线性自抗扰控制策略在异步电机调速系统中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代工业的发展对异步电动机的性能提出了越来越高的要求,而异步电动机难以建立精确的数学模型和PI调节器的矢量控制系统参数鲁棒性差两大问题的存在使得上述要求难以满足。为此,本文首次将线性自抗扰控制器(LADRC)用于异步电机调速系统。线性自抗扰控制器是在自抗扰控制器的基础上发展起来的,但它不是简单的倒退,应该说,自抗扰控制器是线性自抗扰控制器发展的必经阶段,线性自抗扰控制器是为解决自抗扰控制器参数多且整定困难的问题提出来的,用它代替PID调节器对异步电动机进行控制,既能满足对异步电机高性能的要求,又便于工程中使用。
     LADRC的结构决定了它不需要电机的精确数学模型,通过线性扩张状态观测器估计出电机模型中的耦合项及参数摄动等引起的总扰动并加以补偿,实现了磁链和转矩的完全解耦,使系统线性化为积分器串联型结构,从而简化了控制对象,提高了控制性能。另外,文中对线性自抗扰控制器的稳定性进行了证明。
     经过分析发现,由于都是建立在α-β坐标系中,MRAS磁链观测器和基于ESO的磁链观测器观测出的α、β轴的磁链正、负半周幅值不等,使得总磁链具有纹波,并且,上述两个磁链观测器也存在对转子电阻的鲁棒性差的问题。文中引入一个建立在旋转坐标系中的磁链观测器,结构简单,对转子电阻具有固有的鲁棒性。由于此观测器和基于LADRC的矢量控制都建立在旋转坐标系中,因此,控制器和磁链观测器之间不需要坐标变换,简化了系统结构。
     基于LADRC和磁链观测器,建立了具有转速、磁链和d、q轴电流环的异步电机调速系统。在磁链观测的基础上,根据矢量控制理论,采用q轴磁链收敛于零估计转速,从而建立了无速度传感器矢量控制异步电机调速系统。
     利用MATLAB/SIMULINK对上述两个系统在空载起动、突加负载、转速变化、转子电阻变化、转动惯量变化等情况进行仿真,并与PID异步电机调速系统进行了比较。结果表明此控制方案具有很好的动、静态性能;对负载扰动、电机参数变化等具有很强的鲁棒性;结构简单,设计和参数调节容易。而这些使LADRC将成为新型实用数字控制技术。
     最后,将线性自抗扰控制器应用于升船机控制中,解决了多电机同步控制问题,满足了升船机中平稳加、减速控制、出力均衡控制及冗余控制的要求。
As the development of modern industry, requirement to control of induction motor is becoming higher and higher. However, it is difficult to meet because of two problems that the poor robustness to time-varying motor parameter exists in the common vector control system and the accurate mathematical model of induction motor is built difficultly. Therefore, the Linear Active Disturbance Rejection Controller (LADRC) is firstly used in the induction motor drive in this dissertation. LADRC has been developed based on Active Disturbance Rejection Controller (ADRC). This is not countermarch, should say, ADRC is an inevitable stage of LADRC. LADRC is proposed in order to solve the problem that ADRC has too many parameters and is difficult to tune. If LADRC is used in induction motor drive instead of PID, it not only meets the requirement to induction motor but also is convenient to engineering application.
     Because of the special structure, LADRC is not overly dependent on the accurate mathematical model of motor and can estimate and compensate the general disturbance that includes the unknown internal dynamics and the external disturbance by linear extended state observer, so the rotor flux decouples with torque completely and the complex control of inductor motor is simplified to the linear control. The result is the performance of the system is improved. Moreover, the stability of LADRC is proved.
     After analysis, it is found that positive and negative amplitudes ofα-axis rotor flux obtained by MRAS or ESO flux observer are not equal, andβ-axis rotor flux is the same, as a result, the total rotor flux has ripple. The reason is that MRAS and ESO flux observers are built inα-βCoordinate. Furthermore, the above flux observers are not robust enough to rotor resistance. The flux observer presented in this dissertation is in rotating reference frame. It is simple and inherently robust to rotor resistance. In addition, because this rotor flux observer and vector control based on LADRC are in rotating reference frame, coordinate Transformation is not needed between them, so the structure of the system is simplified.
     The induction motor drive with speed, rotor flux, d-axis and q-axis current loops is built based on LADRC and rotor flux observer. According to vector control theory and on the foundation of rotor flux estimation, we utilize the q-axis rotor flux converging to zero for speed estimation and a sensorless vector control induction motor drive is also built.
     To verify the performances of the above systems, A lot of comparative simulations were made with the induction motor drive using PID regulator under set point change, large inertia and rotor resistance variations, and external torque disturbance in MATLAB/SIMULINK. Simulation results show that the above control strategy has better static and dynamic performances, strong robustness to external torque disturbance and prarmeter perturbation, as well as simple structure , easy design and parameter tuning. All of these will make LADRC become a novel, practical and digital control technology.
     Lastly, LADRC is used in control system of ship elevator, which is a multi-motor control system. Simulation results show that LADRC can meet the requirements of ship elecator to smooth accelerating and decelerating control, load balancing control and redundant control.
引文
[ 1 ]陈伯时,电力拖动自动控制系统—运动控制系统,北京:机械工业出版社,2006
    [ 2 ]许大中,交流电机调速理论,浙江:浙江大学出版社,1991
    [ 3 ]袁寿财,朱长纯,现代交流传动控制技术的回顾与展望,光机电信息,2002,(6):29~37
    [ 4 ]李良钰,交流调速技术概述与发展方向,机械制造与自动化,2008,(3),154~156
    [ 5 ] T G Park,K S Lee,SMC - based adaptive input - output linearising control ofinduction motors,IEE. Proc.– Control Theory Appl.,1998,145(1):55~62
    [ 6 ]葛宝明,王祥珩,苏鹏声,交流传动系统控制策略综述,电气传动自动化,2001,23(4):3~9
    [ 7 ]刘宗富,二十一世纪的电气传动,电气传动自动化,1997,19 (4):3~7
    [ 8 ]李夙,异步电动机直接转矩控制,北京:机械工业出版社,1998
    [ 9 ]胡虎,李永东,交流电机直接转矩控制策略—现状与趋势,电气传动,2004,34(3):3~8,33
    [ 10 ] Jean-Jacques,E.Slotine,Weipeng Li著,程代展译,应用非线性控制,北京:机械工业出版社,2006
    [ 11 ]姚莉,曹岳辉,非线性反馈线性化方法在控制pH过程中的应用,自动化技术与应用,2007,26(2):23~25
    [ 12 ]刘国海,戴先中,感应电动机调速系统的解耦控制,电工技术学报,2001,16(5):30~34
    [ 13 ]张春朋,林飞,宋文超,基于直接反馈线性化的异步电动机非线性控制,中国电机工程学报,2003,23(2):99~102
    [ 14 ]曹建荣等,基于逆系统理论的感应电动机解耦控制的研究,电工技术学报,1999,14(1):7~11
    [ 15 ]苏位峰,异步电机自抗扰矢量控制调速系统:[博士学位论文],北京清华大学电机工程与应用电子技术系,2004
    [ 16 ]胡俊达,胡慧,邹文斌等,基于滑模变结构控制的异步电机速度控制的应用研究,大电机技术,2006(5):32~35
    [ 17 ]黄志,程小华,基于滑模变结构矢量控制的异步电机调速,电机与控制应用,27,34(4):45~48
    [ 18 ] Benchaib. A.,Tadjine M.,On DSP-based real time control of an inductionmotor using sliding mode,IEEE Proceedings:VSS,1996(1),78~83
    [ 19 ]韩京清,自抗扰控制器及其应用,控制与决策,1998,13(1):19~23
    [ 20 ]韩京清,从PID技术到自抗扰控制技术,控制工程,2002,9(3):13~18
    [ 21 ]黄一,张文革,自抗扰控制器的发展,控制理论与应用,2002,19(4):485~492
    [ 22 ]韩京清,自抗扰控制技术,前沿科学,2007,(1):24~31
    [ 23 ]张荣,韩京清,用模型补偿自抗扰控制器进行参数辨识,控制理论与应用,2002,19(4):485~492
    [ 24 ] Huang Yi,Xu Kekang,Han Jingqing,et al,Flight control design using extended state observer and non-smooth feedback,Proc.of the 40th IEEE Conf. on Decision and Control,2001,1:223~228
    [ 25 ]谢为民,液压机面同步系统和非线性状态误差反馈控制理论的研究:[博士学位论文],浙江浙江大学机械系,1996
    [ 26 ]周惠兴,制造系统直线伺服单元的研究与应用:[博士学位论文],北京清华大学精密仪器系,1998
    [ 27 ]高龙,韩俊生,李崇坚等,非线性鲁棒自抗扰控制器在电力系统中的应用,清华大学学报,2000,40(3):59~63
    [ 28 ] M.W.Baks,Z.H.Luo,J.Q.Han,et al,ESO for motion control of high speed high precision robot,Japanese Robotics Society Journal,2000,18(2) :244~251
    [ 29 ] B. Sun and Z. Gao,A DSP-based active disturbance rejection control design for a 1kW H-bridge DC-DC power converter, IEEE Transactions on Industrial Electronics,2005,52(5) :1271~1277
    [ 30 ] Y. Hou, Z. Gao, F. Jiang, and B.T. Boulter,Active disturbance rejection control for web tension regulation,Proc. of the 40th IEEE Conference on Decision and Control,Orlando,FL,2001,12:4974~4979
    [ 31 ] Chen Zhongzhou, Zheng Qing, Gao Zhiqiang, Active disturbance rejection control of chemical processes,16th IEEE International Conference on Control Applications,Part of IEEE Multi-conference on Systems and Control,Singapore,2007,10:855~861
    [ 32 ]冯光,黄立培,朱东起,异步电机的新型非线性自抗扰控制器的研究,清华大学学报,1999,39(3):30~33
    [ 33 ]张春朋,林飞,宋文超等,基于定子电流矢量定向的异步电机转子磁链估计器及其应用研究,中国电机工程学报,2003,23(8):155~158
    [ 34 ] Feng Guang,Liu Yanfei,Huang Lipei,A new robust control to improve the dynamic performance of induction motors,PESC,2001,2:17~21
    [ 35 ] Gao Zhiqiang,Hu Shaohua,Jiang Fangjun,A novel motion control design approach based on active disturbance rejection,IEEE Conf.on Decision and Control,2001,5:4877~4882
    [ 36 ] Hou Zengguang,Huang Yuancan,Han Jingqing,Active noise cancellation with a nonlinear control mechanism,IEEE Conf.on Decision and Control,1998,2:1577~1578
    [ 37 ] Liu Liying,Xu Zhenlin,Mei Qiang,Induction motor drive system based on ADRC and PI regulator,2009 International Workshop on Intelligent and Application,2009,1155~1158
    [ 38 ] Liu Liying,Xu Zhenlin,Mei Qiang,A sensorless vector control induction motor drive based on ADRC and flux observer,2009 Chinese Control and Decision Conference,2009,945~948
    [ 39 ]刘鸣,邵诚,异步电动机的自抗扰控制器及其参数整定,控制与决策,2003,18(5):540~544
    [ 40 ] Sun Liming,Jiang Xuezhi,Li Donghai,Tuning of auto-disturbance-rejection controller for a class of nonlinear plants,ACTA AUTOMATICA SINCA,2004,30(2):251~254
    [ 41 ] Gao Zhiqiang , Scaling and bandwidth-parameterization based controller tuning,Proceedings of American Control Conference,2003,4989~4996
    [ 42 ] Zheng Qing,Gao Zhiqiang,Motion control opmitimization:problem and solutions,Interntional Journal of Intelligent control and systems,2006,10,(4):269~276
    [ 43 ]刘丽英,许镇琳,梅强,基于线性自抗扰控制器的异步电机调速系统,组合机床与自动化加工技术,2009,(5):56~60
    [ 44 ] Liu Liying,Xu Zhenlin,Mei Qiang,Induction motor drive system based on the flux observer LESO and LADRC,2009,GCIS 2009,248~252
    [ 45 ]李永东,李明才,感应电机高性能无速度传感器控制系统—回顾、现状与展望,电气传动,2004,(1):4~10
    [ 46 ]陈伯时,杨耕,无速度传感器高性能交流调速控制的三条思路及其发展建议,电气传动,2006,36(1):3~8
    [ 47 ]周一恒,严家明,异步电机矢量控制的开环磁通观测及其仿真研究,上海大中型电机,2009,(2):3~6,30
    [ 48 ] Ohtani T,Takada N,Tanaka K,Vector control of induction motor without shaft encoder,IEEE Trans.Ind.Applicat,1992,28(1):157~164
    [ 49 ] Hu Jun,Wu Bin,New integration algorithms for estimating motor flux over a wide speed range. IEEE Trans.Pow.Electron,1998,13(5):970~972
    [ 50 ]冯垛生,曾岳南,无速度传感器矢量控制原理与实践,北京:机械工业出版社,2006
    [ 51 ]周亚丽,李永东,郑泽东,基于MRAS的感应电机无速度传感器矢量控制,电气传动2009,39 (4):3~8
    [ 52 ]韩京清,一类不确定对象的扩张状态观测器,控制与决策,1995,10(1):85~88
    [ 53 ]黄远灿,韩京清,扩张状态观测器用于连续系统辨识,控制与决策,1998,13(4):381~384
    [ 54 ]韩京清,张荣,二阶扩张状态观测器的误差分析,系统科学与数学,1999,19(4):465~471
    [ 55 ]黄一,韩京清,非线性连续二阶扩张状态观测器的分析与设计,科学通报,2000,45(13):1373~1379
    [ 56 ]苏位峰,孙旭东,李发海,基于ESO的异步电机无速度传感器矢量控制,清华大学学报(自然科学版),2005,45(4):565~568
    [ 57 ]林飞,张春朋,宋文超等,基于扩张状态观测器的感应电机转子磁链观测,中国电机工程学报,2003,23(4):145~147
    [ 58 ]林飞,孙湖,胡广艳等,带有转子电阻补偿的异步电机电流型磁链观测器,电气传动,2006,36(10):7~9
    [ 59 ]郑军,王云宽,张欣等,基于闭环扩张状态观测器的转子磁链观测,电机与控制应用,2008,35(10):21~24
    [ 60 ]韩京清,线性系统的结构与反馈系统计算,控制理论与应用学术年会论文集,1981,43~55
    [ 61 ]韩京清,反馈系统中的线性与非线性,控制与决策,1988,3(2):27~32
    [ 62 ]韩京清,系统辨识的一种方法-状态反馈法,控制与决策,1990,5(1): 13~17
    [ 63 ]韩京清,非线性系统的状态观测器,控制与决策,1990,5(3):57~60
    [ 64 ]韩京清,非线性控制系统中状态反馈的实现,控制与决策,1991,6(3): 161~167
    [ 65 ]王伟,韩京清,估计非线性系统参数的一种方法,控制与决策,1993,8(3): 161~165
    [ 66 ]韩京清,控制理论-模型论还是控制论,系统科学与数学,1989,9(4): 328~335
    [ 67 ]韩京清,非线性PID控制器,自动化学报,1994,20(4):487~490
    [ 68 ]韩京清,一种新型控制器-NLPID,控制与决策,1994,9(6):401~407
    [ 69 ]韩京清,王伟,非线性跟踪-微分器,系统科学与数学,1994,14(2):177~183
    [ 70 ]韩京清,袁露林,跟踪-微分器的离散形式,系统科学与数学,1999,19(3):268~273
    [ 71 ]韩京清,黄远灿,二阶跟踪-微分器的频率特性,数学的实践与认识,2003,33(3):71~74
    [ 72 ]韩京清,非线性状态误差反馈控制律—NLSEF,控制与决策,1995,10(3): 221~225
    [ 73 ] Z. Gao, Y. Huang, and J. Han, An alternative paradigm for control system design,Proc. of the 2001 IEEE Conference on Decision and Control, Dec. 2001
    [ 74 ] Z. Gao, From linear to nonlinear control means: A practical progression, ISA Transactions, 2002,4(41):177~189
    [ 75 ] Gao Zhiqiang, Active disturbance rejection control: A paradigm shift in feedback control system design, Proceeding of the 2006 American Control Conference, June 2006
    [ 76 ] Q. Zheng,L. Q. Gao, Z. Gao,On stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknown dynamics,Proc. of the 46th IEEE Conference on Decision and Control,Orieans, LA,USA,2007,12:3501~3506
    [ 77 ] Q. Zheng, L. Q. Gao, and Z. Gao, On estimation of plant dynamics and disturbance from input-output data in real time, Submitted for publication
    [ 78 ]陈硕,Mineo Tsuji,基于磁通观测器的感应电机无速度传感器矢量控制系统,电工技术学报,2001,16(4):30~33
    [ 79 ]白华,赵争鸣,袁力强等,磁场定向与直接转矩控制变频器鲁棒性分析,中国电机工程学报,2006,26(1):91~95
    [ 80 ] SCHAUDER C.Adaptive speed indentification for vectorcont rol of induction motors without rotational trans2ducers,IEEE Trans.IA,1992,28(5):1054~1061
    [ 81 ]徐小增,李叶松,秦忆,基于参数辨识的磁场定向感应电机自适应控制, 中山大学学报(自然科学版),2002,41(6):26~29
    [ 82 ]孙巨禄,苏鹏声,李永东,自调整模糊控制器在异步电机矢量控制系统中的应用,清华大学学报(自然科学版),2002,42(9):1151~1153
    [ 83 ] Uddin M N,Tawfik S,Radwan T S,et a1.Performances of fuzzy-logic-based indirect vector control for induction motor drive, IEEE Trans Industry Applications,2002,38(5):1219~1225
    [ 84 ]谢秉恩,徐小增,胥布工,基于神经网络辨识器的矢量控制异步电机的速度控制系统,电机与控制应用,2005,32 (9):41~44
    [ 85 ] Xu Xiaozeng, Li Yesong, Qin Yi, Induction motor speed control system based on fuzzy neureal network,Transactions of Nanjing University of Aeronautics & Astronautics,2004,21(3):195~199
    [ 86 ]缪波涛,孙旭东,刘丛伟等,一种异步电动机矢量控制的转速辨识方法,电工技术学报,2003,18(3):14~18
    [ 87 ]刘军锋,李叶松,万淑芸,基于自抗扰控制器的感应电机变频调速系统,华中科技大学学报(自然科学版),2008,36(6):47~49
    [ 88 ] K L Shi, T F Chan, Y K Wong, S L Ho,Speed estimation of an inductionmotor drive using an optimized kalman filter.IEEE Trans.Ind.Electr,2002,49(1):124~133.
    [ 89 ]江俊,沈艳霞,纪志成.基于EKF的永磁同步电机转子位置和速度估计,系统仿真学报,2005,17(7):1704~1707
    [ 90 ]王琛琛,李永东,基于EKF的异步电机无速度传感器矢量控制方法,清华大学学报(自然科学版),2008,48(10):1549~1552
    [ 91 ]陈伟,瞿文龙,陆海峰,一种基于MRAS的异步电机速度辨识方法,电工电能新技术,2006,25(2):52~55
    [ 92 ]王庆龙,张崇巍,张兴,基于变结构MRAS辨识转速永磁电机矢量控制系统,系统仿真学报,2007,19(22):5230~5233.
    [ 93 ] Rashed M., Stronach F. and Vas P.,A stable MRAS-based sensorless vector control induction motor drive at low speeds[,IEEE IEMDC 2003, Madison, Wisconsin, USA, 2003:139~144
    [ 94 ] Rehman, H. U., Derdiyok, A., Guven, M. K., Longya Xu,An MRAS scheme for on-line rotor resistance adaptation of an induction machine,PESC 2001 IEEE 32nd Anuual,2001,(2):817~822
    [ 95 ]黄志武,桂卫华,年晓红等,基于自适应观测器的无速度传感器感应电机控制,控制理论与应用,2007,24(6): 914~918
    [ 96 ]孙凯,许镇琳,邹积勇,基于自抗扰控制器的永磁同步电机速度估计,系统仿真学报,2007,19(3):582~584
    [ 97 ]万军,王建海,万敏等,使用基频电流注入的感应电机无速传感器驱动,中国电机工程学报,2005,25(22):163~167
    [ 98 ] J Ha, S K Su1,Sensorless field orientation control of an induction machine by high frequency signal injection , IEEE Transactions on Industry Applications(S0093-9994), 1999,35(1): 45~51
    [ 99 ] P L Jansen,R D Lorenz,Transducerless field orientation concepts employing saturation-induced saliencies in induction machines,IEEE Transactions on Industry Applications (S0093-9994),1996,32(6):1380~1393
    [ 100 ] Degner M. W. and Lorenz, R., D., Using multiple daliencies for the estimation of flux, position and velocity in AC machines, IEEE Transactions on Industry Applications, 1998,34(5):1097~1104
    [ 101 ] Briz F.,Degner, M.W. ,Diez A. and Lorenz R.D., Static and dynamic behavior of saturation-induced saliencies and their effect on carrier-signal-based sensorless AC drives,IEEE Transactions on Industry Applications (S0093-9994),2002,38(3):670~678
    [ 102 ]蒋琪,三峡升船机主拖动交流变频调速系统研究:[博士学位论文],天津大学,2000
    [ 103 ]蒋效忠,汪云祥,扈晓雯,高坝通航技术在水口工程的新发展,水力发电,2006,32(8):64~67
    [ 104 ]吴德镇,升船机及其发展概况,水运工程,1982,(10):21~24
    [ 105 ]李思敏,我国升船机发展概况,起重运输机械,1977,(6):70~78
    [ 106 ]王永新,国内外升船机的建设和发展,水运工程,1991,(11):36~39
    [ 107 ]张生权,董博文,交流变频调速升船机主拖动系统设计研究,水利水电快报,1998,19(14):24~26
    [ 108 ]简洁,高坝洲水利枢纽升船机主拖动系统设计,人民长江,1997,28(6):36~37
    [ 109 ]段波,张生权,垂直升船机电力拖动与控制设计研究,人民长江,2009,40(2):88~91
    [ 110 ]郑守仁,长江三峡水利枢纽工程设计重大技术问题综述,人民长江,2003,34(8):4~11
    [ 111 ]吴穹,垂直升船机运行原理分析,水利电力机械,2007,29(4):7~8,16
    [ 112 ]李思敏,国外升船机发展概况,起重运输机械,1979,(4):53~61
    [ 113 ]张生权,高坝洲升船机电力拖动与计算机监控系统设计,三峡大学学报(自然科学版),2002,24(4):334~337
    [ 114 ]谢兵兵,王晨,肖威,升船机主提升电力拖动系统研究与设计(一),制造业自动化,2002,24(7):57~61

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700