–3403.
    [18]冯广明. FRP加固砌体结构平面内剪切性能研究综述.山西建筑. 2011.
    [19]姜洪斌,唐岱新.配筋混凝土小砌块剪力墙承载力试验研究.哈尔滨建筑大学学报.2001.
    [20]全成华,唐岱新.高强砌块配筋砌体剪力墙抗剪性能研究.建筑结构学报. 2002.
    [21] Alok Madan, M.ASCE, Andrei M. Reinhorn, F.ASCE, John B. Mander,M.ASCE Fiber-Element Model of Posttensioned Hollow BlockMasonry Shear Walls under Reversed Cyclic Lateral Loading. Journal of structural engineering, 2008.
    [22] M. Harajli, H. ElKhatib and J. Tomas San-Jose. Static and Cyclic Out-of-Plane Response of Masonry Walls Strengthened Using Textile-Mortar System. Journal of materials in civil engineering. 2010.
    [23]潘静,刘明.高厚比对配筋砌块砌体柱偏压受力性能影响试验研究.混凝土. 2008(5), 93-97.
    [24] Xu Zipeng、Huang Liang、Wu Zhiwei.Experimental Research on Seismic Behavior of Reinforced N-block Masonry Shear Wall. Earth and Space 2010: Engineering, Science, Construction and Operations in Challenging Environments. 2806-2820
    [25] Seible F, Priestley M J N, Kingsley G R, et al. Seismicresponse offull-scale five-storyreinforced-masonrybuilding[J]. Journal of Structural Engineering, 1994, 120(3) : 925-947.
    [26]蔡勇,施楚贤.配筋砌块砌体剪力墙1/4比例模型房屋抗震性能试验研究.土木工程学报. 2007.
    [27] Anil K. Chopra. Dynamics of Structures: Theory and Applications to Earthquake Engineering[M]. Second Edition
    [28]张义平,李夕兵,左宇军.爆破振动信号的HHT分析与应用[M],北京:冶金工业出版社, 2008.
    [29]苏小卒,朱伯龙.预应力混凝土框架的振动台实验及非线性系统识别.同济大学学报. 1990, 18(2), 157-166.
    [30] Penizen J. Dynamic response of elasto-plastic frames[J]. Journal of Structural Division, ASCE, 1962, 88(ST7): 1322-1340. [ 31 ] Clough.R.W., The finite element method in structure mechanics,in Stress Analysis,ed.by O.C.Zienkiewicz and G.S.Holister,Wiley,London, 85~119, 1965.
    [32] Clough R W and Johnston S B. Effect of stiffness degradation on earthquake ductility requirements[A]. Proc. 2thJappan Earth. Engng. Symp.[C].1966, Tokyo Japan.
    [33] Takeda T, Sozen M A and Nielson N N. Reinforced concrete response to simulated earthquakes[J]. Journal of Structural Division, ASCE, 1970, 96(ST12):2557-2572.
    [34] Saiidi M. Hysteresis models for reinforced concrete[J]. Journal of Structural Division, ASCE, 1982,108(ST5):1077-1087.
    [35] Park Y J, Reinhorn AMand Kunnath S K. IDARC: inelastic damage analysis of reinforced concrete frame-shear-wall structures[R]. Technical Report,No. NCEER-87-0008, State Univ. of NewYork, 1987.
    [36]朱伯龙.钢筋混凝土构件恢复力特性的试验研究-国外建筑抗震评述之十一[R].中国建筑科学研究院情报所, 1978.
    [37]张弢,.许淑芳.钢筋混凝土空心剪力墙恢复力模型研究.建筑结构(增刊). 2010, 40, 431-433.
    [38]张国军,吕西林,刘伯权.高强混凝土框架柱的恢复力模型研究.工程力学. 2007, 24(3): 83~89.
    [39]李国强,崔大光.骨混凝土梁柱框支剪力墙试验与恢复力模型研究.建筑结构学报. 2008, 29(4): 73~80
    [40]徐亚丰,赵敬义,李宁,卢小一.钢骨-钢管混凝土柱恢复力模型.沈阳建筑大学学(自然科学版). 2009, 25(3): 482-485.
    [41]钱稼茹,刘明学. FRP-混凝土-钢双壁空心管柱塑性铰区弯矩-转角恢复力模型.工程力学. 2008, 25(11): 48-52.
    [42]阎石,肖潇,阚立新,孟庆国.高强钢筋高强混凝土柱恢复力模型.沈阳建筑大学学报(自然科学版). 2005, 21(2): 81-85.
    [43]齐岳,郑文忠.低周反复荷载下核心高强混凝土柱抗震性能试验研究.湖南大学学报(自然科学版). 2009, 36(12): 6-12.
    [44]齐岳,郑文忠.核心高强混凝土柱荷载-位移恢复力模型.哈尔滨工业大学学报. 2010, 42(4): 531-535.
    [45]李俊华,李玉顺,王建民,王新堂,薛建阳.型钢混凝土柱粘结滑移本构关系与粘结滑移恢复力模型.土木工程学报. 2010, 43(3), 46-52.
    [46]魏绪.密肋复合墙结构恢复力模型研究[D].北京:北京交通大学硕士学位论文. 2008.
    [47]田英侠,姚谦峰.密肋复合墙板恢复力模型研究.西安工业大学学报. 2010, 30(3): 243-247.
    [48]王凤来,费洪涛.配筋砌块短肢砌体剪力墙抗震性能试验研究.建筑结构学报. 2009, 30(3): 71-78.
    [49]张洪学,曹宏涛,全春花,兰云海,赵银实.张配筋砌块砌体短肢剪力墙结构性能试验研究.吉林建筑工程学院学报. 2009, 26(2): 15-18.
    [50] M.T.Shedid1, W.W.El-Dakhakhni, R.G. Drysdale. Analysis of Seismic Response of Fully Grouted Reinforced Concrete Masonry Shear Walls. The 14th World Conference on Earthquake Engineering. October 12-17, 2008, Beijing, China
    [51]项莉莉.配筋砌块砌体矩形截面剪力墙滞回性能数值仿真分析[D].哈尔滨:哈尔滨工业大学学位论文. 2010.
    [52] W.Page. Finite ElementModel for Masonry. Journal of Structural Engineering, ASCE, 1997, 104(8): 1267-1285.
    [53]翟希梅,于芳.偏压下配筋砌块墙体的非线性有限元分析.哈尔滨工业大学学报. 2007, 39(8): 1196-1200.
    [54]李兵,李宏男.钢筋混凝土剪力墙弹塑性分析方法.地震工程与工程震动. 2004, 24(1): 76-81.
    [55]马志林,史庆轩,王伟.钢筋混凝土联肢剪力墙弹塑性分析.建筑科学与工程学报. 2010, 27(1): 60-72.
    [56]程才源,郑颐,吴明舜.配筋砌体单层房屋模型振动台试验研究.建筑结构. 2005, 35(9): 28-33.
    [57]许奎山,程才渊.基于MIDAS/Gen的配筋砌体剪力墙结构静力弹塑性分析.建筑砌块与砌块建筑. 2009, 17-19.
    [58]王铁英,王焕定,张永山.高层配筋砌块砌体住宅弹塑性地震反应分析.哈尔滨建筑大学学报. 2002, 35(3): 24-29.
    [59]于德湖.配筋砌块砌体剪力墙偏心结构地震响应及实用设计方法[D].哈尔滨:哈尔滨工业大学学位论文. 2003.
    [60]白秀芳.非均匀偏心配筋砌块砌体结构地震反应及实用设计方法[D].哈尔滨:哈尔滨工业大学学位论文. 2005.
    [61]方开泰.均匀设计与均匀设计表,科学出版社, 1994.
    [62]钱义良,吴明舜. 18层混凝土小型砌块配筋砌体房屋墙体的静力和抗震实验研究[A].西班牙配筋砌体研讨会论文集[C].马德里:土木工程协会. 2000.
    [63]施楚贤,周海兵.配筋砌体剪力墙抗震性能.建筑结构学报, 1997, 18(6): 32-40.
    [64]黄靓.框支配筋砌块砌体剪力墙多自由度子结构拟动力实验研究及非线性地震分析[D].长沙:湖南大学大学学位论文. 2005.
    [65]蔡勇.配筋混凝土砌块砌体框支剪力墙房屋抗震性能研究[D].长沙:湖南大学大学学位论文. 2005.
    [66]焦柯,赖鸿立,陈星,黄真康.动力弹塑性分析软件GSEPA在高层结构中的应用.第十四届全国工程设计计算机应用学术会议论文文集[C].杭州: 2008,121-126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700